
A Crash Course

in Database Queries

and how to treat
queries as data

Jan Van den Bussche

Hasselt University

joint work with Stijn Vansummeren, Dirk Van Gucht

1



Query languages are programming languages!

[Atkinson–Buneman–Cardelli–Maier–Ohori–Sheard–Stemple
–Stonebraker–Tannen]

⇒ Database queries. . .

• are programs

• can crash

• can be ill-typed

• are polymorphic

• can be treated as data (metadata, reflection)

2



Motivation

Lowell self-assessment:

“We recommend that database researchers increase their
focus on the integration of text, data, code, and streams.”

Asilomar Report:

“Ever more complex application environments have in-
creased the need to integrate programs and data.”

What are the basic theoretical questions concerning flexible op-
eration of queries “out of the box”? Of treating queries as data?

How to apply/adapt programming-language ideas to query lan-
guages?

3



Query languages

Relational algebra

Nested relational calculus

XQuery

4



Relational algebra: syntax

e ::= x (relation variable)
| r (constant relation)
| e ∪ e
| e − e
| e × e
| σA=B(e)
| πA,...,B(e)
| ρA/B(e)

Example expression:

x − (πA(x) × ρC/B(y))

5



Heterogeneous relations

A relation is a finite set of tuples

A tuple is a mapping t from some relation scheme to V

• V: universe of atomic values

• relation scheme: finite set of attributes

• call relation scheme of t, the type of t

(A : 1, B : 2)
(A : 3, C : 4)
(D : 4)

6



Relational algebra: semantics

Expression e(x, . . . , y) can be applied to relations r, . . . , s

Operational semantics: rewrite ground expression e′ = e(r, . . . , s)

until you end up with a relation r′

Rewriting e′ → r′ defined by inference rules

7



Inference rule for union

if e1 → r1
and e2 → r2

then e1 ∪ e2 → r1 ∪ r2

Written like fraction:

e1 → r1 e2 → r2

e1 ∪ e2 → r1 ∪ r2

Difference:

e1 → r1 e2 → r2

e1 − e2 → r1 \ r2

8



Cartesian product

e1 → r1
e2 → r2

∀t1 ∈ r1 : ∀t2 ∈ r2 : type(t1) ∩ type(t2) = ∅

e1 × e2 → {t1 ∪ t2 | t1 ∈ r1 & t2 ∈ r2}

9



Selection, projection, renaming

e → r′ ∀t ∈ r′ : A, B ∈ type(t)

σA=B(e) → {t ∈ r′ | t(A) = t(B)}

e → r′ ∀t ∈ r′ : A, . . . , B ∈ type(t)

πA,...,B(e) → {πA,...,B(t) | t ∈ r′}

e → r′ ∀t ∈ r′ : A ∈ type(t) & B /∈ type(t)

ρA/B(e) → {ρA/B(t) | t ∈ r′}

10



Example derivation

Evaluate x − (πA(x) × ρC/B(y))

r → r

r →
(A : 1, B : 2)
(A : 1, B : 3)
(A : 2, B : 4)
(A : 2, B : 5)

πA(r) → (A : 1)
(A : 2)

s →
(C : 2)
(C : 3)
(C : 4)

ρC/B(s) →
(B : 2)
(B : 3)
(B : 4)

πA(r) × ρC/B(s) →

(A : 1, B : 2)
(A : 1, B : 3)
(A : 1, B : 4)
(A : 2, B : 2)
(A : 2, B : 3)
(A : 2, B : 4)

r − (πA(r) × ρC/B(s)) → (A : 2, B : 5)

11



Nested relations (complex objects)

A complex object is:

– an atomic value

– a tuple of complex objects

– a finite set of complex objects

(A :
1
2
3

, B : (B : 4, C :
(D : 5)
(E : 6)
(E : 7)

))

