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Abstract

Declarative networking is a recent approach to programming distributed applications with languages inspired
by Datalog. A recent conjecture posits that the delivery of messages should respect causality if and only if
they are used in non-monotone derivations. We present our results about this conjecture in the context of
Dedalus, a Datalog-variant for distributed programming. We show that both directions of the conjecture
fail under a strong semantical interpretation. But on a more syntactical level, we show that positive Dedalus
programs can tolerate non-causal messages, in the sense that they compute the correct answer even when
messages can be sent into the past.
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1. Introduction

In declarative networking, distributed computations and networking protocols are modeled and pro-
grammed using formalisms based on Datalog [2]. Hellerstein has made a number of intriguing conjectures
concerning the expressiveness of declarative networking [3]. In the present paper, we are focusing on the
CRON conjecture (Causality Required Only for Non-monotonicity).

Causality stands for the physical constraint that an effect can only happen after its cause. Applied to
message delivery, this intuitively means that a sent message can only be delivered in the future, not in the
past. Now, the conjecture relates the causal delivery of messages to the nature of the computations that
those messages participate in, like monotone versus non-monotone, and asks us to think about the cases
where causality is really needed.

There seem to be interesting real-world motivations for studying the CRON conjecture, one of which is
crash recovery. Distributed computations happen often in large clusters of compute nodes, where failure of
nodes is not uncommon [4], and indeed distributed computing software should be robust against failures [5].
Consider the following situation. During crash recovery, a program can read an old checkpointed state and
a log of received messages, which is disjoint from that state. At the beginning of a computation, suppose a
node x at its local time 0 sends a message A to another node y, and locally sets a flag “waiting”. In reply
to A, node y sends a message B to x. Upon receiving B, node x sets an output flag and B is added to the
message log at x, timestamped with the arrival time. Next, x crashes. There were no previous checkpoints
of the state at x, so the recovery procedure has to revert x back to its initial state. But the recovery
procedure also has access to the logged message B. However, in some sense, B appears to come from the
“future” when put side-by-side with the initial state because according to this state, message A has not yet
been sent, i.e., the flag “waiting” is not set. It really depends on the program at x how we should use the
message log during recovery. For example, it could be that if we read B during recovery, the program at
x will immediately produce the output even though the flag “waiting” is absent. But it could also be that
the program at x will block the output if we read B in the absence of the flag “waiting”. So, in general, it
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requires a fundamental understanding of the program in order to design a good crash recovery mechanism,
certainly if negation and more generally non-monotone operations are involved. To aid in this task, it seems
useful to attempt a classification of programs and to provide advice for each class.

Indeed, one can understand the CRON conjecture as saying that during recovery, for a non-monotone
program, messages from the log should be read in causal order, like the order in which they are received,
and they should not be exposed all at once.2 From the other direction, if you know that the program is
monotone, the recovery could perhaps become more efficient by reading the messages all at once.

In this paper we formally investigate the CRON conjecture in the setting of the language Dedalus,
which is a Datalog-variant for distributed programming [6, 7, 3, 8, 9]. It turns out that stable models [10]
provide a way to reason about non-causality, and we use this to formalize the CRON conjecture. A strong
interpretation of the conjecture posits that causality is not needed if and only if the query computed by
a Dedalus program is monotone. Neither the “if” nor the “only if” direction holds, however, as we will
demonstrate. Therefore we have turned attention to a more syntactic version of the conjecture, and there
we indeed find that causal message ordering is not needed for positive Dedalus programs in order to compute
meaningful results, if these programs already behave correctly in a causal operational semantics. This is the
main result of our paper.

This paper is organized as follows. First, Section 2 relates our work to the literature. Section 3 gives pre-
liminaries on databases, Datalog, and Dedalus. Next, Section 4 investigates the expressivity and complexity
of Dedalus. Section 5 states the CRON conjecture and gives the formalization of non-causality. Section 6
contains the results. We conclude in Section 7.

Acknowledgments. We thank Joseph M. Hellerstein for his thoughtful comments on an earlier draft of this
paper. We also thank the anonymous reviewers for their constructive comments and for bringing interesting
related work to our attention.

2. Related Work

Essentially, Dedalus is a logic programming language to describe events that should take place in a
distributed system. Other languages have been proposed for this setting, with a flavor similar to Dedalus.
For instance, Lobo et al. [11] describe a rule-based language for distributed systems inspired by Dedalus.
They give a model-theoretic semantics based on answer set programming, i.e., stable models. To define this
semantics, they syntactically translate the rules of their language to Datalog, where all literals are given an
explicit location and time variable, to represent the data that each node has during each local time. This
translation resembles the model-theoretic semantics for Dedalus [8, 9], that we will also recall in this paper.
To enforce natural execution properties in their semantics, like causality, Lobo et al. specify auxiliary rules
in the syntactical translation. Interestingly, our paper studies the effect of omitting such auxiliary rules, to
see how the behavior of the program changes as a result.

Also in the setting of distributed systems, Interlandi et al. [12] give a Dedalus-inspired language for
describing synchronous systems. In such systems, the nodes of the network proceed in rounds and the
messages can not be arbitrarily delayed. During each round, the nodes share the same global clock. Interlandi
et al. specify an operational semantics for their language, based on relational transducer networks [13]. They
also show that this operational semantics coincides with a model-theoretic semantics of a single holistic
Datalog program. It should be noted that Lobo et al. [11], and the current paper, deal with asynchronous
systems, that in general pose a bigger challenge for a distributed program to be correct, i.e., the program
should remain unaffected by nondeterministic effects caused by message delays.

