Distributed computation of Web queries using automata,
(extended abstract)

Marc Spielmann, University of Limburg*
Jerzy Tyszkiewicz, Warsaw University
Jan Van den Bussche, University of Limburg

Abstract

We introduce and study a distributed com-
putation model for querying the Web. Web
queries are computed by interacting automata
running at different nodes in the Web. The
automata which we consider are essentially
register automata equipped with an addi-
tional communication component. We iden-
tify conditions necessary and sufficient for sys-
tems of automata to compute Web queries,
and investigate the computational power of
such systems.

1 Introduction

Recently, much attention has been paid to
querying the Web [FLM98]. A salient feature
of Web computations is their browsing nature,
which led Abiteboul and Vianu [AV00] to for-
mally define a Web query as a function map-
ping pairs (I, s) to sets of nodes in I, where I
is a Web instance and s is the Web node where
browsing starts (the source). They also in-
troduced the browser machine, a Turing ma-
chine which can navigate the Web by follow-
ing links.

“Contact address: Marc Spielmann, University
of Limburg (LUC), Departement WNI, Universi-
taire Campus, B-3590 Diepenbeek, Belgium. Phone:
+32-11-268209. Fax: +32-11-268299. Email:
marc.spielmann@luc.ac.be.

Another recent development is that of In-
ternet supercomputing [FK98, Fos00], where
many individual computers linked to the In-
ternet collaborate in a distributed computa-
tion. An appealing and popular example is
the SETI@home project, which scans radio
signals from space for signs of extraterrestrial
intelligence [KWA101].

We were thus inspired to combine these two
lines of research by investigating the possibili-
ties and limitations of Web automata: a com-
putation model for Web querying that, like
the browser machine, is still purely naviga-
tional, but which is also distributed. Start-
ing at the source, a finite portion of the Web
reachable from the source by links is popu-
lated with lightweight processes. This finite
portion is typically determined by specifying a
maximum number of links to follow down (as
commonly done in tools for off-line browsing
and Web mirroring). The processes work con-
currently, following a program specified essen-
tially as a finite register automaton [KF94].
The processes report back to the source pro-
cess by sending messages upwards along the
edges of a spanning tree (a standard network
topology used in computer networks and dis-
tributed computation [Tan96, AW9S]).

We offer the following contributions:

(i) We define a fair, efficient, and easy to
enforce communication protocol by which the
distributed computation proceeds in rounds.

Each round has a layered structure accord-
ing to the levels of the spanning tree. The
processes at each level work concurrently,
and each level takes only constant parallel
time. After each round, the source process
is guaranteed to receive enough data to de-
cide whether to continue for another round,
or to terminate the computation. In addi-
tion, the source process may produce output.
We identify a decidable property of Web au-
tomata, called productivity, which enables this
protocol. Testing productivity is PSPACE-
complete.

(7i) Because the order of upward communi-
cations within a layer is not fixed, there are
many possible runs for a given spanning tree.
On top of that, the spanning tree itself arises
out of the computation and is thus not a priori
fixed. A Web automaton which produces the
same output for every possible run on every
possible spanning tree is called sound. Ev-
ery sound Web automaton computes a well-
defined Web query. We show that soundness
is undecidable (this is not entirely evident
given the finite nature of Web automata and
the rather rigid communication protocol they
must follow).

(i1i) A sound Web automaton computes
a Web query, but the user is not guaran-
teed to see new output every round, which
can be quite undesirable in practical scenar-
ios. A Web automaton that does produce
new output every round is called continuous.
In particular, a continuous Web automaton
that computes a yes/no query already knows
the answer in one round. Continuity is also
shown to be undecidable. Note the anal-
ogy with Abiteboul and Vianu’s distinction
between finitely and eventually computable
Web queries: of a query that is only even-
tually computable, the user is never sure that
he has seen all of the output.

(iv) When an order on the outgoing links
from every node is available (a very natu-

ral assumption in the context of the Web),
we show that every logarithmic-space com-
putable Web query is computable by a Web
automaton.

(v) We introduce a natural syntactic sub-
class of Web automata called DAF (Decide
And Forward). As the name suggests, a
DAF automaton makes all the crucial deci-
sions already after the first round; the sub-
sequent rounds are pure forwarding rounds
which merely flush the remaining contents of
the communication queues to the output. We
show that soundness and continuity of DAF
automata becomes decidable in the monadic
case i.e., when the tests performed by au-
tomata are based on unary predicates of Web
nodes only. Furthermore, we give a character-
ization of the Web queries that are continu-
ously computable by these monadic DAF au-
tomata, in terms of a fragment of first-order
logic.

(vi) Finally, we introduce a restricted ver-
sion of the browser machine, which can use its
Turing tape only in a stack-like manner simi-
lar to the working of the ‘back’ and ‘forward’
buttons of common Web browsers, and has
only a finite work memory. When in addition
the depth of the stack is bounded (so that
the machine cannot get ‘lost in hyperspace’),
we show that every Web query computable
by such a browser stack machine is also com-
putable by a Web automaton.

As for related work, practical distributed
Web querying systems similar to our theoret-
ical model are already being proposed, e.g.,
the DIASPORA system [GHRO00]. Few the-
oretical studies of navigational Web querying
have been published; that is of course, after
the original papers by Abiteboul and Vianu
[AV00], and Mendelzon and Milo [MM98].
These two papers focused on computational
completeness, while we work with a limited
computation model and focus on distribution
and efficiency. A very recent proposal of a

formal model for Web querying using concur-
rent agents was made by Sazonov [Saz]; his
model is based not on finite automata but on a
set-theoretic term language. Finite automata
working over abstract domains (Web nodes
in our case) rather than over finite alphabets
have, of course, been considered before, e.g.,
in the study of regular languages over infinite
alphabets [KF94, NSV01]. Finally, we men-
tion that in our definition of distributed runs
of Web automata we were inspired by Gure-
vich’s definition of partially ordered runs of
distributed abstract state machines [Gur95].

2 Web Queries

Web Instances. Fix a vocabulary T con-
sisting of predicate symbols of various arities,
including at least a binary symbol Link. We
define a Web instance as a finite relational
structure over Y. The elements of the in-
stance are called nodes, and are abstractions
of Web pages, Web sites, or other objects on
the Web. The ordered pairs in the Link rela-
tion represent links in the Web.

