
Temporal Semantics for

the Open Provenance Model

Jan Van den Bussche

Hasselt University, Belgium

joint work with Natalia Kwasnikowska (Hasselt)

and Luc Moreau (Southampton)

1





Provenance in computing

“Data provenance:” Where does this piece of data come from?

“Workflow provenance, Process provenance:” What happened?

scientific databases, computational science, operating systems,

debugging, workflow management

• need for a common data model for provenance information

⇒ Open Provenance Model

3



The Open Provenance Model (OPM)

Consensus data model

Scientific computing community

OPM v1.1 specification published July 2010

[Luc Moreau et al., Future Generation Computer Systems]

W3C Provenance Working Group started 2011

4



OPM graph

Directed graph

Two kinds of nodes: processes and artifacts

Four kinds of edges:

P
r→ A “P used A in role r”

meaning: P could not have completed without A

A
r→ P “A was generated by P in role r”

meaning: A could not have existed without P

P1 → P2 “P1 was informed by P2”
meaning: P1 could not have completed without P2

A1 → A2 “A1 was derived from A2”
meaning: A1 could not have existed without A2

5



coffee

Make Coffee

receipt empty cup

Take Order

cash

other Beverage
Provide

latte juice

order

cupreceipt

cupreceipt

ordermoney

juice

6



Inference rules for “multi-step” edges

0. if X → Y or X
r→ Y

then X
∗→ Y

1. if A
∗→ B

∗→ C

then A
∗→ C

2. if A
∗→ B

∗→ P

then A
∗→ P

3. if P
∗→ A

∗→ B

then P
∗→ B

4. if P1
∗→ A

∗→ P2

then P1
∗→ P2

7



A critique on the OPM spec

Only syntax, no (formal) semantics

Inference rules just a syntactic edge-adding game; in what sense

are they sound? Are they complete?

Multi-step edges cannot be asserted in the OPM graph; lack of

support for levels of granularity

Difference in meaning between single-step and multi-step edges?

8



What is correct reasoning?

There is a rule:

if P1
∗→ A

∗→ P2

then P1
∗→ P2

But there is no rule:

if A1
∗→ P

∗→ A2

then A1
∗→ A2

Need for a formal semantics

9



Our work

Define an improved version of the OPM data model

Provide a temporal semantics

Investigate soundness, completeness, of inference rules

10



OPM graphs, take 2

Directed graph, two kinds of nodes (processes and artifacts)

Seven kinds of edges:

kind precise imprecise

generated-by A
r→ P A→ P

used P
r→ A P → A

derived-from A
r→ B A→ B

informed-by — P1 → P2

11



coffee

Make Coffee

receipt empty cup

Take Order

cash

other Beverage
Provide

latte juice

order

cupreceipt

cupreceipt

cupreceipt

ordermoney

juice

or
de

r

order
money

12



Temporal semantics

Set Vars of temporal variables:

• create(A) for each artifact A

• begin(P ) and end(P ) for each process P

• use(P, r, A) for each P
r→ A

A temporal interpretation is a mapping

τ : Vars → N

assigning timepoints to the temporal variables

13



Temporal theory of the OPM graph

Ax.1: begin(P ) ≤ end(P ) for each P

Ax.2: begin(P ) ≤ create(A) ≤ end(P ) for each A
r→ P

Ax.3: begin(P ) ≤ use(P, r, A) ≤ end(P ) and create(A) ≤ use(P, r, A)

for each P
r→ A

Ax.4: create(B) ≤ create(A) for each A→ B

Ax.5: begin(P ) ≤ create(A) for each A→ P

Ax.6: create(A) ≤ end(P ) for each P → A

Ax.7: begin(Q) ≤ end(P ) for each P → Q

14



Axiom 8

Ax.8: use(P, r, B) ≤ create(A) for each 4(A, B, P, r)

“Generate–use–derive triangle”

!

B

A

Pr

r

Figure 2: A use–generate-derive triangle (A, B, P, r).

A configuration (A, B, P, r) as above, with edges A
r→ B, A

!→ P , and
P

r→ B, is called a use–generate–derive triangle, or simply triangle for short
(see Figure 2). To denote that a use–generate–derive triangle (A, B, P, r) occurs
in some given OPM graph G, we use the notation G " (A, B, P, r).