For describing the semantics, Interlandi et al. [12] use that negation is temporally stratified : intuitively,
this means that negation is applied to relations computed in the past, and thus there are no cyclic depen-
dencies involving negation through time. This way, programs can be given an intuitive semantics. Temporal

2In particular, a logged message would only become visible when the recovering node has again reached the timestamp at
which the message had originally arrived. Additionally, recovery can be performed as an atomic operation, during which no
new messages are received.
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stratification is a well-studied concept in temporal deductive databases and temporal logic programming.
For example, Zaniolo et al. [14] define XY-stratification for Datalog programs, which is a form of temporal
stratification. A similar approach is also given by Lausen et al. [15] and Lu and Cleary [16], where the
former call the stratification condition state stratification. All these languages extend Datalog with explicit
time variables in the head and body of rules: these variables tag facts with a time instant, to say when the
facts exist. Seminal work on temporal deductive databases was done by Chomicki and Imieliński [17, 18].
However, these previous works do not model asynchronous communication, as is done with Dedalus. Yet
Dedalus without rules for asynchronous communication can probably be (strictly) embedded in some of
these languages, because the remaining rules only reason about the current time and the next time, which
is supported by the above languages, some of which even allow reasoning with larger jumps in time [15, 16].

Languages have also been proposed to reason about events in planning problems. For instance, Eiter
et al [19] propose a language based on logic programming. Concretely, their language can describe general
systems, and the idea is to generate sequences of actions in order to obtain a goal list of ground literals.
Time is only implicitly present, although in principle it could be deduced from the number of actions taken
so far. Effects of actions always occur in the future. In the same spirit, Greco et al. [20] give a Datalog-
inspired language to represent actions and events. However, their language explicitly represents time, to
allow actions to trigger events in the future, after a certain delay. Moreover, the language of Greco et al.
can represent time at multiple granularities in the same program, to model subtasks of a larger task.

All related work mentioned above contains languages for reasoning about events that are always trig-
gered in the future. By contrast, in this paper we do an initial attempt to find classes of programs for
reasoning about events that can be executed without this assumption. Although we have focused on the
language Dedalus to have a better connection to the CRON conjecture, we expect that the main insights
are transferable to other Datalog inspired languages, like the ones mentioned above, if they are executed
under a semantics without causality.

Still from the field of temporal deductive databases, we should also mention the work of Nomikos et
al. [21]: they study extensions of Datalog to express linear-time and branching-time problems. For these
languages, Nomikos et al. design tests to verify if programs are temporally stratified. Although it is not im-
mediately clear if the asynchronous communication of Dedalus could be modeled in branching-time Datalog,
the fragment of Dedalus without asynchronous communication can probably be represented in the languages
of Nomikos et al. But since a Dedalus program always derives facts from the past to the future in its stan-
dard (causal) semantics, even if it uses asynchronous communication, the stratification test would seem
unnecessary. Nevertheless, if we execute Dedalus in a semantics not respecting causality, it seems that
programs are in general temporally unstratifiable. Then, designing a test for temporal stratification in such
cases appears similar in spirit to this paper: finding classes of programs that have meaning when executed
under a non-causal semantics.

3. Preliminaries

3.1. Database Basics

A database schema D is a finite set of pairs (R, k) where R is a relation name and k ∈ N its associated
arity. A relation name occurs at most once in a database schema. We often write (R, k) as R(k).

We assume some infinite universe dom of atomic data values. A fact f is a pair (R, ā), often denoted
as R(ā), where R is a relation name and ā is a tuple of values over dom. For a fact R(ā), we call R the
predicate. We say that a fact R(a1, . . . , ak) is over database schema D if R(k) ∈ D. A database instance I
over D is a set of facts over D. For a subset D′ ⊆ D, we write I|D′ to denote the subset of facts in I whose
predicate is a relation name in D′. We write adom(I) to denote the set of values occurring in facts of I.

A query Q is a function from database instances over an input schema D1 to database instances over an
output schema D2. Query Q is called monotone if for any two instances I and J over D1, I ⊆ J implies
Q(I) ⊆ Q(J). We recall that first-order logic (FO) can be used to express a class of database queries [22].
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3.2. Datalog with Negation

We recall Datalog with negation [22], abbreviated Datalog¬. We assume the standard database perspec-
tive, where a Datalog¬ program is evaluated over a given set of facts, i.e., where these facts are not part of
the program itself.

Let var be a universe of variables, disjoint from dom. An atom is of the form R(u1, . . . , uk) where R is
a relation name and ui ∈ var ∪ dom for i = 1, . . . , k. We call R the predicate. If an atom contains no data
values, we call it constant-free. A literal is an atom or an atom with “¬” prepended. A literal that is an
atom is called positive and otherwise it is called negative.

A Datalog¬ rule ϕ is a triple
(headϕ, posϕ, negϕ)

where headϕ is an atom, and posϕ and negϕ are sets of atoms. The components headϕ, posϕ and negϕ are
called respectively the head, the positive body atoms and the negative body atoms. We refer to posϕ ∪ negϕ
as the body atoms. Note, negϕ contains just atoms, not negative literals. Every Datalog¬ rule ϕ must have
a head, whereas posϕ and negϕ may be empty. If negϕ = ∅ then ϕ is called positive.

A rule ϕ may be written in the conventional syntax. For instance, if headϕ = T (u, v), posϕ = {R(u, v)}
and negϕ = {S(v)}, with u, v ∈ var, then we can write ϕ as

T (u, v) ← R(u, v), ¬S(v).