The other predicate symbols are abstrac-
tions of the semantic predicates a Web query
will apply to nodes. To give a few random ex-
amples, a unary predicate P;(z) could stand
for “Web page x contains the keyword Madi-
son”; a binary predicate P»(z,y) could stand
for “the link from x to y is labeled Madison”;
and a ternary predicate Ps(z,y, z) could stand
for “on page z, all links to y precede all links
to 2”. The vocabulary will thus vary from
query to query.

Although a Web instance is nothing but a
standard relational database with at least one
binary relation, there is a crucial difference
with standard relational database queries: to
answer a Web query, we can examine this
‘relational database’ only by following links
starting at some source node. This brings us

to the next basic definition.

Web Queries. A Web query @ over T is
a mapping that assigns to every pair (Z,s),
where Z is a Web instance over Y and s
is a node in Z called the source, a set of
nodes in Z. Following the standard gener-
icity criterion for database queries, () must
preserve isomorphisms, i.e., if (Z’,s') is iso-
morphic to (Z, s) via an isomorphism ¢, then
Q(T',s") = (Q(Z,s)).
will consider purely navigational computation
models only, it is only fair to accordingly re-
quire that Q(Z, s) = Q(Reach(Z, s), s), where
Reach(Z, s) denotes the substructure of Z gen-
erated by the nodes reachable from s by fol-
lowing links.

Note that every first-order formula (s,)
over T defines a Web query Q, : (Z,s) — {n:
Reach(Z, s) = ¢[s, n]}.

Moreover, since we

3 Web Automata

We begin the introduction of our computa-
tion model by defining the class of programs
that can be executed by Web automata, and
defining local runs of automata at individual
Web nodes. In the next section we then de-
fine distributed runs of systems of automata.

Web Automata. Formally, a Web automa-
ton is a triple (Y, 7, II), where T is the vo-
cabulary, 7 is a tuple (r1,...,7ry) of register
variables, and II is aprogram over Y and T,
which we define next.

To define programs, we add to T constant
symbols 0, 1, and 1, and the unary predicate
symbol Source, yielding an expanded vocabu-
lary Y*. The symbols 0 and 1 will represent
the two bits, while Source will indicate the
source node. The symbol | will stand for the
empty queue.

A guard is a quantifier-free first-order for-
mula ¢(z,y,7) over Y. As will become clear

soon, x will be interpreted as the node at
which the automaton is running locally, and
y will be interpreted as the head of the queue
of incoming messages. The variables r; will
be interpreted as the contents of the registers
of the automaton.

A rule is an expression of the form if ¢
then action, where ¢ is a guard and action
is an update action, of the form (r; :=t), or
a send action, of the form send(t). Here, t
is a term in {z,y,71,...,70,0,1}, and % is a
sequence of such terms, possibly empty.

A program is now simply a finite set of rules.

Example 3.1. An example of a program for a
Web automaton over a vocabulary containing
a unary predicate Interesting is the following:

if 71 = 0 A Interesting(x) then send(x)
if r1 =0 thenr; ;=1

if 11 =1 Ay # L then send(y)

if r1 =1 Ay = 1 then send()

O

Local Runs. We next define a notion of lo-
cal run which reflects the behavior of an au-
tomaton A = (T,7,II) when observed at a
particular node.

Fix an instance Z over T and let s be a
source node in Z. Expand 7 to a structure
I over TT by adding the three new elements
0, 1, and L, and by interpreting the unary
predicate Source as the singleton {s}. In the
following, the words queue and message both
refer to a finite sequence of bits and nodes in
Z. By the head of a queue we mean its first
element, and by the tail the sequence of the
remaining elements; we define the head of the
empty queue to be L.

Let n be a node in Z. A configuration of A
at n is a triple (n, q,a) where ¢ is a queue and
a is an ¢-tuple (aq,...,ap) of bits and nodes
in Z (recall that £ is the number of registers).
Intuitively, a; is the content of register r; in

this particular configuration. A program rule
in IT with guard ¢(z,y,7) is said to be en-
abled in (n,q,a) if ZT = p[n, head(q),a]. The
successor configuration of (n,q,a) is the con-
figuration (n,q¢’,a’) such that

e if ¢ is not empty, then ¢’ = tail(q); oth-
erwise, ¢ = ¢; and

e for each i € {1,...,¢}, if there is pre-
cisely one r;-update rule in II which
is enabled in (n,q,a), then a, =
t[z/n,y/head(q),r/a], where (r; :=t) is
the right-hand side of this rule; other-
wise, a; = a;.

We further say that A sends a message m
in (n,q,a) if there is precisely one send rule
in IT which is enabled in (n,q,a), and m =
tlz/n,y/head(q),7/a], where send(t) is the
right-hand side of this rule.

Define a local run of A at node n (in Z with
source s) to be a finite or infinite sequence
(Ci)icx of configurations of A at m such that
for every i +1 € K

e (Cjy1 is a successor configuration of Cj,
and

e if A sends the empty message in C;, then
Ci11 is the last configuration of (C;)icx.

Remark 3.2. One may wonder why our au-
tomata need to be able to send messages of
length longer than 1. After all, an automaton
could send the components of a message one
after the other as messages of length 17 How-
ever, we will consider systems of communicat-
ing automata, where a receiving automaton
may obtain messages from many different au-
tomata, and these messages can be intermin-
gled. Then it is important that the receiver is
able to see which messages were sent by one
and the same sender. Note that messages can
be flanked by separators (e.g., special bit se-
quences) thereby enabling a receiver to distin-
guish between different messages. Note also

that the automaton in Example 3.1 is a very
simple one which indeed sends messages of
length 1, or empty messages, only. U

We are particularly interested in automata
where the time between two send actions is
bounded by a constant:

Definition 3.3. Let £ > 1 be a natural num-
ber. A Web automaton A is k-productive if
for every local run (C;);c, of A where in Cj
each register has contents 0, in any k£ consec-
utive configurations, there is at least one in
which A sends a message. A is productive if
it is k-productive for some k. O

For example, the automaton of Example 3.1
is 2-productive. We have:

Theorem 3.4. Both the problem of deciding
k-productivity for a fized k, and the problem of
deciding productivity, are PSPACE-complete.

4 Distributed Computations

Before we define distributed runs of systems
of Web automata formally, we provide some
intuition. A productive automaton A, when
started at some source node s of an instance
7, begins by distributing copies of itself to all
other nodes, using an obvious recursive pro-
cedure: upon creation at a node n, A equips
every node which n links to with a copy of it-
self, except when the node is already equipped
with a copy. This procedure traces out some
spanning tree of the link graph. Note that in
practice, we will go only a fixed number of
levels deep in the Web. Also, all automata
at nodes located at the same server might be
implemented by a single process running at
this server.