A use–generate–derive triangle offers an insight into the inner workings of
a process P , since not only does it state that B was used by P in role r and
A generated according to a role, but also does it state that B had a direct
influence on A, because it was used in this precise role r.2 A typical usage of a
use–generate–derive triangle is for a division process, illustrated in the following
example.
Example 3.3. Let / be a division process, 8 and 4 be its inputs (in respective
capacity of dividend and divisor), and the quotient 2 be its output. So, edges
are as follows:

edge type source destination
precise generated-by artifact process (2, quotient, /)
precise used process artifact (/, dividend, 8), (/, divisor, 4)
precise derived-from artifact artifact (2, dividend, 8), (2, divisor, 4)

They form two triangles: (2, 8, /, dividend) and (2, 4, /, divisor).
In this paper, unless otherwise explicitly stated, we only consider legal OPM

graphs. Whenever we refer to a single OPM graph G, we use the names defined
in this section to refer to the different constituents of the OPM graph. If we
handle more than one OPM graph, for instance graphs G and H, we use su-
perscripts G and H to distinguish their respective constituents. We extend this
convention to other concepts related to OPM graphs.

3.2 Temporal models for OPM graphs

The OPM reference specification [20] allows OPM graphs to be decorated with
time information for specific time-points, which are meaningful in the context
of a computation. Four of these are identified: the beginning of a process, the
ending of a process, the instant a process uses an artifact, and the moment a
process creates an artifact. Such time information is routinely captured by com-
puter systems. For instance, creation time is readily available from file systems
in typical operating systems. HTTP servers and databases logs would usually

2The usage role in the use–generate–derive triangle is crucial. We could imagine an exten-
sion of Figure 2, in which P uses B in a second role, say s. The triangle of Figure 2 identifies
the precise usage of B that affected the output A, here r, whereas, an alternate use of B, with
role s, could have not impacted A (for instance, because it took place after A was created).

8

A
!→ P is an abbreviation for ∃s : A

s→ P

15



Temporal models

Any temporal interpretation that satisfies Axioms 1–8 is called a

temporal model of the OPM graph

E.g.: A→ P
r→ B

interpretation τ1 τ2 τ3 τ4
create(B) 1 1 3 2
begin(P ) 2 2 1 3

use(P, r, B) 3 4 4 4
create(A) 4 3 2 1
end(P ) 5 5 5 5
model? yes yes yes no

16



Temporal inference

Given: An OPM graph G

Find: All inequalities that logically follow from G

E.g.:

!

B

A

Pr

r

Figure 2: A use–generate-derive triangle (A, B, P, r).

A configuration (A, B, P, r) as above, with edges A
r→ B, A

!→ P , and
P

r→ B, is called a use–generate–derive triangle, or simply triangle for short
(see Figure 2). To denote that a use–generate–derive triangle (A, B, P, r) occurs
in some given OPM graph G, we use the notation G " (A, B, P, r).

A use–generate–derive triangle offers an insight into the inner workings of
a process P , since not only does it state that B was used by P in role r and
A generated according to a role, but also does it state that B had a direct
influence on A, because it was used in this precise role r.2 A typical usage of a
use–generate–derive triangle is for a division process, illustrated in the following
example.
Example 3.3. Let / be a division process, 8 and 4 be its inputs (in respective
capacity of dividend and divisor), and the quotient 2 be its output. So, edges
are as follows:

edge type source destination
precise generated-by artifact process (2, quotient, /)
precise used process artifact (/, dividend, 8), (/, divisor, 4)
precise derived-from artifact artifact (2, dividend, 8), (2, divisor, 4)

They form two triangles: (2, 8, /, dividend) and (2, 4, /, divisor).
In this paper, unless otherwise explicitly stated, we only consider legal OPM

graphs. Whenever we refer to a single OPM graph G, we use the names defined
in this section to refer to the different constituents of the OPM graph. If we
handle more than one OPM graph, for instance graphs G and H, we use su-
perscripts G and H to distinguish their respective constituents. We extend this
convention to other concepts related to OPM graphs.

3.2 Temporal models for OPM graphs

The OPM reference specification [20] allows OPM graphs to be decorated with
time information for specific time-points, which are meaningful in the context
of a computation. Four of these are identified: the beginning of a process, the
ending of a process, the instant a process uses an artifact, and the moment a
process creates an artifact. Such time information is routinely captured by com-
puter systems. For instance, creation time is readily available from file systems
in typical operating systems. HTTP servers and databases logs would usually

2The usage role in the use–generate–derive triangle is crucial. We could imagine an exten-
sion of Figure 2, in which P uses B in a second role, say s. The triangle of Figure 2 identifies
the precise usage of B that affected the output A, here r, whereas, an alternate use of B, with
role s, could have not impacted A (for instance, because it took place after A was created).

8

logically implies create(B) ≤ create(A)

E.g.: A→ P → B does not imply create(B) ≤ create(A)

17



Reasoning with inequalities

Example:

the following OPM graph implies use(Q, r, D) ≤ end(P )

r
P A B C

Q

D
!

