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Query languages are programming languages!

[Atkinson—Buneman—Cardelli—Maier—Ohori—Sheard—Stemple
—Stonebraker—Tannen]

= Database queries. ..

e are programs

e can crash

e can be ill-typed
e are polymorphic

e can be treated as data (metadata, reflection)



Motivation

Lowell self-assessment:

“We recommend that database researchers increase their
focus on the integration of text, data, code, and streams.”

Asilomar Report:

“Ever more complex application environments have in-
creased the need to integrate programs and data.”

What are the basic theoretical questions concerning flexible op-
eration of queries “out of the box" ? Of treating queries as data?

How to apply/adapt programming-language ideas to query lan-
guages?



Query languages
Relational algebra
Nested relational calculus

XQuery



Relational algebra: syntax

e .=

Example expression:

X (relation variable)
r (constant relation)
eUe

€ — €

e X e

oa=p(e)

7. B(e)

pa/Ble)

z — (ma(z) X po/p(Y))



Heterogeneous relations
A relation is a finite set of tuples
A tuple is a mapping ¢t from some relation scheme to V

e V: universe of atomic values
e relation scheme: finite set of attributes

e call relation scheme of t, the type of ¢

(A:1,B:2)
(A:3,C: 4)
(D: 4)




Relational algebra: semantics

Expression e(x,...,y) can be applied to relations r,...,s

Operational semantics: rewrite ground expression e’ = e(r,...

until you end up with a relation »/

Rewriting ¢/ — 7’ defined by inference rules



Inference rule for union

if eq — 1
and e> — o
then e; Uey — ry Urso

Written like fraction:

€1 — Tl €2 — 12

et Uepr —rqiUro

Difference:
€1 — 71 €2 — 1D

e] —ep — T, \ T2




Cartesian product

€1 — Tl
€2 — T2
Vi1 € 71 : Vio € o type(t1) Ntype(tr) = @

e1 X ep > {t1 Uty |t1 €r1 & to Erp}



Selection, projection, renaming
e — 1 vt er’ i A B € type(t)
oa=p(e) = {t €' | t(A) = t(B)}

e — 1 Vvter A, ...,B € type(t)
ma.. . Ble) = {ma  pi)|ter}

e — 1/ Vter' i Actype(t) & B ¢ type(t)
pa/g(e) = {pa/pt) |t €7’}
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Example derivation

Evaluate x — (m4(x) X ,OC/B(y))

(A:1,B: 2) (C:2)
(A:1,B:3) s —|(C:3)
"7 (A:2,B: 4) (C: 4)
(AZQ,BI5) (BIQ)
(A: 1) (s) —| (B:3)
ma(r) =1 (4: 2) pare (B 4)
(A:1,B:2)
(A:1,B:3)
r—r ma(r) X pen(s) = | V415 5
(A: 2, B: 3)
(A:2,B: 4)
r— (ma(r) X pcyp(s)) — | (A:2,B:5)
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Nested relations (complex objects)

A complex object is:

— an atomic value

— a tuple of complex objects

— a finite set of complex objects

(A:

WN =

,B:(B:4,C:

(D:5)
(E: 6)
(E:7)

)
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(A:

Complex object tree

WN =

,B: (B: 4,C:

(D:5)
(E: 6)
(E:7)

)
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Nested relational calculus [BNTW]
The relational algebra of complex objects

Syntax:

e = x (variable)
r (constant object)

)

{e}

eUe

Ue

e. A

(A:e,...,B:e)

for z € e return e

if eeqe then e else e
if e = e then e else ¢

14



Example NRC expression

Ufor u € = return
Ufor v € y return
if u.Bequv.B
then {(A: v.A,B: u.B,C: v.C)}
else g
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Operational semantics of for-loop

e1 — T r is a set Vier:ex(t) — st

for z € eq return ex(z) — {st |t € r}
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Equality test

€1 — Tl €2 — 12 €3 — T3 ryE =172

if eq = eo then ez else eq — r3

er — 1T ep — T eq — T4 1 F T
if eg = eo then ez else eq — 1y

e1 €q eo: similar, but r;{ and ro must be atomic values

Positive NRC: has only e eq es
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Queries can crash

1 (A:1,B:2)
w4(x) crashes on r = (B: 3)

_| (A1) _rm- .
x X y crashes on r = (B: 2) and s=|(B:3,C: 4)

Similar for NRC

“Well-defined” = “does not crash”

Cannot expect an expression to be well-defined on all inputs

= consider types

18



T he well-definedness problem
(Relational algebra version)
Recall: type = relation scheme = finite set of attributes
A relation r has type R if all its tuples do
— notation r: R
T he well-definedness problem:
Input: expression e(x,...,y) and types R,...,S