Each process now starts running concur-
rently with the others, and sends its messages
to the process that created it. But they all fol-
low a simple protocol based on two principles:

start running only if you can, and stop once
you have sent a message. This naturally orga-
nizes the distributed computation in rounds,
where in each round, every automaton still
active sends one message. Since an automa-
ton reads a new message each time it moves
(unless it is a leaf automaton), it must in-
deed wait until it has received enough incom-
ing messages so that it can run long enough
to send a message itself.

Since our automaton program is produc-
tive, rounds can always be performed in par-
allel time linear in the depth of the span-
ning tree. For instance, processes at leafs of
the spanning tree never receive any messages
and can always start the round, thus enabling
other processes to start, etc. All nodes sent by
the source process belong to the output. In
every subsequent round, a process picks up
its local run where it left it at the previous
round. When it sends the empty message, it
exits the computation and will not participate
in later rounds. When the source automaton
exits, the whole computation terminates.

To the formal definition. Let Z be an in-
stance with node set N and link set L, and
let s be a source node in Z. We assume
that Reach(Z,s) = Z; if not, replace Z with
Reach(Z, s) in what follows. Let T be a span-
ning tree of (N, L) rooted at s.

A global configuration of A is a mapping y
that assigns to each node n a configuration of
A at n. The initial global configuration maps
each n to (n,,0).

Let v and 4" be two global configurations
and let n be a node. 7' is called a succes-
sor configuration of v via a move at n if the
following three conditions hold:

1. There exists a finite local run
(Coy...,Ck) of A at n such that (i)
Co = ~v(n), (ii) k£ > 1, (iii) no message is
sent in this local run before Cj_1, (vi) A
does send some message m in Cj_1, and

(v) Cr =7'(n).

2. If n # s, let p be the parent of n in
T. Then, if 7v(p) = (p.q,a), ¥'(p) =
(p,gm,a). (That is, m is appended to
the queue of the parent process.)

3. For every node o different from n and p
(if p exists), v'(0) = (o).

Let d be the depth of 7. For every i €
{0,...,d}, let level(i) denote the set of nodes
whose distance from s in 7 is i. Let M be a
subset of N containing s. An M -round (along
T) is a finite sequence (7;);<; of global config-
urations such that

e for every 2 +1 < [, ;41 is a successor
configuration of ; via a move at some
node m;41

e the sequence n...n; is an enumeration
of M, and

e for each 7 € {0,...,d} there exists an
enumeration é; of level(7) N M such that
€d.---€g=mni...Nn.

The output produced during this round is the
set of nodes occurring in the message sent at
s.

A one-round run p (on Z with source s)
is an N-round which starts with the ini-
tial global configuration. Finally, a multiple-
round run p* (on Z with source s) is a finite
or infinite sequence (p;)ic, of rounds along
the same spanning tree such that pg is a one-
round run and for every ¢ + 1 € s

e p;y1 starts with the last configuration of
pi, and

e if p; is an M-round and My C M is
the set of nodes at which A has sent the
empty message during p;, then p;;; is an
(M — Mjy)-round.

Because M-rounds are only defined when s €
M, p* is finite iff the root automaton sends
the empty message during some round p;, in
which case p; is the last round of p*. The
output produced during p* is the union of the
outputs of all rounds of p*.

Because A is productive, for every choice of
T, s, and T, there exists a multiple-round run
of Aon (Z,s) along T.

Example 4.1. Recall the simple Web au-
tomaton in Example 3.1. When run, this au-
tomaton outputs all ‘interesting’ nodes reach-
able from the source, without duplicates. In
each round, the source automaton outputs
precisely one node. Note that the output or-
der depends on the choice of the spanning
tree and on the order in which the various au-
tomata communicate during each round. [

5 Automata Computing Web
Queries

Henceforth, Web automata are by default as-
sumed to be productive.

On a given Web instance and source node,
a Web automaton can make many different
possible distributed runs. The order of com-
munications within one round can be arbi-
trary. Moreover, the choice of the spanning
tree is also arbitrary. Different runs might
produce different output sets, as the next ex-
ample shows.

Example 5.1. Consider the following pro-
gram. (For readability, we use some syntactic
sugar and write “this_node” and “head’ in-
stead of z and y.)

if r1 = 0 then
if head = 1 then send(this_node)
else send(head)
r = 1
if 7y = 1 then send|()

On the 3-node instance ny «— s — ng, the
output could be either {ni} or {ns}, depend-
ing which of the two children of s gets its mes-
sage first in the queue of s. By adding links
n1 — ny and no — ny, we obtain also de-
pendence on the choice of the spanning tree.
If the tree s — mqy — ng is selected, the out-
put is {na}, while if the tree s — ny — ny
is selected, the output is {n}. O

Example 5.2. On the other hand, again con-
sider the automaton in Example 3.1. Al-
though the output order can differ, the actual
output set is always the same for every possi-
ble run.]

We are thus led to define:

Definition 5.3. A Web automaton A is
called sound if on every pair (Z,s), every
multiple-round run of A on (Z,s) produces
the same output.

If A is sound, we can speak of the Web query
computed by A which maps every (Z, s) to the
output of any run of A on (Z, s). O

Unfortunately:
Theorem 5.4. Soundness is undecidable.

An indication of the querying power of Web
automata is provided by the following result.
Suppose that the vocabulary contains the dis-
tinguished ternary predicate symbol <. We
call an instance Z ordered if for each node n
in Z, <7 totally orders the children of n.

Theorem 5.5. Any Web query restricted to
ordered instances and computable in logarith-
mic space is computable by a Web automaton.

An undesirable behavior of Web automata,
even of sound ones, is that the user might
have to wait many rounds before seeing any
new output that he has not seen before. In the
worst case, he might even wait only to learn
later that there is no new output at all. Since

each round takes only linear parallel time in
the depth of the portion of the Web we are
looking at, it would be particularly interesting
to have the following behavior, which we call
continuity:

Definition 5.6. A Web automaton A is
called continuous if in any multiple-round run
on any input, every round, except the last one,
outputs at least one node that was not yet
output.]

Unfortunately:
Theorem 5.7. Continuity is undecidable.