The specific ordering of literals to the right of the arrow is arbitrary.
The set of variables of ϕ is denoted vars(ϕ). We call ϕ safe if the variables in ϕ all occur in posϕ. If

vars(ϕ) = ∅ then ϕ is called ground, in which case {headϕ} ∪ posϕ ∪ negϕ is a set of facts.
Let D be a database schema. A rule ϕ is said to be over schema D if for each atom R(u1, . . . , uk) ∈

{headϕ}∪ posϕ ∪negϕ we have R(k) ∈ D. A Datalog¬ program P over D is a set of safe Datalog¬ rules over
D. We write sch(P ) to denote the database schema that P is over. We define idb(P ) ⊆ sch(P ) to be the
database schema consisting of all relations in rule-heads of P . We abbreviate edb(P ) = sch(P ) \ idb(P ).3

Any database instance I over sch(P ) can be given as input to P . Note, I may already contain facts over
idb(P ). The need for this will become clear in Section 3.5. Let ϕ ∈ P . A valuation for ϕ is a total function
V : vars(ϕ) → dom. The application of V to an atom R(u1, . . . , uk) of ϕ, denoted V (R(u1, . . . , uk)), results
in the fact R(a1, . . . , ak) where for each i ∈ {1, . . . , k} we have ai = V (ui) if ui ∈ var and ai = ui otherwise.
In words: applying V replaces the variables by data values and leaves the old data values unchanged. This
is naturally extended to a set of atoms, which results in a set of facts. Valuation V is said to be satisfying
for ϕ on I if V (posϕ) ⊆ I and V (negϕ) ∩ I = ∅. If so, ϕ is said to derive the fact V (headϕ).

3.2.1. Positive and Semi-positive
Let P be a Datalog¬ program. We say that P is positive if all rules of P are positive. We say that

P is semi-positive if for each rule ϕ ∈ P , the atoms of negϕ are over edb(P ). Note, positive programs are
semi-positive.

We now give the semantics of a semi-positive Datalog¬ program P [22]. First, let TP be the immediate
consequence operator that maps each instance J over sch(P ) to the instance J ′ = J ∪A where A is the set
of facts derived by all possible satisfying valuations for the rules of P on J .

Let I be an instance over sch(P ). Consider the infinite sequence I0, I1, I2, etc, inductively defined as
follows: I0 = I and Ii = TP (Ii−1) for each i ≥ 1. The output of P on input I, denoted P (I), is defined as⋃

j Ij ; this is the minimal fixpoint of the TP operator. Note, I ⊆ P (I). When I is finite, the fixpoint is
finite and can be computed in polynomial time (according to data complexity [23]).

3The abbreviation “idb” stands for “intensional database schema” and “edb” stands for “extensional database schema” [22].
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3.2.2. Stratified Semantics
We now recall the stratified semantics for a Datalog¬ program P [22]. As a slight abuse of notation,

here we will treat idb(P ) as a set of only relation names (without associated arities). First, P is called
syntactically stratifiable if there is a function σ : idb(P ) → {1, . . . , |idb(P )|} such that for each rule ϕ ∈ P ,
having some head predicate T , the following conditions are satisfied:

• σ(R) ≤ σ(T ) for each R(ū) ∈ posϕ|idb(P );

• σ(R) < σ(T ) for each R(ū) ∈ negϕ|idb(P ).

For R ∈ idb(P ), we call σ(R) the stratum number of R. For technical convenience, we may assume that
if there is an R ∈ idb(P ) with σ(R) > 1 then there is an S ∈ idb(P ) with σ(S) = σ(R) − 1. Intuitively,
function σ partitions P into a sequence of semi-positive Datalog¬ programs P1, . . . , Pk with k ≤ |idb(P )|
such that for each i = 1, . . . , k, the program Pi contains the rules of P whose head predicate has stratum
number i. This sequence is called a syntactic stratification of P . We can now apply the stratified semantics
to P : for an input I over sch(P ), we first compute the fixpoint P1(I), then the fixpoint P2(P1(I)), etc. The
output of P on input I, denoted P (I), is defined as Pk(Pk−1(. . . P1(I) . . .)). It is well known that the output
of P does not depend on the chosen syntactic stratification (if more than one exists). Not all Datalog¬

programs are syntactically stratifiable.

3.2.3. Stable Model Semantics
We now recall the stable model semantics for a Datalog¬ program P [10, 24]. Let I be an instance over

sch(P ). Let ϕ ∈ P . Let V be a valuation for ϕ whose image is contained in adom(I)∪C, where C is the set
of all constants appearing in P . Valuation V does not have to be satisfying for ϕ on I. Together, V and ϕ
give rise to a ground rule ψ, obtained from ϕ by replacing each u ∈ vars(ϕ) with V (u). We call ψ a ground
rule of ϕ with respect to I. Let ground(ϕ, I) denote the set of all ground rules of ϕ with respect to I. The
ground program of P on I, denoted ground(P, I), is defined as

⋃
ϕ∈P ground(ϕ, I). Note, if I = ∅, the set

ground(P, I) contains only rules whose ground atoms are made with C, or atoms that are nullary.
Let M be another instance over sch(P ). We write groundM (P, I) to denote the program obtained from

ground(P, I) as follows:

1. remove every rule ψ ∈ ground(P, I) for which negψ ∩M += ∅;
2. remove the negative (ground) body atoms from all remaining rules.

Note, groundM (P, I) is a positive program. We say that M is a stable model of P on input I if M is the
output of groundM (P, I) on input I. If so, the semantics of positive Datalog¬ programs implies I ⊆ M . Not
all Datalog¬ programs have stable models on every input [10].

3.3. Network and Distributed Databases

A (computer) network is a nonempty finite set N of nodes, which are values in dom. Intuitively,
N represents the identifiers of compute nodes involved in a distributed system. Communication channels
(edges) are not explicitly represented because we allow a node x to send a message to any node y, as long as x
knows about y by means of input relations or received messages. When using Dedalus for general distributed
or cluster computing, the delivery of messages is handled by the network layer, which is abstracted away.
But Dedalus programs can also describe the network layer itself [2, 3], in which case we would restrict
attention to programs where nodes only send messages to nodes to which they are explicitly linked; these
nodes would again be provided as input.