12



Complex object tree

A

1 2 3

B

4

B C

5

D

6

E

7

E

(A :
1
2
3

, B : (B : 4, C :
(D : 5)
(E : 6)
(E : 7)

))

13



Nested relational calculus [BNTW]

The relational algebra of complex objects

Syntax:

e ::= x (variable)
| r (constant object)
| ∅

| {e}
| e ∪ e
| ⋃

e
| e.A
| (A : e, . . . , B : e)
| for z ∈ e return e
| if e eq e then e else e
| if e = e then e else e

14



Example NRC expression

⋃
for u ∈ x return⋃

for v ∈ y return

if u.B eq v.B

then {(A : u.A, B : u.B, C : v.C)}
else ∅

15



Operational semantics of for-loop

e1 → r r is a set ∀t ∈ r : e2(t) → st

for z ∈ e1 return e2(z) → {st | t ∈ r}

16



Equality test

e1 → r1 e2 → r2 e3 → r3 r1 = r2

if e1 = e2 then e3 else e4 → r3

e1 → r1 e2 → r2 e4 → r4 r1 �= r2

if e1 = e2 then e3 else e4 → r4

e1 eq e2: similar, but r1 and r2 must be atomic values

Positive NRC: has only e1 eq e2

17



Queries can crash

πA(x) crashes on r =
(A : 1, B : 2)
(B : 3)

x × y crashes on r =
(A : 1)
(B : 2)

and s = (B : 3, C : 4)

Similar for NRC

“Well-defined” = “does not crash”

Cannot expect an expression to be well-defined on all inputs

⇒ consider types

18



The well-definedness problem

(Relational algebra version)

Recall: type = relation scheme = finite set of attributes

A relation r has type R if all its tuples do

– notation r : R

The well-definedness problem:

Input: expression e(x, . . . , y) and types R, . . . , S

Decide: is e(r, . . . , s) well-defined on all inputs r : R, . . . , s : S?

19



Some immediate observations

Well-definedness is undecidable for relational algebra:

– take R = {A, B}

– for well-defined e:

e(x) satisfiable ⇔ πAπB(x × π∅(e)) ill-defined

Decidable for positive relational algebra (without difference):

– just keep track of possible types that can occur

– monotonicity

– can add σA �=B

20



The NRC case

Types:

– atom

– (A : R, . . . , B : S)

– {T}

Well-definedness still undecidable for full NRC

21



Well-definedness for positive NRC

Still decidable

– small model property for ill-definedness

– monotonicity

– coNEXPTIME-hard (satisfiability, [Koch])

22



Singleton extraction

e → {t}
extract(e) → t

OQL, XQuery, but also SQL:

select ..., (Q), ... from ... where ...

or

select ... from ... where A = (Q)

crashes unless subquery returns a singleton (“scalar subquery”)

23



Well-definedness for positive NRC + extract

Is undecidable

– extract({e1, e2}) well-defined iff e1, e2 equivalent

– equivalence of positive NRC is undecidable!

(Satisfiability still decidable.)

Decidable for lists, bags (see also XQuery)

24



XQuery (w/o recursion)

Value = list of atoms and tree nodes

– underlying store of XML trees (node-labeled by atoms)

Language:

e ::= x (variable)
| a (constant atom)
| ()
| for z ∈ e return e
| if e then e else e
| let z := e in e
| f(e, . . . , e) (operators)

25



XQuery operators

Operators: Element construction, list functions, axes, tests, . . .

– can crash!

e.g. element{e1}{e2} ⇒ e1 must be singleton

26



XQuery well-definedness

Types: bounded-depth regular expression types

– XML Schema (extended DTD) w/o recursion

For well-behaved (generic, monotonic, local) operators, XQuery
well-definedness is decidable

Caveat: automatic coercions

– atomization: tree → atom

– difference between NRC(=) and NRC(eq) is blurred

– undecidability

27



Semantic type-checking

Input: expression e(x, . . . , y), well-defined under types R, . . . , S;

additional type T

Decide: is e(r, . . . , s) always of type T , for all inputs

r : R, . . . , s : S?