Remark 5.8. Theorems 5.4 and 5.7 hold al-
ready for automata which test only one unary
predicate symbol (in particular, which do not
test the link predicate). Alternatively, both
theorems remain true for automata which test
the link predicate only. Moreover, undecid-
ability is encountered even if one restricts
attention to tree-like Web instances (where
there is only one possible choice of a spanning
tree). Finally, both theorems remain true for
finite Web automata, that are, Web automata
which cannot store nodes in their registers
and therefore have only a finite number of dif-
ferent internal states. (Note that the automa-
ton in Example 3.1 is finite in that sense). [

The next result provides a class of Web
queries computable by continuous Web au-
tomata, in terms of a fragment of first-order
logic, which we call at-most-at-least logic.
This fragment might seem artificial, but later
we will see that it is associated to a natural
subclass of Web automata.

Let a(x) be quantifier-free formula and let
k be a natural number. An a-at-most formula
is a formula of the form (|o| < k) A va(s,),
where

e (Ja| < k) abbreviates the first-order for-
mula -3>*z o(z), and

® 7, is a boolean combination of formu-
las of the form (Jy; € a)...(Fy, € a)f
where (s, z,7) is quantifier-free.

An at-most-at-least formula is a formula
of the form «a(z) A dq(s,z) where J, is a
boolean combination of a-at-most formulas
and atomic formulas 3(s).

Example 5.9. With unary predicate symbols
U and V and a binary predicate symbol W,
an example of an at-most formula is

Ul <42A=(V(z) A By € U)W (2,y))

An example of an at-most-at-least formula
then is the conjunction of U(xz) with the nega-
tion of the above at-most formula, which can
also be written as

U(x)/\(|U| <42 = (V(z)A(Jy € U)W(:E,y)))
|

Theorem 5.10. Any Web query definable in
at-most-at-least logic is computable by a con-
tinuous Web automaton.

The converse direction of the above theo-
rem does not hold. For instance, the query de-
fined by the following formula is continuously
computable, but the formula is not equivalent
to any at-most-at-least formula:

(Green(x) A |Green| > 42)
V (Red(z) A |Red| > 10)

Remark 5.11. There is an interesting vari-
ant of Theorem 5.10 which reads as follows.
A generalized at-most-at-least formula is sim-
ply a boolean combination of at-most formu-
las and quantifier-free formulas £(s,z). In
particular, the at-most subformulas do not
need to have the same «. We can show that
any Web query definable by a generalized at-
most-at-least formula is computable by a Web

automaton with discard action, i.e., a Web
automaton which can discard his queue in
addition to performing update and send ac-
tions.]

The next observation gives an example of
a query that is easily computable by a Web
automaton, but not by a continuous one.

Proposition 5.12. Let P be a binary predi-
cate symbol. The Web query {x : P(s,z)} is
not computable by a continuous Web automa-
ton.

Indeed, to be continuous, the source au-
tomaton must start outputting already in the
first round. However, by productivity, it can
see only a constant number of nodes in each
round. If the communication order is unfortu-
nate, none of the nodes seen in the first round
qualify for output.

Remark 5.13. An argument similar to the
one just given shows that the at-most-at-least
query U(z) A |U| < 2, while computable by
a continuous Web automaton, is not com-
putable by a continuous Web automaton that
can send messages of length at most 1. (Re-
call Remark 3.2.) O

6 DAF Automata

Call an automaton link-free if it does not test
the link predicate. Link-freeness simplifies
things considerably, as exemplified by the fol-
lowing ‘flat-tree’ property:

Proposition 6.1. Let A be a sound and link-
free Web automaton, and let Q be the Web
query computed by A. Then for any input
(Z,s) we have Q(Z,s) = Q(flatten(Z,s),s),
where flatten(Z,s) is the instance obtained
from T by changing the link graph of I into
a flat tree with root s and all other nodes chil-
dren of s.

For on flat trees sound Web automata
can easily be shown to run in logarithmic
space, the flat-tree property implies that
Web queries computable by link-free Web
automata are logarithmic-space computable.
Whether this also holds in general is an open
problem. (The flat-tree property itself cer-
tainly does not hold in general.)

Remark 6.2. Referring back to the Intro-
duction, we point out (only half seriously
though) that the Flat Tree Lemma provides
some kind of a-posteriori justification of the
way Internet supercomputing works, where
indeed the standard mode of operation is
that all computers that participate in the dis-
tributed computation report directly to a cen-
tral source computer. O

Let Iforyara be the following program:

if head # | then
send(head)

else
send()

A Web automaton is called DAF (Decide And
Forward) if its program has the form

if first_round then
I1
else

Hforward

where first_round is a boolean register initial-
ized with true, and II is a program in which
every send rule has the following form:

if ¢ then send(t); first_round := false

where ¢ is a guard of the form ¢' A A;(t; &
{0,1}).

In other words, a DAF automaton makes
all the crucial decisions in the first round,
sends only nodes (no bits), and runs in all
subsequent rounds (if any) merely as a for-
warder that flushes the remaining contents of
the communication queues to the output.

For example, the automaton of Example 4.1
is not DAF, but can easily be rewritten into
an equivalent DAF form.

A Web automaton is called monadic if it
does not test any predicate of arity > 2. In
particular, a monadic automaton is link-free.

We have the following decidability results:

Theorem 6.3. For monadic DAF automata,
emptiness is decidable. (It is undecidable in
general.)

Theorem 6.4. The problem of deciding
whether a monadic DAF automaton is sound
and continuous is decidable.

Furthermore, we have the following charac-
terization in terms of (monadic) at-most-at-
least logic:

Theorem 6.5. A Web query is computable
by a continuous monadic DAF automaton if
and only if it is definable in monadic at-most-
at-least logic.

Corollary 6.6. Continuous DAF automata
are strictly weaker than general continuous
Web automata.

Indeed, the query we used to show that the
converse direction of Theorem 5.10 does not
hold in general, is monadic.

7 Browser Stack Machines

Since the work by Abiteboul and Vianu
[AV00] was one of the main inspiration for
the present work, it seems only fitting to con-
clude this paper with a relationship between
Web automata and A&V’s browser machines
[AV00]. In this section, we introduce a re-
stricted variant of the browser machine and
show that, in depth-bounded regions of the
Web, machines of the restricted type can be
simulated by Web automata. There are two
main restrictions which we impose on browser
machines:

e the work tape is replaced with a finite
number of registers, and

e the browsing tape is organized like a
stack, forcing a machine to explore the
Web only by means of the three famil-
iar surf actions of common Web browsers:
‘follow this link’, ‘go back’, and ‘go for-
ward’.