Decide: is e(r,...,s) well-defined on all inputs r: R, ..., s:S7
19



Some immediate observations
Well-definedness is undecidable for relational algebra:
— take R ={A, B}
— for well-defined e:
e(x) satisfiable <«  myurp(x x mz(e)) ill-defined

Decidable for positive relational algebra (without difference):

— just keep track of possible types that can occur
— monotonicity

— Can add og+pB

20



The NRC case
Types:
— atom
— (A R,...,B: S)
—{T}

Well-definedness still undecidable for full NRC
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Well-definedness for positive NRC

Still decidable

— small model property for ill-definedness
— monotonicity

— coONEXPTIME-hard (satisfiability, [Koch])
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Singleton extraction

e — {t}

extract(e) — t

OQL, XQuery, but also SQL:

select ..., (@), ... from ... where ...
or

select ... from ... where A = (Q)

crashes unless subquery returns a singleton (‘“scalar subquery")
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Well-definedness for positive NRC + extract

Is undecidable

— extract({e1,ex}) well-defined iff e1, e» equivalent
— equivalence of positive NRC is undecidable!
(Satisfiability still decidable.)

Decidable for lists, bags (see also XQuery)
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XQuery (w/0o recursion)

Value = list of atoms and tree nodes

— underlying store of XML trees (node-labeled by atoms)

Language:

e = «x (variable)
a (constant atom)
9

for z € e return e

if e then e else e

let z:= e in e

fle,...,e) (operators)
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XQuery operators

Operators: Element construction, list functions, axes, tests, ...

— can crash!

e.g. element{e;}{es} = e1 must be singleton
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XQuery well-definedness
Types: bounded-depth regular expression types
— XML Schema (extended DTD) w/o0 recursion

For well-behaved (generic, monotonic, local) operators, XQuery
well-definedness is decidable

Caveat: automatic coercions

— atomization: tree — atom
— difference between NRC(=) and NRC(eq) is blurred

— undecidability
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Semantic type-checking

Input: expression e(z,...,y), well-defined under types R,...

additional type T

Decide: is e(r,...,s) always of type T, for all inputs
r: R, ..., s:57

e RA, NRC: same story as well-definedness

e positive NRC 4 extract: still decidable!

e XQuery: undecidable!
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Static type checking
Since input types are known, can try to derive statically:

e Can expression crash?

e if not, what is output type~?
= Inference rules that derive I Fe: T
— [: the given input types

e relational algebra

e NRC

e XQuery [XQuery formal semantics; Ghelli et al., JFP 2006]
29



Static type system of relational algebra

ey : T (e : T ey : T [(Fey: T
[[FeiUey: T [[Fey —e>: T

(e R [Fey: S RNS =9 [Fe: T A, BeT

(e Xex: RUS FFos—ple): T

Fhe:T A....BeT Fhe:T AeT B¢T
F+ 4.5 {A...,B} M+ pasp(e) : (R\{A}) U{B}
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Soundness and completeness of type systems

If e is well-typed (e : T can be derived) then e is well-defined,
and output type is always T

Not vice versa: type checking is only sound, not complete

Nevertheless we have expressive completeness:

e a well-defined expression with known output type can always
be equivalently rewritten into a well-typed expression

[Vansummeren]

31



Expressive completeness of static type checking

e given types R,...,S
e given type T’

e given expression e(x,...,y)
— e well-defined under R,...,S

— e's output type is always T

Then there always exists e equivalent to e on all inputs
r.R,...,s: S, and

z:R,...,yu:SFe:T

Holds for RA, NRC — for XQuery?
32



Simple example of expressive completeness
Consider x : {A,B} and y: {A,C}

T hen

TA(z Uy)

IS equivalent to

ma(z) Uma(y)

LLess trivial for queries involving difference

— Encode, in RA/NRC, heterogeneous relations/objects by
homogeneous ones.
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Note

Expressive completeness is immediate for well-typed languages
that are Turing-complete

— Java, Haskell, ...

— Simply-typed lambda calculus: not expressive complete
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Polymorphism
4. project out attribute A

X: natural join

Typing rules:
e. R AeER e1 : Rq e> . Ro
wale) : R\ {A} e1 Xe>: R UR>

For any given input types, @ and X can be expressed using the
other RA operators

But not by one expression that works for all possible input types!

The ultimate polymorphic, typed, query language?