! r

use(Q, r, D)
Ax.8
≤ create(C)

Ax.4
≤ create(B)

Ax.4
≤ create(A)

Ax.2
≤ end(P )

• Would be better to do inference in the graph itself

18



Revenge of the OPM edge inference rules

0. if X → Y or X
!→ Y

then X 99K Y

1. if A 99K B 99K C

then A 99K C

2. if A 99K B 99K P

then A 99K P

3. if P 99K A 99K B or P
!← A 99K B

then P 99K B

4. if P 99K A 99K Q or P
!← A 99K Q

then P 99K Q

19



coffee

Make Coffee

receipt empty cup

Take Order

cash

other Beverage
Provide

latte juice

order

cupreceipt

cupreceipt

cupreceipt

ordermoney

juice

or
de

r

order
money

20



Completeness of the edge inference rules

Theorem:

1. create(B) ≤ create(A) logically follows iff A 99K B

2. begin(P ) ≤ create(A) logically follows iff A 99K P

3. create(A) ≤ end(P ) logically follows iff P 99K A

4. begin(Q) ≤ end(P ) logically follows iff P 99K Q

21



Inequalities involving use-variables

Theorem: An inequality involving use-variables logically follows
from the OPM graph if and only if it already belongs to the
axioms, or it matches one of six cases:

(ax 1)
P

begin(P ) ! end(P )
(1)

B

A

create(B) ! create(A)

(ax 2)
A

P

!

begin(P ) ! create(A) ! end(P )
(2)

A

P

begin(P ) ! create(A)

(ax 3)
P

A

r

begin(P ) ! use(P, r, A) ! end(P ) create(A) ! use(P, r, A)

(3)
P

A

create(A) ! end(P )
(4)

P

Q

begin(Q) ! end(P )
(5)

r

P

A

B

create(B) ! use(P, r, A)

(6)

Q

r

P

A

begin(Q) ! use(P, r, A)
(ax 8)

r

B

A

P

!

r

use(P, r, B) ! create(A)

(7)
A

P

!

r

r

B

C

use(P, r, C) ! create(A)
(8)

Q

P

!

r

r

A

B

use(P, r, B) ! end(Q)

(9a)

s

P

!

r

r

A

B

Q

use(P, r, B) ! use(Q, s, A)
(9b)

s

P

!

r

C

B

r

A

Q

use(P, r, B) ! use(Q, s, A)

Figure 7: Characterization of temporal inference.

17

(ax 1)
P

begin(P ) ! end(P )
(1)

B

A

create(B) ! create(A)

(ax 2)
A

P

!

begin(P ) ! create(A) ! end(P )
(2)

A

P

begin(P ) ! create(A)

(ax 3)
P

A

r

begin(P ) ! use(P, r, A) ! end(P ) create(A) ! use(P, r, A)

(3)
P

A

create(A) ! end(P )
(4)

P

Q

begin(Q) ! end(P )
(5)

r

P

A

B

create(B) ! use(P, r, A)

(6)

Q

r

P

A

begin(Q) ! use(P, r, A)
(ax 8)

r

B

A

P

!

r

use(P, r, B) ! create(A)

(7)
A

P

!

r

r

B

C

use(P, r, C) ! create(A)
(8)

Q

P

!

r

r

A

B

use(P, r, B) ! end(Q)

(9a)

s

P

!

r

r

A

B

Q

use(P, r, B) ! use(Q, s, A)
(9b)

s

P

!

r

C

B

r

A

Q

use(P, r, B) ! use(Q, s, A)

Figure 7: Characterization of temporal inference.

17

(ax 1)
P

begin(P ) ! end(P )
(1)

B

A

create(B) ! create(A)

(ax 2)
A

P

!

begin(P ) ! create(A) ! end(P )
(2)

A

P

begin(P ) ! create(A)

(ax 3)
P

A

r

begin(P ) ! use(P, r, A) ! end(P ) create(A) ! use(P, r, A)

(3)
P

A

create(A) ! end(P )
(4)

P

Q

begin(Q) ! end(P )
(5)

r

P

A

B

create(B) ! use(P, r, A)

(6)

Q

r

P

A

begin(Q) ! use(P, r, A)
(ax 8)

r

B

A

P

!

r

use(P, r, B) ! create(A)

(7)
A

P

!

r

r

B

C

use(P, r, C) ! create(A)
(8)

Q

P

!

r

r

A

B

use(P, r, B) ! end(Q)

(9a)

s

P

!

r

r

A

B

Q

use(P, r, B) ! use(Q, s, A)
(9b)

s

P

!

r

C

B

r

A

Q

use(P, r, B) ! use(Q, s, A)

Figure 7: Characterization of temporal inference.