Browser Stack Machines. Let T and z,7
be as in the definition of Web automata.
(This time, z will denote the stack element
which the cursor of the machine is currently
pointing to.) A guard is a quantifier-free for-
mula ¢(z,7) over T U {0, 1} with free(yp) C
{z,7}. A program II is a finite set of rules
of the form (if ¢ then action) where ¢ is a
guard and action is an expression of the form
up, down, expand, (r; :=t) or output(t), with
t € {z,r01}.

A browser stack machine (BSM) is a triple
(Y,7,II) where Y is a Web vocabulary, 7 is a
tuple of distinct register variables, and II is a
program over T and 7.

Runs. Let M = (T,7,1I) be a BSM and let
7 be an ordered Web instance (recall our con-
vention prior to Theorem 5.5). In the follow-
ing, the term stack refers to a finite sequence
of 0’s and nodes in Z. (An occurrence of 0 on
a stack will serve as a separator between dif-
ferent segments of the stack.) Suppose that
st is a stack of length k. A cursor c on stis a
natural number between 1 and k.

A configuration of M is a quadruple
(st,c,a,O) where st is a stack, ¢ is a cursor on
st, a is an ¢-tuple consisting of bits and nodes
in Z, and O is a set of nodes. Intuitively, O is
the output produced so far.

The successor configuration (st',c,a',0") is
defined in the obvious way; we only give some
details for the actions up, down, and ezpand.
Suppose that there is precisely one stack rule
in IT which is enabled in (st c,a,0). If the

10

right-hand side of the rule is up or down, then
st = st and ¢ is obtained from c as usual.
If the right-hand side of the rule is expand,
partition st into two st; and sty such that the
length of st; is ¢. If ¢ points to a node, say,
n, and st3 is a sequence of all child nodes of
n ordered according to the order at n, then
st = st10st3 and ¢ = c¢. Otherwise, st = st
and ¢ = c.

Let s be a source node in Z. A run p of
M (in Z with source s) is a finite or infinite
sequence (C})icx of configurations of M such
that Co = (s,1,0,9) and for every i + 1 € k,

e (Cjy1 is a successor configuration of Cj,
and

e if M attempts to move the cursor below
the stack bottom in C}, then Cj41 is the
last configuration of (C;);cs.

Note that p is uniquely determined by (Z, s).
If p is finite, we say that M halts on (Z,s). In
that case, the output component of the final
configuration of p is the output of M on (Z, s).
M computes the Web query @ if M halts on
every input (Z, s) with output Q(Z, s).

An indication of the querying power of
BSMs is the following:

Proposition 7.1. Any Web query definable
by a generalized at-most-at-least formula (in
the sense of Remark 5.11) is computable by a
BSM.

Depth-Bounded BSMs. Let d be a natu-
ral number. A BSM M is called d-bounded
if it maintains a counter of the number of
separators between the stack bottom and
the current cursor position. Whenever this
counter equals d, M ignores all expand
actions.

We can show:

Theorem 7.2. Any Web query computable
by a depth-bounded BSM is computable by a
Web automaton.

References

[AV00]

[AW9S]

[EF95]

[FKO8]

[FLMOY8]

[Fos00]

[GHRO0]

[Gur95]

[Imm87]

S. Abiteboul and V. Vianu.
Queries and computation on the
web. Theoretical Computer Sci-
ence, 239(2):231-255, May 2000.

H. Attiya and J. Welch. Dis-
tributed Computing: Fundamen-
tals, Simulations and Advanced
Topics. McGraw-Hill, 1998.

H. D. Ebbinghaus and J. Flum.
Finite Model Theory. Springer-
Verlag, 1995.

I. Foster and C. Kesselman. The
Grid: Blueprint for a New Com-

puting Infrastructure. Morgan-
Kaufmann, 1998.
D. Florescu, A. Levy, and

A. Mendelzon. Database tech-
niques for the World-Wide Web:
A survey. SIGMOD Record,
27(3):59-74, 1998.

I. Foster. Internet computing and
the emerging grid. Nature, De-
cember 2000.

N. Gupta, J.R. Haritsa, and
M. Ramanath. Distributed query
processing on the Web. In
Proceedings of 16th International
Conference on Data Engineering,
page 84. IEEE Computer Society,
2000.

Y. Gurevich. Evolving Algebras
1993: Lipari Guide. In E. Borger,
editor, Specification and Valida-
tion Methods, pages 9-36. Oxford
University Press, 1995.

N. Immerman. Languages That

Capture Complexity Classes.

11

[KF94]

[KWA*01]

[MM98]

INSVO1]

[Saz|

[Spi00]

SIAM Journal of Computing,
16(4):760-778, 1987.

M. Kaminski and N. Francez.
Finite-memory automata. The-

oretical Computer Science,
134(2):329-363, November 1994.

E. Korpela, D. Werthimer, D. An-
derson, J. Cobb, and M. Lebof-
sky. SETTHOME-—massively dis-
tributed computing for SETI.
Computing in Science and Engi-
neering, 3(1):78-83, 2001.

A. Mendelzon and T. Milo. For-
mal models of web queries. Infor-
mation Systems, 23(8):615-637,
1998.

F. Neven, T. Schwentick, and
V. Vianu. Towards regular lan-
guages over infinite alphabets.
In Proceedings of 26th Interna-
tional Symposium on Mathemati-
cal Foundations of Computer Sci-
ence (MFCS 2001), volume 2136
of Lecture Notes in Computer Sci-
ence, pages 560-572. Springer,
August 2001.

V. Sazonov. Using agents
for concurrent querying of web-
like databases via a hyper-set-
theoretic approach. To appear
in Proceedings of 4th Interna-
tional Conference on Perspectives
of System Informatics, July 2001,
Novosibirsk, Russia.

M. Spielmann. Abstract State
Machines: Verification Problems
and Complezity. PhD thesis,
RWTH Aachen, 2000.

[Tan96] A. S. Tanenbaum. Computer Net-
works. Prentice-Hall, 3rd edition,
1996.

Appendix

We sketch the proofs of our main results.

A.1 Productivity

Proposition A.3. Let A be a Web automa-
ton with (at most) £ registers. A is productive
iff A is 3¢ -productive.