A distributed database instance H over a network N and a database schema D is a function that maps
every node of N to an ordinary finite database instance over D. This represents how data over the same
schema D is spread over a network.

As a small example of a distributed database instance, consider the following instance H over a network
N = {x, y} and a schema D = {R(1), S(1)}: H(x) = {R(a), S(b)} and H(y) = {S(c)}. In words: we put
facts R(a) and S(b) at node x, and we put fact S(c) at node y.
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3.4. Dedalus Programs

We now recall the language Dedalus, that can be used to describe distributed computations [6, 7, 3].
Essentially, Dedalus is an extension of Datalog¬ to represent updatable memory for the nodes of a network
and to provide a mechanism for communication between these nodes. To simplify notation, we present
Dedalus as Datalog¬ extended with annotations.4

Let D be a database schema. We write B{v̄}, where v̄ is a tuple of variables, to denote any sequence β
of literals over database schema D, such that the variables in β are precisely those in the tuple v̄. Let R(ū)
denote any atom over D. There are three types of Dedalus rules over D:

• A deductive rule is a normal Datalog¬ rule over D.

• An inductive rule is of the form
R(ū)• ← B{ū, v̄}.

• An asynchronous rule is of the form

R(ū) | y ← B{ū, v̄, y}.

For inductive rules, the annotation ‘•’ can be likened to the transfer of “tokens” in a Petri net from the old
state to the new state. For asynchronous rules, the annotation ‘| y’ with y ∈ var means that the derived
head facts are transferred (“piped”) to the addressee node represented by y. Deductive, inductive and
asynchronous rules will express respectively local computation, updatable memory, and message sending
(cf. Section 3.5). Like in Section 3.2, a Dedalus rule is called safe if all its variables occur in at least one
positive body atom.

We already provide some intuition of how asynchronous rules operate. There are four conceptual time
points involved in the execution of an asynchronous rule: the time when the body is evaluated; the time
when the derived fact is sent to the addressee; the time when the fact arrives at the addressee; and, the time
when the arrived fact becomes visible at the addressee. In the semantics of Section 3.5, the first two time
points coincide and the last two time points coincide; and, there is no upper bound on the interval between
these two pairs, although it will be finite.

To illustrate the syntax, if D = {R(2), S(1), T (2)}, then the following three rules are examples of, respec-
tively, deductive, inductive and asynchronous rules over D:

T (u, v) ← R(u, v), ¬S(v).

T (u, v)• ← R(u, v).

T (u, v) | y ← R(u, v), S(y).

Now consider the following definition:

Definition 3.1. A Dedalus program over a schema D is a set of deductive, inductive and asynchronous
Dedalus rules over D, such that all rules are safe, and the set of deductive rules is syntactically stratifiable.

In the current work, we will additionally assume that Dedalus programs are constant-free, as is common
in the theory of database query languages, and which is not really a limitation, since constants that are
important for the program can always be indicated by unary relations in the input.

Let P be a Dedalus program. The definitions of sch(P), idb(P), and edb(P) are like for Datalog¬

programs. An input for P is a distributed database instance over some network and the schema edb(P).
Next, we give the operational semantics for Dedalus in Section 3.5. We formalize the output of a Dedalus

program in Section 3.6, and we give an example program in Section 3.7.

4These annotations correspond to syntactic sugar in the previous presentations of Dedalus.
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3.5. Operational Semantics

Dedalus has a formal operational semantics [8, 9]. Since we need this semantics to state the results of
the present paper, we recall it in this section.

We describe how a network executes a Dedalus program P when an input distributed database instance
H is given. The essence is as follows. Let N be the network that H is over. Every node of N runs the same
program P, and a node has access only to its own local state and any received messages. The nodes are
made active one by one in some arbitrary order, and this continues an infinite number of times. During each
active moment of a node x, called a local (computation) step, node x receives message facts and applies its
deductive, inductive and asynchronous rules. Concretely, the deductive rules, forming a stratified Datalog¬

subprogram, are applied to the incoming messages and the previous state of x. Deductive rules “complete”
the available facts by adding all new facts that can be logically derived from them. Next, the inductive rules
are applied to the output of the deductive subprogram, and these allow x to store facts in its memory: these
facts become visible in the next local step of x. Finally, the asynchronous rules are also applied to the output
of the deductive subprogram, and these allow x to send facts to the other nodes or to itself. These facts
become visible at the addressee after some arbitrary delay, which represents asynchronous communication.
We will refer to local steps simply as “steps”. The next subsections make the above sketch concrete.

3.5.1. Configurations
Let P, H, and N be like above. A configuration describes the network at a certain point in its evolution.

Formally, a configuration of P on H is a pair ρ = (st , bf ) where

• st is a function mapping each node of N to an instance over sch(P); and,

• bf is a function mapping each node of N to a set of pairs of the form (i,f), where i ∈ N and f is a
fact over idb(P).

We call st and bf the state and (message) buffer respectively. The state says for each node what facts it
has stored in its memory, and the message buffer bf says for each node what messages have been sent to it
but that are not yet received. The reason for having numbers i, called send-tags, attached to facts in the
image of bf is merely a technical convenience: these numbers help separate multiple instances of the same
fact when it is sent at different moments (to the same addressee), and these send-tags will not be visible to
the Dedalus program. For example, if the buffer of a node x simultaneously contains the pairs (1,f) and
(5,f), this means that fact f was sent to x during the operational network transitions with indices 1 and
5, and that both particular instances of f are not yet delivered to x. This will become more concrete in
Section 3.5.3.