35



Type inference

Input: expression e
Output: all " and T for which I''+e: T

Output is usually infinite; need some simple kind of finite repre-
sentation

Output can be empty as well (untypeable expression, e.g., mamg(x))

= type formulas
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Polytypes with kinding [Ohori—Buneman]

Polytype = type with type variables (ML, Hindley—Milner)
NRC:

for u € x return
for v € y return
(C:u.A,D:v.B)

Type formula with type variables and kinding

x : {a}
- {6} . .
kind(e) = (A: ) = (€D 0)

kind(8) = (B: 6)

Insufficient to represent type inference of w or p

37



Row variables [REMYy]

Ta(z) Uy
Type formula with row variables and forbidden attributes:

x . {A} U«
Y.« —

forbidden(a) = {A}

Insufficient to represent type inference of x
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Type inference for full relational algebra

1. Use multiple row variables, stand for disjoint types

2. Generalize required, forbidden attributes to boolean con-
straints

e =op=c(pa/p(x) xXy)

x.:oz e.alUp
y:p Ay
’;'_'r A "~ B :true

CE ATy C : true
C:.:xzVy

Type formulas can become exponentially long, but typeability is
in NP (complete)

39



General approach to type inference

1. Universe of all types, with appropriate constraints and oper-
ations on types, forms a logical model M

2. Formulate quantifier-free formula over type variables, stating
constraints on input types of e, for e to be well-typed

e Type formulal

3. Existential theory of M is decidable (typeability)
Can play this game for full NRC with 7, p, X, %, ...
Complexity for NRC does not become worse than for relational

algebra (NP-complete)
40



Type reflection
java.lang.reflection package:

— inspect type (class) of an object

— type information becomes data!
Schema querying ('90s)

Semistructured data, XML: distinction between type information
and data is blurred

— can validate XML Schema using (recursive) XQuery

Downside: is XPath expression x/a=5 false because x has no
a-child? Or because xz has an a-child, but it is not 57

41



Example: transposition of a relation [GL,WR]

A B C
1 d e
2 [ g

!
Q | >
o
Q %N

= Attributes as data values
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EXxpressions as data

E.g., workload log:

user datetime

query

mary 20070611T2316

john 20070612T1030 select ...

from . ..

where . ..
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Integration of program logic and data

System catalog: VIEWS table
QUEL as a data type

Oracle EXPRESSION type
workload monitoring
publish-subscribe

workflow management

software engineering
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Querying a database containing queries

e Hotspots: which subqueries are often used?

— syntactic

e Semantic: which queries return no answer?

— semantic

e View maintenance: how do the query answers change under
this update?
— syntactic & semantic

Two approaches: (i) decomposition; (ii) ADT
45



Decomposition-based approach
Use standard query language for syntactic manipulations
= Stored expressions cannot be represented as atomic values
— must be decomposed
Many ways to do this:

e XML: syntax tree

— XQueryX

e Relational: decomposition
46



MetaSQL

SQL/XML

— queries are stored in XML columns
Add EVAL function to SQL

— analogy with Lisp, Scheme

E.g. workloads: Log(user,datetime, query)

select query, A, B

from Log
where (A,B) in EVAL(rewrite(query,update)) MINUS EVAL(query)

Similarly can add EVAL to RA, or XQuery
47



Does EVAL add power?

Data complexity of EVAL = evaluation complexity of relational
algebra evaluation:

Input: database D and expression e

Output: e(D)
PSPACE-complete > LOGSPACE (plain relational algebra)
But what about standard generic queries?

— expressions not in input

— dynamic generation and evaluation of expressions only as
auxiliary querying tool

48



Transitive closure in XQuery + EVAL
Table R(A,B) in XML: list D of R(A, B)-elements

TC(D) = EVAL(construct(D)):

construct(D) = E4,...,Ep with n = count(D//T)
with Ej:

for ¢4 in D//T, ..., t;in D//T return

if every z in ((t1/B=t2/A),... (tj—1/B=t;/A))
satisfies z=fn:true() then
element(T){t1/At;/B} else ()

In relational algebra, on databases w/o stored expressions,
EVAL = for-loops
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Type-safe reflection
EVAL: fragile, can crash easily

Idea: two-level type system [MetaML], e.qg.:

(A: atom, B: atom,C: {{(D: atom, E: atom)}))
= EVAL can be typed

ADT approach: also provide typed repertoire of syntactic ma-
nipulation operators

e.g. substitute all occurrences of relation variable =z : T by the
expression e : T

Less powerful = add polymorphism?
50



Conclusions
Flexible operation of queries “out of the box"
e Well-definedness (better algorithms?)
e EXxpressive completeness of type systems
e Polymorphism (design of query languages?)
e Meta-querying: querying queries (design of languages?)

Integration of programs (queries) and data
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