A Crash Course

iIn Database Queries

and how to treat
queries as data

Jan VVan den Bussche
Hasselt University

joint work with Stijn Vansummeren, Dirk Van Gucht

Query languages are programming languages!

[Atkinson—Buneman—Cardelli—Maier—Ohori—Sheard—Stemple
—Stonebraker—Tannen]

= Database queries. ..

e are programs

e can crash

e can be ill-typed
e are polymorphic

e can be treated as data (metadata, reflection)

Motivation

Lowell self-assessment:

“We recommend that database researchers increase their
focus on the integration of text, data, code, and streams.”

Asilomar Report:

“Ever more complex application environments have in-
creased the need to integrate programs and data.”

What are the basic theoretical questions concerning flexible op-
eration of queries “out of the box" ? Of treating queries as data?

How to apply/adapt programming-language ideas to query lan-
guages?

Query languages
Relational algebra
Nested relational calculus

XQuery

Relational algebra: syntax

e .=

Example expression:

X (relation variable)
r (constant relation)
eUe

€ — €

e X e

oa=p(e)

7. B(e)

pa/Ble)

z — (ma(z) X po/p(Y))

Heterogeneous relations
A relation is a finite set of tuples
A tuple is a mapping ¢t from some relation scheme to V

e V: universe of atomic values
e relation scheme: finite set of attributes

e call relation scheme of t, the type of ¢

(A:1,B:2)
(A:3,C: 4)
(D: 4)

Relational algebra: semantics

Expression e(x,...,y) can be applied to relations r,...,s

Operational semantics: rewrite ground expression e’ = e(r,...

until you end up with a relation »/

Rewriting ¢/ — 7’ defined by inference rules

Inference rule for union

if eq — 1
and e> — o
then e; Uey — ry Urso

Written like fraction:

€1 — Tl €2 — 12

et Uepr —rqiUro

Difference:
€1 — 71 €2 — 1D

e] —ep — T, \ T2

Cartesian product

€1 — Tl
€2 — T2
Vi1 € 71 : Vio € o type(t1) Ntype(tr) = @

e1 X ep > {t1 Uty |t1 €r1 & to Erp}

Selection, projection, renaming
e — 1 vt er’ i A B € type(t)
oa=p(e) = {t €' | t(A) = t(B)}

e — 1 Vvter A, ...,B € type(t)
ma.. . Ble) = {ma pi)|ter}

e — 1/ Vter' i Actype(t) & B ¢ type(t)
pa/g(e) = {pa/pt) |t €7’}

10

Example derivation

Evaluate x — (m4(x) X ,OC/B(y))

(A:1,B: 2) (C:2)
(A:1,B:3) s —|(C:3)
"7 (A:2,B: 4) (C: 4)
(AZQ,BI5) (BIQ)
(A: 1) (s) —| (B:3)
ma(r) =1 (4: 2) pare (B 4)
(A:1,B:2)
(A:1,B:3)
r—r ma(r) X pen(s) = | V415 5
(A: 2, B: 3)
(A:2,B: 4)
r— (ma(r) X pcyp(s)) — | (A:2,B:5)

11

Nested relations (complex objects)

A complex object is:

— an atomic value

— a tuple of complex objects

— a finite set of complex objects

(A:

WN =

,B:(B:4,C:

(D:5)
(E: 6)
(E:7)

)

12

(A:

Complex object tree

WN =

,B: (B: 4,C:

(D:5)
(E: 6)
(E:7)

)

13

Nested relational calculus [BNTW]
The relational algebra of complex objects

Syntax:

e = x (variable)
r (constant object)

)

{e}

eUe

Ue

e. A

(A:e,...,B:e)

for z € e return e

if eeqe then e else e
if e = e then e else ¢

14

Example NRC expression

Ufor u € = return
Ufor v € y return
if u.Bequv.B
then {(A: v.A,B: u.B,C: v.C)}
else g

15

Operational semantics of for-loop

e1 — T r is a set Vier:ex(t) — st

for z € eq return ex(z) — {st |t € r}

16

Equality test

€1 — Tl €2 — 12 €3 — T3 ryE =172

if eq = eo then ez else eq — r3

er — 1T ep — T eq — T4 1 F T
if eg = eo then ez else eq — 1y

e1 €q eo: similar, but r;{ and ro must be atomic values

Positive NRC: has only e eq es

17

Queries can crash

1 (A:1,B:2)
w4(x) crashes on r = (B: 3)

_| (A1) _rm- .
x X y crashes on r = (B: 2) and s=|(B:3,C: 4)

Similar for NRC

“Well-defined” = “does not crash”