The start configuration of P on input H, denoted start(P, H), is the configuration ρ = (st , bf ) defined
by st(x) = H(x) and bf (x) = ∅ for each x ∈ N .

3.5.2. Subprograms
We look at the operations executed locally during each step of a node. We split P into three subpro-

grams, containing respectively the deductive, inductive and asynchronous rules. These programs are used
in Section 3.5.3.

First, we define deducP to be the Datalog¬ program consisting of all deductive rules of P. Secondly,
we define inducP to be the Datalog¬ program consisting of all inductive rules of P after removing the
annotation ‘•’. Thirdly, we define asyncP to be the Datalog¬ program consisting of all rules

T (y, ū) ← B{ū, y}

where
T (ū) | y ← B{ū, y}

is an asynchronous rule of P. In asyncP , the first head variable represents the addressee. Note, programs
deducP , inducP and asyncP are just Datalog¬ programs over sch(P). Moreover, the definition of P implies
that deducP is syntactically stratifiable. Possibly inducP and asyncP are not syntactically stratifiable.

7



Now we define the semantics of the three subprograms. Let I be an instance over sch(P). We define
the output of deducP on input I, denoted deducP(I), to be given by the stratified semantics. This implies
I ⊆ deducP(I). We define the output of inducP on input I, denoted inducP(I), to be the set of facts
derived by the rules of inducP for all possible satisfying valuations in I, in just one derivation step (i.e., no
fixpoint). The output for asyncP on input I, denoted asyncP(I), is defined as for inducP , but now using
asyncP instead of inducP .

Regarding data complexity [23], the output of each subprogram can be computed in PTIME with respect
to the size of its input. The overall data complexity of Dedalus is discussed in Section 4.2.

3.5.3. Transitions and Runs
Transitions formalize how to go from one configuration to another. Here we use the subprograms of P.

Transitions are chained to form a run. Regarding notation, for a set m of pairs of the form (i,f), we define
untag(m) = {f | ∃i ∈ N : (i,f) ∈ m}.

A transition with send-tag i ∈ N is a five-tuple (ρ1, x,m, i, ρ2) such that ρ1 = (st1, bf 1) and ρ2 = (st2, bf 2)
are configurations of P on input H, x ∈ N , m ⊆ bf 1(x), and, letting

I = st1(x) ∪ untag(m),

D = deducP(I),

δi→y = {(i, R(ā)) | R(y, ā) ∈ asyncP(D)} for each y ∈ N ,

for x and each y ∈ N \ {x} we have

st2(x) = H(x) ∪ inducP(D),

bf 2(x) = (bf 1(x) \m) ∪ δi→x,

st2(y) = st1(y),

bf 2(y) = bf 1(y) ∪ δi→y.

We call ρ1 and ρ2 respectively the source- and target-configuration, and say this transition is of the
active node x. Intuitively, the transition expresses how x reads its old state together with the received
facts in untag(m) (thus without the tags). Subprogram deducP completes this information; the new state
of x is set to the input facts of x united with all facts derived by subprogram inducP ; and, subprogram
asyncP generates messages, whose first component indicates the addressee.5 Note, inducP and asyncP do
not influence each other, and can be thought of as being executed in parallel. Also, for each y ∈ N , the set
δi→y contains all messages addressed to y, with send-tag i attached. Messages with an addressee outside
the network are ignored. This way of defining local computation closely corresponds to that of the language
Webdamlog [25]. If m = ∅, we call the transition a heartbeat.

A run R of P on input H is an infinite sequence of transitions, such that (i) the source configuration of
the first transition is start(P, H), (ii) the target-configuration of each transition is the source-configuration
of the next transition, and (iii) the transition at ordinal i of the sequence uses send-tag i. Ordinals start
at 0 for technical convenience. The resulting transition system is highly non-deterministic because in each
transition we can choose the active node and also what messages to deliver; the latter choice is represented
by the set m from above.

It is natural to require certain “fairness” conditions on the execution of a system [26, 27, 28]. A run R
of P on H is called fair if (i) every node is the active node in an infinite number of transitions, and (ii)
every sent message is eventually delivered. Note, a fair run exists for every input because heartbeats remain
possible even when there are no messages to deliver. We only consider fair runs.

3.5.4. Timestamps
For each transition i of a run, we define the timestamp of the active node x during i to be the number

of transitions of x that come strictly before i. This can be thought of as the local (zero-based) clock of x
during i. For example, suppose we have the following sequence of active nodes: x, y, y, x, x, etc. If we
would write the timestamps next to the nodes, we get this sequence: (x, 0), (y, 0), (y, 1), (x, 1), (x, 2), etc.

5Note, input facts are preserved by the transition. This aligns with the design of Dedalus, where we do not allow facts to
be retracted; only negation as failure is permitted.
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T (u, v) ← R(u, v).

T (u, v) ← R(u, w), T (w, v).

T (u, v) | y ← T (u, v), Node(y).

T (u, v)• ← T (u, v).

Figure 1: Dedalus program for transitive closure

3.6. Output and Consistency
Let P be a Dedalus program. We formalize the output of P. Assume a subset out(P) ⊆ idb(P), called

the output schema, is selected: the relation names in out(P) designate the intended output of the program.
Following Marczak et al. [29], we define this output based on ultimate facts. In a run R of P on an input
H, we say that a fact f over schema out(P) is ultimate at some node x if there is some transition of R after
which f is output by deducP during every transition of x. Thus, f is eventually always present at x. The
output of R, denoted output(R), is the union of the ultimate facts across all nodes. Note, we ignore what
node is responsible for what piece of the output.