Proof of Theorem 3.4. First, consider the
problem of deciding k-productivity. Contain-
ment is proved by reduction to the finite sat-
isfiability problem for existential transitive-
closure logic, FIN-SAT(E+TC), which is in
PsPACE if we focus on formulas over relational
vocabularies [Spi00]. For every Web automa-
ton A and every natural number &, one can
construct (in polynomial time) an (E+TC)
sentence ¢, j which has a finite model iff A
is not k-productive.

Hardness is proved by reduction from a re-
striction of FIN-SAT(E+TC). We call a for-
mula of the form [TCzz¢](t,t") simple if ¢
is quantifier-free and t = 0 and ' = 1. The
problem of deciding whether a given simple
TC formula has a (finite) model is already
PspAcE-hard [Spi00].

Consider a simple TC sentence 1
[TCz,2¢](0,1). Suppose that Z (and thus
7') consists of ¢ variables. Below, we out-
line the program of a Web automaton which
is k-productive iff ¢ is not satisfiable. It is
assumed that initially Z = 0 and 7 = 1.

if z #1 then
send(0)
if 1</ then
x, := head
1:=1+1
else

12

1:=1
if ¢(z,z') then 7 := 7'

Now consider the problem of deciding pro-
ductivity. Hardness is implied by the same
reduction which shows hardness of deciding
k-productivity. It remains to prove contain-
ment in PSPACE. Given a Web automaton A
with ¢ registers we can set k = 3¢, store k
in space polynomial in the size of A, and then
run our polynomial-space algorithm for decid-
ing k-productivity. This procedure is still in
polynomial space and, by Proposition A.3, de-
cides productivity of A. O

A.2 Undecidability Results

Proof of Theorem 5.4. The proof is by re-
duction from the emptiness problem for de-
terministic one-way two-head automata (2-
DFAs). Tt suffices to consider simple 2-DFAs,
that are, 2-DFAs whose input alphabet is
{0,1} and whose program ensures that every
computation progresses in two distinguished
phases. During the first phase, a simple 2-
DFA M uses its first input head to scan an
initial segment of the input tape. The second
input head remains idle. After each compu-
tation step, M may or may not switch to the
second phase, depending on its current con-
figuration. If and when M switches to the
second phase, the first input head is placed
somewhere on the tape, while the second in-
put head is still on the first tape cell.

During the second phase, M can do what-
ever 2-DFAs are entitled to do, with the re-
striction that, in every computation step, M
must move both input heads, each one to the
next tape cell. A computation of M stops if
the input is accepted or if the first input head
reaches the end of the input tape. One can
show that for simple 2-DFAs the emptiness
problem is undecidable (by reduction from the
word problem for Turing machines).

Let M be a simple 2-DFA. We construct a
Web automaton Ajps over ({L}, @) such that

e if L(M) = @, then Ay continuously
computes Qe and

e if Ajps is sound (or, alternatively, contin-
uous), then L(M) = @.

This will reduce the emptiness problem for
simple 2-DFAs to the problem of deciding
soundness (or, continuity).

To the construction of Ap;. In the first
round, A,s performs the following two tasks
in parallel. First, it checks whether it is ex-
ecuted along a spanning tree which has the
form of a path. Second, it pretends that the
first test was successful, views the spanning
tree (which is now assumed to be a path) as
an input tape (where link self loops represent
set input bits), and simulates the first phase
of M on that input tape. If the first test
fails, the source instance of Ajp; switches to
a ‘forwarding’ mode, which means that in ev-
ery subsequent round it just outputs all nodes
(reachable from the source node). The same
happens if during the simulation of M the first
input head reaches the end of the (virtual) in-
put tape.

If the source automaton survives the first
round without switching to forwarding mode,
then, in all subsequent rounds, Ays simulates
the second phase of M and, in parallel, out-
puts all nodes. Except if the source automa-
ton discovers during the simulation that M
accepts. In that case, the source automaton
switches to a ‘spoiling’ mode, which means
that it stops outputting nodes and instead
sends some dummy messages. O

Theorem 5.7 follows immediately from the
reduction in the above proof.

13

A.3 Main Decidability Result

We briefly outline the proof of Theorem 6.4.
Theorem 6.3 is a consequence of intermediate
results.

In the following, fix a DAF automaton A.
We assume that A is k-productive. A Web
instance 7 is called tree-like if the link graph
of 7 is a tree (where each leaf is reachable
from the root). By a run of A on a tree-like Z
we mean a run of A on (Z,r) where r is root

of T.

Lemma A.4. Suppose that A is monadic.
There exists a (computable) constant cay
such that for every one-round run p of A there
exists a one-round run p' of A on a tree-like
Web instance of size at most c i such that the
message sent by the source automaton during
P is identical with the message sent by the
source automaton during p.

We conclude:

Theorem A.5. For monadic Web automata
the first-round emptiness problem is decidable.

Proof of Theorem 6.3. Verify that the iden-
tity is a reduction from the emptiness problem
for DAF automata to the first-round empti-
ness problem for Web automata. The theo-
rem then follows from Theorem A.5. O

The main idea in the proof of Theorem 6.4
is to reduce the problem of deciding soundness
to the problem of deciding soundness on flat
trees. A tree-like 7 is called flat if the link
depth of Z, measured from the root, is at most
1.

Definition A.6. A is flat-tree sound if for
every flat 7 appropriate for A and for any
two multiple-round runs pj and p5 of A on Z,
out(p}) = out(pj).

Recall the definition of flatten(Z,s) in
Proposition 6.1. A is flat-invariant if A is

flat-tree sound and for every tree-like Z appro-
priate for A and for every multiple-round run
p* of A on Z, out(p*) = out(A, flatten(Z,r)),
where r is the root of 7. O

Lemma A.7. Flat-tree soundness is a decid-
able property of DAF automata.

Lemma A.8. Suppose that A is monadic. A
is sound iff A is flat-invariant.

The proof of the last lemma is based
on Proposition 6.1. The rest of the con-
struction concerns a procedure for deciding
flat-invariance.

Alpha Nodes. Let a(x) be a quantifier-free
formula such that for every tree-like Z ap-
propriate for A and for every leaf node n in
Z, A at m sends a non-empty message during
a one-round run of A on Z iff 7 = «a[n]. A
node n in some Z appropriate for A is called
a-node if T = a[n].

Alpha-Sending Automata. We call A «a-
sending if during every one-round run of A,
every non-empty message sent by A at a non-
source node contains only pairwise distinct a-
nodes.