Cannot expect an expression to be well-defined on all inputs

= consider types

18

T he well-definedness problem
(Relational algebra version)
Recall: type = relation scheme = finite set of attributes
A relation r has type R if all its tuples do
— notation r: R
T he well-definedness problem:
Input: expression e(x,...,y) and types R,...,S

Decide: is e(r,...,s) well-defined on all inputs r: R, ..., s:S7
19

Some immediate observations
Well-definedness is undecidable for relational algebra:
— take R ={A, B}
— for well-defined e:
e(x) satisfiable <« myurp(x x mz(e)) ill-defined

Decidable for positive relational algebra (without difference):

— just keep track of possible types that can occur
— monotonicity

— Can add og+pB

20

The NRC case
Types:
— atom
— (A R,...,B: S)
—{T}

Well-definedness still undecidable for full NRC

21

Well-definedness for positive NRC

Still decidable

— small model property for ill-definedness
— monotonicity

— coONEXPTIME-hard (satisfiability, [Koch])

22

Singleton extraction

e — {t}

extract(e) — t

OQL, XQuery, but also SQL:

select ..., (@), ... from ... where ...
or

select ... from ... where A = (Q)

crashes unless subquery returns a singleton (‘“scalar subquery")

23

Well-definedness for positive NRC + extract

Is undecidable

— extract({e1,ex}) well-defined iff e1, e» equivalent
— equivalence of positive NRC is undecidable!
(Satisfiability still decidable.)

Decidable for lists, bags (see also XQuery)

24

XQuery (w/0o recursion)

Value = list of atoms and tree nodes

— underlying store of XML trees (node-labeled by atoms)

Language:

e = «x (variable)
a (constant atom)
9

for z € e return e

if e then e else e

let z:= e in e

fle,...,e) (operators)

25

XQuery operators

Operators: Element construction, list functions, axes, tests, ...

— can crash!

e.g. element{e;}{es} = e1 must be singleton

26

XQuery well-definedness
Types: bounded-depth regular expression types
— XML Schema (extended DTD) w/o0 recursion

For well-behaved (generic, monotonic, local) operators, XQuery
well-definedness is decidable

Caveat: automatic coercions

— atomization: tree — atom
— difference between NRC(=) and NRC(eq) is blurred

— undecidability

27

Semantic type-checking

Input: expression e(z,...,y), well-defined under types R,...

additional type T

Decide: is e(r,...,s) always of type T, for all inputs
r: R, ..., s:57

e RA, NRC: same story as well-definedness

e positive NRC 4 extract: still decidable!

e XQuery: undecidable!

28

Static type checking
Since input types are known, can try to derive statically:

e Can expression crash?

e if not, what is output type~?
= Inference rules that derive I Fe: T
— [: the given input types

e relational algebra

e NRC

e XQuery [XQuery formal semantics; Ghelli et al., JFP 2006]
29

Static type system of relational algebra

ey : T (e : T ey : T [(Fey: T
[[FeiUey: T [[Fey —e>: T

(e R [Fey: S RNS =9 [Fe: T A, BeT

(e Xex: RUS FFos—ple): T

Fhe:T A....BeT Fhe:T AeT B¢T
F+ 4.5 {A...,B} M+ pasp(e) : (R\{A}) U{B}

30

Soundness and completeness of type systems

If e is well-typed (e : T can be derived) then e is well-defined,
and output type is always T

Not vice versa: type checking is only sound, not complete

Nevertheless we have expressive completeness:

e a well-defined expression with known output type can always
be equivalently rewritten into a well-typed expression

[Vansummeren]

31

Expressive completeness of static type checking

e given types R,...,S
e given type T’

e given expression e(x,...,y)
— e well-defined under R,...,S

— e's output type is always T

Then there always exists e equivalent to e on all inputs
r.R,...,s: S, and

z:R,...,yu:SFe:T

Holds for RA, NRC — for XQuery?
32

Simple example of expressive completeness
Consider x : {A,B} and y: {A,C}

T hen

TA(z Uy)

IS equivalent to

ma(z) Uma(y)

LLess trivial for queries involving difference

— Encode, in RA/NRC, heterogeneous relations/objects by
homogeneous ones.

33

Note

Expressive completeness is immediate for well-typed languages
that are Turing-complete

— Java, Haskell, ...

— Simply-typed lambda calculus: not expressive complete

34

Polymorphism
4. project out attribute A

X: natural join

Typing rules:
e. R AeER e1 : Rq e> . Ro
wale) : R\ {A} e1 Xe>: R UR>

For any given input types, @ and X can be expressed using the
other RA operators

But not by one expression that works for all possible input types!

The ultimate polymorphic, typed, query language?