Because the operational semantics is nondeterministic, different runs can produce different outputs. Now,
program P is called consistent if individually for every input H, every run produces the same output, which
we denote as outInst(P, H). Guaranteeing or deciding consistency in special cases is an important research
topic [25, 29, 30]. Not surprisingly, consistency of Dedalus programs is undecidable in general; this is argued
in Appendix A.

3.7. Example
Figure 1 gives an example Dedalus program. Each node is initialized with a local relation R(2) that

represents a graph, and we assume the existence of a local relation Node(1) that always contains all nodes
in the network at hand (cf. Section 4.1). The first two rules are deductive, and they compute the transitive
closure of R during each step of a node. The third rule is asynchronous, and it lets each node broadcast
its transitive edges to every other node. The fourth rule is inductive, and it lets each node remember
the computed or received transitive edges. The inductive rule causes each node to integrate all received
transitive edges in its local transitive closure computation (as performed by the deductive rules).

The overall effect is that eventually all nodes have stored the transitive closure of the entire input graph
that is the union of all local input graphs. Note, this global transitive closure is obtained on arbitrary
distributions of relation R over the nodes: the nodes essentially always share the input facts with each
other, implicitly through relation T .

4. Dedalus Fundamental Properties

Using the above definitions, we now investigate the expressivity and complexity of Dedalus. This dis-
cussion uses arguments similar to our previous work [13].

4.1. Expressivity
We formalize the expressivity of Dedalus with standard database queries, that are defined in Section 3.1.

First, an ordinary database instance I over a schema D can be distributed over a network N by putting
each fact of I on at least one node, resulting in a distributed database instance over N and D.

We say that a Dedalus program P (distributedly) computes a queryQ if P is consistent and for every input
instance I for Q, for every network N , for every distribution H of I over N , we have outInst(P, H) = Q(I).
To compute non-monotone queries, every node needs its own identifier and the identifiers of the other nodes,
or equivalent information [13]. Therefore, we restrict attention to Dedalus programs P for which edb(P)
contains two unary relations Id and Node, and each input H, over a network N , has for each x ∈ N the
facts {Id(x)} ∪ {Node(y) | y ∈ N} over these relations.

We now argue that Dedalus captures the queries expressible in the language While [22].
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4.1.1. Upper Bound
Let P be a Dedalus program that computes a query Q. By assumption, P computes Q on a single-node

network N = {x} as well as on any other network; in the single-node case, node x is always given all input
facts. Moreover, on node x, program P by assumption also computes Q when we only consider runs that
deliver the entire message buffer during each transition. In such runs, (i) the buffer of x degenerates to
a set because only a set of messages is sent in each transition; and, (ii) messages are always immediately
delivered. To achieve the same effect, we can simply replace asynchronous rules by inductive rules. Next, in
the language While, we can write a sequence of loops that each simulates the fixpoint computation of one
stratum of the deductive subprogram of P. This sequence can be wrapped inside a larger loop, that includes
at the end some FO queries to simulate the effect of the inductive rules, that allow computed facts to be
remembered between different iterations of the simulated deductive rules. Finally, the While program can
be extended with a mechanism to detect infinite looping, using the technique of Abiteboul and Simon [31].
This way, the resulting program will always terminate.6

4.1.2. Lower Bound
Let Q be a query expressible by a While program W . We assume that W consists of a single loop (with

no nested loops) followed by a sequence of FO queries setting the final output relations; W can always be
rewritten into this form. We construct a Dedalus program P to compute Q as follows. First, program
P executes a coordination phase to let each node obtain all available input facts on the network, which
requires relations Id and Node [13]. At each node, the end of this phase is signaled by the derivation of
a fact ready( ), that is persisted by inductive rules. After obtaining ready( ), every node locally simulates
While program W : one local computation step of P corresponds with one iteration of the loop of W , where
deductive rules simulate the FO queries of W , and inductive rules simulate changes to temporary relations
of W . Once the condition of the loop of W becomes false, P simulates the final sequence of FO queries in
W to generate the output, that is persisted with inductive rules.

4.2. Complexity

In this section, we argue that reasoning with Dedalus has PSPACE data complexity. A first insight
is already provided by the expressivity analysis from above. Indeed, for each Dedalus program P that
expresses a query Q, we can define the following evaluation problem evalqueryP : given an ordinary input
instance I for Q, and an output fact f , output true if and only if P outputs f when given as input an
arbitrary distribution H of I over a network. Because Dedalus captures the While-queries, and because
the language While is complete for PSPACE [22], each evalqueryP problem is in PSPACE and there is a Dedalus
program P for which evalqueryP is PSPACE-hard.

We also discuss in more detail the data complexity of Dedalus in a manner not tied to queries. For each
consistent Dedalus program P, we define the evaluation problem evalP as follows: given an input distributed
database instance H for P and a fact f over out(P), output true if and only if f ∈ outInst(P, H). The
complexity of this evaluation problem is discussed next.7

4.2.1. Upper Bound
Let P be a consistent Dedalus program. We argue that evalP is in PSPACE. Consider a run R of P on

H that proceeds in rounds: in each round, we go over the nodes in some arbitrary order and we deliver to
each node the message buffer that it had at the beginning of the round. By consistency of P, it is sufficient
to observe whether f is produced at some node during R. Next, we show that polynomial space suffices for
simulating R and that actually only a finite prefix needs to be examined.

For the space bound, we first observe that we can incrementally modify a single configuration to simulate
R. To bound the space of a single configuration, we note that a configuration of R contains at most

6Note, the issue of infinite looping is not important for Dedalus programs in general, because their output is defined over
infinite runs.