17

(ax 1)
P

begin(P ) ! end(P )
(1)

B

A

create(B) ! create(A)

(ax 2)
A

P

!

begin(P ) ! create(A) ! end(P )
(2)

A

P

begin(P ) ! create(A)

(ax 3)
P

A

r

begin(P ) ! use(P, r, A) ! end(P ) create(A) ! use(P, r, A)

(3)
P

A

create(A) ! end(P )
(4)

P

Q

begin(Q) ! end(P )
(5)

r

P

A

B

create(B) ! use(P, r, A)

(6)

Q

r

P

A

begin(Q) ! use(P, r, A)
(ax 8)

r

B

A

P

!

r

use(P, r, B) ! create(A)

(7)
A

P

!

r

r

B

C

use(P, r, C) ! create(A)
(8)

Q

P

!

r

r

A

B

use(P, r, B) ! end(Q)

(9a)

s

P

!

r

r

A

B

Q

use(P, r, B) ! use(Q, s, A)
(9b)

s

P

!

r

C

B

r

A

Q

use(P, r, B) ! use(Q, s, A)

Figure 7: Characterization of temporal inference.

17

(ax 1)
P

begin(P ) ! end(P )
(1)

B

A

create(B) ! create(A)

(ax 2)
A

P

!

begin(P ) ! create(A) ! end(P )
(2)

A

P

begin(P ) ! create(A)

(ax 3)
P

A

r

begin(P ) ! use(P, r, A) ! end(P ) create(A) ! use(P, r, A)

(3)
P

A

create(A) ! end(P )
(4)

P

Q

begin(Q) ! end(P )
(5)

r

P

A

B

create(B) ! use(P, r, A)

(6)

Q

r

P

A

begin(Q) ! use(P, r, A)
(ax 8)

r

B

A

P

!

r

use(P, r, B) ! create(A)

(7)
A

P

!

r

r

B

C

use(P, r, C) ! create(A)
(8)

Q

P

!

r

r

A

B

use(P, r, B) ! end(Q)

(9a)

s

P

!

r

r

A

B

Q

use(P, r, B) ! use(Q, s, A)
(9b)

s

P

!

r

C

B

r

A

Q

use(P, r, B) ! use(Q, s, A)

Figure 7: Characterization of temporal inference.

17

(ax 1)
P

begin(P ) ! end(P )
(1)

B

A

create(B) ! create(A)

(ax 2)
A

P

!

begin(P ) ! create(A) ! end(P )
(2)

A

P

begin(P ) ! create(A)

(ax 3)
P

A

r

begin(P ) ! use(P, r, A) ! end(P ) create(A) ! use(P, r, A)

(3)
P

A

create(A) ! end(P )
(4)

P

Q

begin(Q) ! end(P )
(5)

r

P

A

B

create(B) ! use(P, r, A)

(6)

Q

r

P

A

begin(Q) ! use(P, r, A)
(ax 8)

r

B

A

P

!

r

use(P, r, B) ! create(A)

(7)
A

P

!

r

r

B

C

use(P, r, C) ! create(A)
(8)

Q

P

!

r

r

A

B

use(P, r, B) ! end(Q)

(9a)

s

P

!

r

r

A

B

Q

use(P, r, B) ! use(Q, s, A)
(9b)

s

P

!

r

C

B

r

A

Q

use(P, r, B) ! use(Q, s, A)

Figure 7: Characterization of temporal inference.

17

22



Refinement of OPM graphs

Method of Stepwise Refinement in Software Engineering

Definition: OPM graph H is a refinement of OPM graph G

if every inequality, involving only variables common to G and H,

that logically follows from G, also logically follows from H.

Trivial example: if G is a subgraph of H

23



Refinement by renaming/merging operations

Let ρ be an arbitrary mapping on artifact ids, process ids, and

role ids.

• ids may be mapped to existing ids ⇒ merging

• ids may be mapped to new ids ⇒ renaming

Call ρ proper if x 6= ρ(x) and ρ(x) ∈ G implies ρ(ρ(x)) = ρ(x).

Theorem: The OPM graph obtained by performing a proper

merge/renaming is always a refinement.

24



Further foundational research on OPM

Define a complete set of graph transformation operations that

generates all and only refinements

Explore other than temporal semantics for causality (e.g., prob-

abilistic reasoning, Petri nets)

25



Reference

L. Moreau, N. Kwasnikowska, J. Van den Bussche

A Formal Account of the Open Provenance Model

University of Southampton ECS EPrint 21819, 2010.

26