35

Type inference

Input: expression e
Output: all " and T for which I''+e: T

Output is usually infinite; need some simple kind of finite repre-
sentation

Output can be empty as well (untypeable expression, e.g., mamg(x))

= type formulas

36

Polytypes with kinding [Ohori—Buneman]

Polytype = type with type variables (ML, Hindley—Milner)
NRC:

for u € x return
for v € y return
(C:u.A,D:v.B)

Type formula with type variables and kinding

x : {a}
- {6} . .
kind(e) = (A:) = (€D 0)

kind(8) = (B: 6)

Insufficient to represent type inference of w or p

37

Row variables [REMYy]

Ta(z) Uy
Type formula with row variables and forbidden attributes:

x . {A} U«
Y.« —

forbidden(a) = {A}

Insufficient to represent type inference of x

38

Type inference for full relational algebra

1. Use multiple row variables, stand for disjoint types

2. Generalize required, forbidden attributes to boolean con-
straints

e =op=c(pa/p(x) xXy)

x.:oz e.alUp
y:p Ay
’;'_'r A "~ B :true

CE ATy C : true
C:.:xzVy

Type formulas can become exponentially long, but typeability is
in NP (complete)

39

General approach to type inference

1. Universe of all types, with appropriate constraints and oper-
ations on types, forms a logical model M

2. Formulate quantifier-free formula over type variables, stating
constraints on input types of e, for e to be well-typed

e Type formulal

3. Existential theory of M is decidable (typeability)
Can play this game for full NRC with 7, p, X, %, ...
Complexity for NRC does not become worse than for relational

algebra (NP-complete)
40

Type reflection
java.lang.reflection package:

— inspect type (class) of an object

— type information becomes data!
Schema querying ('90s)

Semistructured data, XML: distinction between type information
and data is blurred

— can validate XML Schema using (recursive) XQuery

Downside: is XPath expression x/a=5 false because x has no
a-child? Or because xz has an a-child, but it is not 57

41

Example: transposition of a relation [GL,WR]

A B C
1 d e
2 [g

!
Q | >
o
Q %N

= Attributes as data values

42

EXxpressions as data

E.g., workload log:

user datetime

query

mary 20070611T2316

john 20070612T1030 select ...

from . ..

where . ..

43

Integration of program logic and data

System catalog: VIEWS table
QUEL as a data type

Oracle EXPRESSION type
workload monitoring
publish-subscribe

workflow management

software engineering

44

Querying a database containing queries

e Hotspots: which subqueries are often used?

— syntactic

e Semantic: which queries return no answer?

— semantic

e View maintenance: how do the query answers change under
this update?
— syntactic & semantic

Two approaches: (i) decomposition; (ii) ADT
45

Decomposition-based approach
Use standard query language for syntactic manipulations
= Stored expressions cannot be represented as atomic values
— must be decomposed
Many ways to do this:

e XML: syntax tree

— XQueryX

e Relational: decomposition
46

MetaSQL

SQL/XML

— queries are stored in XML columns
Add EVAL function to SQL

— analogy with Lisp, Scheme

E.g. workloads: Log(user,datetime, query)

select query, A, B

from Log
where (A,B) in EVAL(rewrite(query,update)) MINUS EVAL(query)

Similarly can add EVAL to RA, or XQuery
47

Does EVAL add power?

Data complexity of EVAL = evaluation complexity of relational
algebra evaluation:

Input: database D and expression e

Output: e(D)
PSPACE-complete > LOGSPACE (plain relational algebra)
But what about standard generic queries?

— expressions not in input

— dynamic generation and evaluation of expressions only as
auxiliary querying tool

48

Transitive closure in XQuery + EVAL
Table R(A,B) in XML: list D of R(A, B)-elements

TC(D) = EVAL(construct(D)):

construct(D) = E4,...,Ep with n = count(D//T)
with Ej:

for ¢4 in D//T, ..., t;in D//T return

if every z in ((t1/B=t2/A),... (tj—1/B=t;/A))
satisfies z=fn:true() then
element(T){t1/At;/B} else ()

In relational algebra, on databases w/o stored expressions,
EVAL = for-loops

49

Type-safe reflection
EVAL: fragile, can crash easily

Idea: two-level type system [MetaML], e.qg.:

(A: atom, B: atom,C: {{(D: atom, E: atom)}))
= EVAL can be typed

ADT approach: also provide typed repertoire of syntactic ma-
nipulation operators

e.g. substitute all occurrences of relation variable =z : T by the
expression e : T

Less powerful = add polymorphism?
50

Conclusions
Flexible operation of queries “out of the box"
e Well-definedness (better algorithms?)
e EXxpressive completeness of type systems
e Polymorphism (design of query languages?)
e Meta-querying: querying queries (design of languages?)

Integration of programs (queries) and data

51