7In this context, a reasonable encoding of H is as follows: we are given a list of node identifiers; and, next follow lists of
local input facts, one list for each node. Such lists can be empty.
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G = n(F +2nF ) facts, where n is the number of nodes and F is the total number of facts that can be made
with the active domain of H. Indeed, in R, for each node, (i) the state contains at most F facts; and, (ii)
the buffer contains at most 2nF facts by design of the rounds, where n indicates the number of senders,
and where the factor 2 corresponds to the buffer of a node that is made active at the very end of a round.
Size G is polynomial: n is linear, and F is polynomial because P is constant.8 Note, the number of possible
configurations in R is 2G.

Lastly, because the configuration at the beginning of a round completely determines the configuration at
the end of a round, we may stop simulating R after 2G rounds: no new configurations will be encountered
afterward.

4.2.2. Lower Bound
We can define a Dedalus program P for which evalP is PSPACE-hard. Concretely, P takes as input the

description of a PSPACE Turing machine and an input tape, and simulates the Turing machine on this input.
Now, letting A be a problem from PSPACE, for any input string w for A, we encode the Turing machine M for
A and w (together) as an input for P, which constitutes the first input for evalP ; the second input for evalP
is an output fact of P representing that M accepts w. The technical details can be found in Appendix B.

5. CRON Conjecture and Non-Causality

We recall the CRON (Causality Required Only for Non-monotonicity) conjecture, which was informally
stated as follows [3]:

CRON Conjecture (Informal). Program semantics require causal message ordering if and only if the
messages participate in non-monotonic derivations.

The CRON conjecture talks about an intuitive notion of “causality” on messages. As mentioned in
the Introduction, causality here stands for the physical constraint that an effect can only happen after its
cause. Our operational semantics respects causality because a message can only be delivered after it was
sent. When the delivery of one message causes another one to be sent, the second one is delivered in a later
transition.

In order to obtain a conjecture that can be formally proved or disproved, we need a formal definition
of “requiring causal message ordering”. To this end, we first recall in Section 5.1 a declarative semantics
for Dedalus in which message sending is causal. Next, in Section 5.2, we modify this declarative semantics
to obtain non-causality (sending messages “into the past”). This is then used in Section 6 to formally
investigate the CRON conjecture.

5.1. Causal Declarative Semantics

We recall a causal declarative semantics for Dedalus [8, 9]. Throughout this subsection, we fix a Dedalus
program P. We give P a declarative semantics based on applying the stable model semantics to a pure
Datalog¬ program pure(P), obtained from P.

5.1.1. Auxiliary Notations and Relations
Before defining pure(P), we introduce some auxiliary notations and relation names.
Let R(k) ∈ sch(P). We use facts of the form R(x, s, a1, . . . , ak) to express that fact R(a1, . . . , ak) is

present at a node x during its local step s, with s ∈ N, after program deducP is executed. We call x the
location specifier and s the timestamp. In order to represent timestamps, we assume N ⊆ dom.

We write sch(P)LT to denote the database schema obtained from sch(P) by incrementing the arity of
every relation by two. The two extra components will contain the location specifier and timestamp.9 For

8Concretely, F = mak, where m is the number of idb-relations; a is the size of the active domain; and, k is the largest
relation arity. Quantities m and k are constant, and a is linear.

9The abbreviation ‘LT’ stands for “location specifier and timestamp”.
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an instance I over sch(P), x ∈ dom and s ∈ N, we write I⇑x,s to denote the facts over sch(P)LT that are
obtained by prepending location specifier x and timestamp s to every fact of I. Also, if L is a sequence of
literals over sch(P), and x, s ∈ var, we write L⇑x,s to denote the sequence of literals over sch(P)LT that is
obtained by adding location specifier x and timestamp s to the literals in L (negative literals stay negative).

We also need auxiliary relation names, that are assumed not to be used in sch(P); these are listed in
Table 1.10 The concrete purpose of these relations will become clear in the following subsections.

New relation names Meaning

all network
time, tsucc, += timestamps
before happens-before relation
candR, chosenR, otherR, for each relation
name R in idb(P)

messages

Table 1: Relation names not in sch(P)

We define the following schema

Dtime = {time(1), tsucc(2), +=(2)}.

The relation ‘+=’ will be written in infix notation in rules. We consider only the following instance over
Dtime:

Itime = {time(s), tsucc(s, s+ 1) | s ∈ N}
∪ {(s += t) | s, t ∈ N : s += t}.

Intuitively, the instance Itime provides timestamps together with a successor and nonequality relation.

5.1.2. Causal Transformation
We now incrementally construct pure(P). We use facts of the form before(x, s, y, t) to express that local

step s of node x causally happens before local step t of node y. We use facts of the form all(x) to say that
x is a node of the network at hand.

To start, we add the following rules to pure(P) to express local causality at the nodes, unrelated to
messages:

before(x, s, x, t) ← all(x), tsucc(s, t). (5.1)

before(x, s, y, t) ← before(x, s, z, u), before(z, u, y, t). (5.2)

Rule (5.1) expresses that on every node, a step causally happens before the next step. Rule (5.2) computes
the transitive closure on relation before.

Next, for each rule in P, we specify what corresponding rule (or rules) should be added to pure(P). In
particular, the aynchronous rules will also have an impact on the happens-before relation.

For technical convenience, we assume that rules of P always contain at least one positive body atom.
This assumption allows us to more elegantly enforce that head variables in rules of pure(P) also occur in
at least one positive body atom.11 Let x, s, t, t′ ∈ var be distinct variables not yet occurring in rules of P.
We write B{v̄}, where v̄ is a tuple of variables, to denote any sequence β of literals over sch(P), such that
the variables in β are precisely those in v̄. Also recall the notations and relation names from Section 5.1.1.

