A reformulation of the XDuce type system

(work in progress)

Jan Van den Bussche Stijn Vansummeren

U. Limburg, Belgium

The programming language ML

Functional language working on structured data

Rule-based programming based on pattern matching

```
fun sumLists =
nil => 0
nil::YS => sumLists(YS)
(x::xs)::YS => x + sumLists(xs::YS)
```

Polymorphic type inference

 $val\ sumLists = fn: int\ list\ list
ightarrow int$

The programming language XDuce

Hosoya & Pierce

ML-like language for programming with semistructured data

Pattern matching

```
match 1 : (dt[String]|Dd)* with
dt[t], d as Dd*, rest => ...
```

Longest match!

Type inference of pattern variables

```
match p : person[Name, Email*, Tel?] with
person[Name, x as (Email|Tel)+]
```

```
\Rightarrow x : (Email+, Tel?) | Tel
```

Weak points of XDuce type system

- 1. Grammar based
- ⇒ complicated well-formedness condition
- 2. Encoding in binary tree automata
- ⇒ hard to understand and prove correct
- 3. Type inference only for variables in tail position

Our reformulation:

- 1. Use standard type system based on regular expressions
- 2. Algorithm works on same level as type system
- 3. Sound & complete type inference also for non-tail variables

Hedges and types

Hedge: sequence of ordered trees

Node-labeled, finite alphabet Σ

Type environment Δ : set of type definitions

Type definition:

$$T = a \quad [\tau]$$
 type name
$$a \in \Sigma \quad \text{regular expression}$$

$$T \in \mathbb{T} \quad \text{over } \mathbb{T}$$

Type constraint: $T = (\Delta, \tau)$

Typing of hedges

Hedge h

Type assignment on h: mapping

$$\alpha: Nodes(\mathbf{h}) \to \mathbb{T}$$

$$\mathbf{h}, \alpha \models (\Delta, \tau)$$
 if

- ullet α conforms to Δ
- $\alpha(roots(\mathbf{h})) \in \tau$

$$\mathbf{h} \models (\Delta, \tau) \text{ if } \exists \alpha : \mathbf{h}, \alpha \models (\Delta, \tau)$$

Unranked hedge automaton

Patterns

Pattern $\Pi = (\Delta, \tau; r_1, r_2, r_3)$

 r_1 , r_2 , r_3 regular expression types

Result of matching Π to \mathbf{h} : Any subhedge \mathbf{h}' of \mathbf{h} such that

$$\exists \alpha : \mathbf{h}, \alpha \models (\Delta, \tau)$$

and

$$\overbrace{\mathbf{n}_1 \quad \mathbf{n}_k \, \mathbf{n}_{k+1} \quad \mathbf{n}_{k+\ell} \, \mathbf{n}_{k+\ell+1} \quad \mathbf{n}_{k+\ell+m} }^{\text{left context}} \\ \wedge \quad \cdots \quad \wedge \quad \wedge \quad \cdots \quad \wedge \quad \wedge \quad \cdots \quad \wedge \quad \wedge \\ \text{such that}$$

- $\alpha(\mathbf{n}_1) \dots \alpha(\mathbf{n}_k) \in r_1$ as long as possible
- $\alpha(\mathbf{n}_{k+1}) \dots \alpha(\mathbf{n}_{k+\ell}) \in r_2$ as long as possible
- $\alpha(\mathbf{n}_{k+\ell+1}) \dots \alpha(\mathbf{n}_{k+\ell+m}) \in r_3$

Type inference

Input: Pattern Π , type constraint \mathcal{T}_{in}

Output: Type constraint \mathcal{T}_{out} such that for any hedge \mathbf{h}' :

$$\mathbf{h}' \models \mathcal{T}_{\mathsf{out}}$$

iff

 \mathbf{h}' is result of matching Π to some $\mathbf{h} \models \mathcal{T}_{in}$

Aspects of the algorithm

Longest match policy by a 2FA with a pebble

Context by quotient constructions

Accommodate \mathcal{T}_{in} by product construction

Future work

Implementation doable?

Apply to practical pattern languages