Lemma A.9. If A is a-sending, then A is
continuous.

Lemma A.10. It is decidable whether o given
Web automaton is a-sending.

Alpha-Outputting Automata. We call A
a-outputting if for every (Z, s) appropriate for
A and for every multiple-round run p* of A on
(Z,s), if Ny is the set of a-nodes in Z, then
out(p*) C {s} U N,.

Lemma A.11. If A is monadic and sound,
then A is a-outputting.

Lemma A.12. It is decidable whether o given
a-sending DAF automaton is a-outputting.

14

A tree-like 7 is called sparse if there are at
most k£ non-root a-nodes in Z.

Definition A.13. A is sparse-tree sound if
for every sparse Z appropriate for A and for
any two multiple-round runs pj and p3 of A
on Z, out(p}) = out(p3). O

Lemma A.14. Sparse-tree soundness is a de-
cidable property of a-sending DAF automata.

The next lemma is central to our construc-
tion. Its proof is based on Lemma A.4.

Lemma A.15. Flat-invariance is a decid-
able property of flat- and sparse-tree sound,
a-sending and -outputting, monadic DAF aqu-
tomata.

We are now in the position to prove our
main decidability result.

Proof of Theorem 6.4. Consider a monadic
DAF automaton A. Call A bounded if for ev-
ery flat Z appropriate for A with precisely &
non-root a-nodes and for every one-round run
p of Aon Z, pis terminating, i.e., the source
automaton sends the empty message during
p. Otherwise, call A unbounded.

First determine whether A is bounded
or unbounded (simply by testing all non-
isomorphic small flat trees). Suppose that
A is unbounded. One can show that, if A
is sound and continuous, then A must be a-
sending. Check whether A is a-sending (see
Corollary A.10). If the test fails, reject A.
Otherwise, check whether A is a-outputting
(see Lemma A.12). If this test fails, reject A
(because A is not sound according to Lemma
A.11). Otherwise, check whether A is flat-
and sparse-tree sound (see Lemmata A.7 and
A.14). If one of the two tests fails, reject
A (clearly, A cannot be sound in that case).
Otherwise, check whether A is flat-invariance
(see Lemma A.15). If this test fails, reject A
(because A is not sound according to Lemma

A.8). Otherwise, accept A, for it is sound and
continuous due to Lemmata A.8 and A.9.
Now suppose that A is bounded. Note that
A may not be a-sending in this case. An
analysis of bounded Web automata (as com-
plex as for a-sending automata) leads to a
decision procedure similar to the one outlined
above. O

A.4 Computational Power

This subsection concerns the proofs of Theo-
rems 5.5, 5.10, and 6.5.

Lemma A.16. There exists a Web automa-
ton Aepum such that for every ordered T and
for every source node s in I, every multiple-
round run (p;); of A on (Z,s) satisfies the fol-
lowing three conditions:

1. (p;)i is infinite.

2. For every index i, out(p;) is either empty
or a singleton set.

There exists an enumeration e of all
nodes in Reach(Z,s) such that, if (0;);
is obtained from (out(p;)); by removing
all empty sets, then (0;); can be seen as
an infinite repetition of e.

Proof of Theorem 5.5. Let ¢(x1,...,2;) be
a formula of deterministic transitive-closure
logic [EF95]. We construct a Web automa-
ton A, which, on input (Z,s), enumerates
{a : Reach(Z,s) E ¢[a]} in the following
sense. In every round, A, at s sends either a
‘wait’ message or a message (a1, ..., ay) satis-
fying ¢. Eventually, all messages satisfying ¢
are sent by A, at s. The theorem is then im-
plied by a well-known result from descriptive
complexity theory [Imm87, EF95].

The construction of A, is by induction on
¢ and uses Agpym in Lemma A.16. For in-
stance, if ¢(%) R(z), then A, simulates
Acpum, turns the repetitive enumeration of all

15

nodes into an enumeration of all k-tuples of
nodes, and checks whether R(z) holds for each
k-tuple. O

In the following, A\, (s,z) denotes an a-at-
most literal, i.e., a formula of the form (|a| <
k) Ava(s, z) or the form (|a| < k) = v4(s, x).

Proposition A.17. Any conjunction of a-
at-most literals (in the variables s and z) is
equivalent to an a-at-most literal. The same
holds true for disjunctions of a-at-most liter-
als.

Lemma A.18. Let (s, x) be a formula of the
form a(z) A Xo(s,z). The Web query Q, is
computable by a continuous Web automaton.

Cruz. Suppose that A\, is a positive literal,
say, Ao = (Ja| < k) Avya(s,z). We describe
briefly a continuous Web automaton A, that
computes Q,. A, is (k + 1)-productive and
sends messages of length < k4 1. If A, is
executed at a node different from the source
node, A, forwards in each round as many as
possible (but at most £+1) nodes satisfying a
to its parent automaton. If A, is executed at
the source node, A, attempts to see (k + 1)
nodes satisfying «. If it succeeds, it sends
the empty message, thereby terminating the
computation. Otherwise, it knows all nodes
(reachable from the source node) that satisfy
«. In particular, there are at most k& such
nodes. For each such node n, the source au-
tomaton checks whether v,(s,n) holds and, if
successful, outputs n.

Now suppose that A, is a negative literal,
say, Ao = (la| < k) = v4(s,z). Modify A, so
that, if the source automaton discovers that
there are at least (k 4+ 1) nodes satisfying «,
then, instead of sending the empty message, it
outputs all nodes in its queue, plus the source
node if the source node satisfies a. O

Color Types. Let x be a variable and let
T be a vocabulary. A color type in x over

T is a maximal consistent set of atomic and
negated atomic formulas in z over Y. In the
following, c(x) denotes a color type in z.

Observe that every quantifier-free formula
a(z) is equivalent to a disjunction of color
types in .