• RA, NRC: same story as well-definedness

• positive NRC + extract: still decidable!

• XQuery: undecidable!

28



Static type checking

Since input types are known, can try to derive statically:

• can expression crash?

• if not, what is output type?

⇒ Inference rules that derive Γ 
 e : T

– Γ: the given input types

• relational algebra

• NRC

• XQuery [XQuery formal semantics; Ghelli et al., JFP 2006]

29



Static type system of relational algebra

Γ 
 e1 : T Γ 
 e2 : T

Γ 
 e1 ∪ e2 : T

Γ 
 e1 : T Γ 
 e2 : T

Γ 
 e1 − e2 : T

Γ 
 e1 : R Γ 
 e2 : S R ∩ S = ∅

Γ 
 e1 × e2 : R ∪ S

Γ 
 e : T A, B ∈ T

Γ 
 σA=B(e) : T

Γ 
 e : T A, . . . , B ∈ T

Γ 
 πA,...,B(e) : {A, . . . , B}
Γ 
 e : T A ∈ T B /∈ T

Γ 
 ρA/B(e) : (R \ {A}) ∪ {B}

30



Soundness and completeness of type systems

If e is well-typed (e : T can be derived) then e is well-defined,

and output type is always T

Not vice versa: type checking is only sound, not complete

Nevertheless we have expressive completeness:

• a well-defined expression with known output type can always

be equivalently rewritten into a well-typed expression

[Vansummeren]

31



Expressive completeness of static type checking

• given types R, . . . , S

• given type T

• given expression e(x, . . . , y)

– e well-defined under R, . . . , S

– e’s output type is always T

Then there always exists e′ equivalent to e on all inputs
r : R, . . . , s : S, and

x : R, . . . , y : S 
 e′ : T

Holds for RA, NRC — for XQuery?

32



Simple example of expressive completeness

Consider x : {A, B} and y : {A, C}

Then

πA(x ∪ y)

is equivalent to

πA(x) ∪ πA(y)

Less trivial for queries involving difference

– Encode, in RA/NRC, heterogeneous relations/objects by

homogeneous ones.

33



Note

Expressive completeness is immediate for well-typed languages

that are Turing-complete

– Java, Haskell, . . .

– Simply-typed lambda calculus: not expressive complete

34



Polymorphism

π̂A: project out attribute A

�: natural join

Typing rules:

e : R A ∈ R

π̂A(e) : R \ {A}
e1 : R1 e2 : R2

e1 � e2 : R1 ∪ R2

For any given input types, π̂ and � can be expressed using the
other RA operators

But not by one expression that works for all possible input types!

The ultimate polymorphic, typed, query language?

35



Type inference

Input: expression e

Output: all Γ and T for which Γ 
 e : T

Output is usually infinite; need some simple kind of finite repre-

sentation

Output can be empty as well (untypeable expression, e.g., πAπB(x))

⇒ type formulas

36



Polytypes with kinding [Ohori–Buneman]

Polytype = type with type variables (ML, Hindley–Milner)

NRC:

for u ∈ x return
for v ∈ y return

(C : u.A, D : v.B)

Type formula with type variables and kinding

x : {α}
y : {β}
kind(α) = (A : γ)
kind(β) = (B : δ)

�→ (C : γ, D : δ)

Insufficient to represent type inference of π̂ or ρ

37



Row variables [Rémy]

π̂A(x) ∪ y

Type formula with row variables and forbidden attributes:

x : {A} ∪ α
y : α
forbidden(α) = {A}

�→ α

Insufficient to represent type inference of ×

38



Type inference for full relational algebra

1. Use multiple row variables, stand for disjoint types

2. Generalize required, forbidden attributes to boolean con-
straints

e = σB=C(ρA/B(x) × y)

x : α
y : β
A : x
B : ¬x ∧ ¬y
C : x ∨ y

�→
e : α ∪ β
A : y
B : true
C : true

Type formulas can become exponentially long, but typeability is
in NP (complete)

39



General approach to type inference

1. Universe of all types, with appropriate constraints and oper-
ations on types, forms a logical model M

2. Formulate quantifier-free formula over type variables, stating
constraints on input types of e, for e to be well-typed

• Type formula!