Proof of Theorem 5.10. Let (s, x) be an at-
most-at-least formula. We construct a contin-
uous Web automaton A, that computes Q.
Suppose that ¢(s,z) = a(z) A da(s,z). Us-
ing Proposition A.17 one can show that d, is
equivalent to a formula of the form

Vi (ci(s) A)\w(s,x)) (1)

where each ¢;(s) is a color type in s over the
vocabulary of §, and ¢; = ¢; iff i = j. Ac-
cording to Lemma A.18, there exists for each
index 7 in formula (1) a continuous Web au-
tomaton that computes Qanx, ;- It is now an
easy exercise to combine these automata to
a continuous Web automaton A, computing

Q- 0

Remark A.19. The proofs of both Lemma
A.18 and Theorem 5.10 can be arranged so

that the constructed Web automata are link-
free and DAF. O

Proof of Theorem 6.5. Let (Q be a Web query.
Suppose that @ is definable by a monadic at-
most-at-least formula. According to Theorem
5.10, @ is computable by a continuous Web
automaton. By Remark A.19, this automaton
is monadic and DAF.

Now suppose that) is computable by
a continuous monadic DAF automata A.
Furthermore, suppose that A is (kK + 1)-
productive. Let s and x be two variables and
let ci(s),...,¢(s) be an enumeration of all
color types in s over the vocabulary of A (up
to isomorphism). Clearly, \/; ci(s) = (s = s).
We are going to construct (i) a quantifier-free
formula a(z) and (ii) for each i € {1,...,l}

16

an a-at-most literal Ay ;(s,z) such that the
formula

a(z) AV, (ci(s) A)\a,i(s,x))

defines Q.

Define «(z) as in the previous subsection
(see below Lemma A.8). Intuitively, o spec-
ifies those (colorings of) leaf nodes which A
at the source node can possibly see (recall
Lemma A.8).

The definition of Ay ;(s,z) is based on
various tests revealing the behavior of A
when executed at c¢;-colored source nodes.
Choose pairwise distinct c|(z),...,c,(z) €
{c1(@),...,alz)} so that a(z) = V().
Consider a flat 7 appropriate for A such that
(i) the root node r of 7 satisfies ¢;(s) and
(ii) for each j € {1,...,m} there are at least
(k+1) leaf nodes satisfying c;(z). We are go-
ing to execute A at r (in Z) on various queues
consisting of a-nodes.

By a coordinate k we mean a tuple
(k1,...,km) such that ki,... &k, < (k+1).
Let k& be a coordinate. A k-queue is a se-
quence of leaf nodes in Z such that (i) the
length of the sequence is Z;n:l k; and (ii) for
each 7 € {l,...,m} the sequence contains
precisely k; pairwise distinct nodes satisfying
c(x). Let g be a k-queue. We say that A at
r accepts q if the first message sent by A at r
on ¢ is not empty (i.e., contains a node).

Verify that for any two k-queues ¢ and ¢,
A at r accepts ¢ iff A at r accepts ¢'. Hence,
we can define an m-dimensional table T; as
follows: at coordinate k, T; contains “accept”
if A at r accepts a(ny) k-queue; otherwise it
contains “reject”. By D; we denote the diag-
onal plane of T given by all coordinates satis-
fying 3272, kj = (k +1). One can show that
D; has either only accept entries or only reject
entries.

Next observe that the definition of T; does
not depend on the choice of Z. We obtain

the same table for any flat Z whose root node
satisfies ¢;(s) and which contains enough leaf
nodes satisfying cj(z) (for each j). This shows
that the decision of whether A at a c;-colored
source node is going to output or not is en-
tirely determined by the entries on and below
the diagonal plane D;, that are, all entries at
coordinates satisfying >, k; < (k +1).

Suppose that D; has only reject entries.
Let S be the set of coordinates which satisfy
> jkj <k and where T; has an accept entry.
Define Ay i(s,z) to be

(lof <E)AVies (A% (5,2)) (2)

where 7 and 77 are as follows. If ¢;(7)
does not occur among | (z),...,c

o (z), set
7; = N;(I¢;] = kj). Otherwise, suppose that
ci(z) = cy(z). Set v = (lef] = k1 +1) A
Njs1(lc| = kj). ~f specifies those (colorings

of) nodes in an k-queue which are output, and
also whether s is output or not. This can be
determined by testing A.

Now suppose that D; has only accept en-
tries. In that case, replace the first conjunc-
tion symbol in formula (2) with an implication

symbol. O
A.5 Browser Stack Machines
Proposition A.20. Qe is BSM com-

putable.

Cruz. A BSM Mieacn computing Qe uses
its node stack to perform a depth-first search.
In order to avoid running into an infinite loop,
Meach €xpands the top node of the stack only
if that node does not occur elsewhere on the
stack. Mieach can check this by storing the
top node in one of its registers and letting the
cursor scan all nodes currently on the stack.
Whenever a node is expanded, it is also out-
put.]

Proposition 7.1 now follows from an easy
modification of M;e,ch in the above proof.

17

Proof of Theorem 7.2. Due to Theorem 5.5,
it suffices to show that any depth-bounded
BSM can be simulated by a logarithmic-space
bounded Turing machine (with separate in-
put and output tapes). Consider a d-bounded
BSM M. We sketch a logarithmic-space
bounded Turing machine T such that for ev-
ery pair (Z,s) appropriate for M, Ty on an
encoding of (Z, s) simulates M on (Z, s).

Let C be a configuration of M on (Z, s), say,
C = (st,c,a,0). We call (st,c,a) a reduced
configuration. (Note that, because Ty has a
separate output tape, it does not need to store
the output set 0.) We first observe that (a
representation of) any reduced configuration
can be stored in space logarithmic in the size
of Z. This clearly holds for the contents a of
the registers of M, for each node requires only
logarithmic space.

Consider a stack st. By the i-th segment of
st we mean the segment that starts with the
node following the (i — 1)-th separator and
ends with the i-th separator. For example,
the first segment of any stack consists of the
source node and the first separator. To rep-
resent st we employ d logarithmic-space regis-
ters, called stack registers. Each stack register
either holds a node or is undefined. For every
i € {1,...,d}, the i-th stack register holds
the last node of the i-th segment of st, i.e.,
the node before the i-th separator. This node
was expanded when the (i+1)-th segment was
placed on the node stack.

To represent the cursor ¢ of M we em-
ploy a counter ranging in {1,...,d+ 1} and a
logarithmic-space register, called cursor regis-
ter. Intuitively, the cursor register holds the
node currently read by the cursor. It is un-
defined iff the cursor is currently placed on a
separator. The counter specifies in which seg-
ment the cursor is currently roaming. (Ver-
ify that, because no node occurs twice in the
same segment, the counter and the cursor reg-
ister together uniquely determine the position

of the cursor.)

Given this encoding of (reduced) configura-
tions of M, T); can simulate a transition from
one configuration to a successor configuration
in logarithmic space. O

18