3. Existential theory of M is decidable (typeability)

Can play this game for full NRC with π̂, ρ, �, ×, . . .

Complexity for NRC does not become worse than for relational
algebra (NP-complete)

40



Type reflection

java.lang.reflection package:

– inspect type (class) of an object

– type information becomes data!

Schema querying (’90s)

Semistructured data, XML: distinction between type information
and data is blurred

– can validate XML Schema using (recursive) XQuery

Downside: is XPath expression x/a=5 false because x has no
a-child? Or because x has an a-child, but it is not 5?

41



Example: transposition of a relation [GL,WR]

A B C
1 d e
2 f g

↔
A 1 2
B d f
C e g

⇒ Attributes as data values

42



Expressions as data

E.g., workload log:

user datetime query
john 20070612T1030 select . . . from . . . where . . .
mary 20070611T2316 . . .

...

43



Integration of program logic and data

• System catalog: VIEWS table

• QUEL as a data type

• Oracle EXPRESSION type

• workload monitoring

• publish-subscribe

• workflow management

• software engineering

44



Querying a database containing queries

• Hotspots: which subqueries are often used?

– syntactic

• Semantic: which queries return no answer?

– semantic

• View maintenance: how do the query answers change under

this update?

– syntactic & semantic

Two approaches: (i) decomposition; (ii) ADT

45



Decomposition-based approach

Use standard query language for syntactic manipulations

⇒ Stored expressions cannot be represented as atomic values

– must be decomposed

Many ways to do this:

• XML: syntax tree

– XQueryX

• Relational: decomposition

46



MetaSQL

SQL/XML

– queries are stored in XML columns

Add EVAL function to SQL

– analogy with Lisp, Scheme

E.g. workloads: Log(user,datetime,query)

select query, A, B

from Log

where (A,B) in EVAL(rewrite(query,update)) MINUS EVAL(query)

Similarly can add EVAL to RA, or XQuery

47



Does EVAL add power?

Data complexity of EVAL = evaluation complexity of relational
algebra evaluation:

Input: database D and expression e

Output: e(D)

PSPACE-complete � LOGSPACE (plain relational algebra)

But what about standard generic queries?

– expressions not in input

– dynamic generation and evaluation of expressions only as
auxiliary querying tool

48



Transitive closure in XQuery + EVAL

Table R(A, B) in XML: list D of R(A, B)-elements

TC(D) = EVAL(construct(D)):

construct(D) = E1, . . . , En with n = count(D//T)

with Ej:

for t1 in D//T, . . . , tj in D//T return
if every z in ((t1/B=t2/A),. . . ,(tj−1/B=tj/A))
satisfies z=fn:true() then
element(T){t1/A,tj/B} else ()

In relational algebra, on databases w/o stored expressions,
EVAL = for-loops

49



Type-safe reflection

EVAL: fragile, can crash easily

Idea: two-level type system [MetaML], e.g.:

(A : atom, B : atom, C : 〈{(D : atom, E : atom)}〉)
⇒ EVAL can be typed

ADT approach: also provide typed repertoire of syntactic ma-
nipulation operators

e.g. substitute all occurrences of relation variable x : T by the
expression e : T

Less powerful ⇒ add polymorphism?

50



Conclusions

Flexible operation of queries “out of the box”

• Well-definedness (better algorithms?)

• Expressive completeness of type systems

• Polymorphism (design of query languages?)

• Meta-querying: querying queries (design of languages?)

Integration of programs (queries) and data

51