Deductive Rules. For each deductive rule R(ū) ← B{ū, v̄} in P, we add to pure(P) the following rule:

R(x, s, ū) ← B{ū, v̄}⇑x,s. (5.3)

This rule expresses that deductively derived facts at some node x during step s are (immediately) visible
within step s of x. Note, all atoms in this rule are over sch(P)LT.

10In practice, auxiliary relations can be differentiated from those in sch(P) by a namespace mechanism.
11This assumption is not really a restriction, since a nullary positive body atom is already sufficient.
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Inductive Rules. For each inductive rule R(ū)• ← B{ū, v̄} in P, we add to pure(P) the following rule:

R(x, t, ū) ← B{ū, v̄}⇑x,s, tsucc(s, t). (5.4)

This rule expresses that inductively derived facts becomes visible in the next step of the same node.

Asynchronous Rules. We use facts of the form candR(x, s, y, t, ā) to express that node x at its step s
sends a message R(ā) to node y, and that t could be the arrival timestamp of this message at y.12 Within
this context, we use a fact chosenR(x, s, y, t, ā) to say that t is the effective arrival timestamp of this message
at y. Lastly, a fact otherR(x, s, y, t, ā) means that t is not the arrival timestamp of the message. Now, for
each asynchronous rule

R(ū) | y ← B{ū, v̄, y}

in P, letting w̄ be a tuple of new and distinct variables with |w̄| = |ū|, we add to pure(P) the following rules,
for which the intuition is given below:

candR(x, s, y, t, ū) ←B{ū, v̄, y}⇑x,s, all(y), time(t),
¬before(y, t, x, s).

(5.5)

chosenR(x, s, y, t, w̄) ← candR(x, s, y, t, w̄), ¬otherR(x, s, y, t, w̄). (5.6)

otherR(x, s, y, t, w̄) ← candR(x, s, y, t, w̄), chosenR(x, s, y, t
′, w̄), t += t′. (5.7)

R(y, t, w̄) ← chosenR(x, s, y, t, w̄). (5.8)

before(x, s, y, t) ← chosenR(x, s, y, t, w̄). (5.9)

Rule (5.5) represents the messages that are sent. Relation all is assumed to contain all nodes of the network,
and it thus represents the range of valid addressees. Candidate arrival timestamps are restricted by relation
before to enforce causality. Intuitively, this restriction prevents cycles from occurring in relation before;
this aligns with the operational semantics, where the happens-before relation is a strict partial order [9].

Together, rules (5.6) and (5.7) have the effect that exactly one arrival timestamp will be chosen under
the stable model semantics. This technical construction is due to Saccà and Zaniolo [24], who show how to
express dynamic choice under the stable model semantics.

Rule (5.8) represents the actual arrival of an R-message with the chosen arrival timestamp. Rule (5.9)
adds the causal restriction that the local step of the sender happens before the arrival step of the addressee.
Together with the previously introduced rules (5.1) and (5.2), this will make sure that when the addressee
later causally replies to the sender, the reply — as generated by a rule of the form (5.5) — will arrive after
this first send-step of the sender.

Note, if multiple asynchronous rules in P have the same head predicate R, only new candR-rules have to
be added because the rules (5.6)–(5.9) are general for all R-messages. Moreover, if there are asynchronous
rules in P, program pure(P) is not syntactically nor locally stratifiable because relation before negatively
depends on itself through rules of the following forms, in order: (5.5), (5.6) and (5.9) [9].

To illustrate, applying the above transformation to the Dedalus program in Figure 1 gives the pure
Datalog¬ program shown in Figure 2.

5.1.3. Input and Stable Models
Now we are ready to define the declarative semantics of P. Let H be an input for P, over a network

N . Let pure(P) be as previously constructed. We define decl(H) to be the following instance over schema
edb(P)LT ∪ {all(1)} ∪ Dtime:

decl(H) = {R(x, s, ā) | x ∈ N , s ∈ N, R(ā) ∈ H(x)}
∪ {all(x) | x ∈ N} ∪ Itime.

12Here, ‘cand’ abbreviates “candidate”.
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before(x, s, x, t) ← all(x), tsucc(s, t).

before(x, s, y, t) ← before(x, s, z, u), before(z, u, y, t).

T (x, s, u, v) ← R(x, s, u, v).

T (x, s, u, v) ← R(x, s, u, w), T (x, s, w, v).

candT (x, s, y, t, u, v) ← T (x, s, u, v), Node(x, s, y), all(y), time(t),

¬before(y, t, x, s).
chosenT (x, s, y, t, u, v) ← candT (x, s, y, t, u, v), ¬otherT (x, s, y, t, u, v).
otherT (x, s, y, t, u, v) ← candT (x, s, y, t, u, v), chosenT (x, s, y, t′, u, v), t += t′.

T (y, t, u, v) ← chosenT (x, s, y, t, u, v).

before(x, s, y, t) ← chosenT (x, s, y, t, u, v).

T (x, t, u, v) ← T (x, s, u, v), tsucc(s, t).

Figure 2: Pure Datalog¬ program, with causality

Intuitively, we make for each node its input facts available at all timestamps; we provide the set of all nodes;
and, Itime provides the timestamps. Note, decl(H) is infinite because N is infinite.

Recall the stable model semantics for Datalog¬ programs from Section 3.2.3. Let M be a stable model
of pure(P) on decl(H). We say that M is locally finite if M contains for each (y, t) ∈ N × N only finitely
many facts of the form chosenR(x, s, y, t, ā). This expresses that every node y receives only a finite number
of messages on every timestamp t. See also the remarks below.

Now, we call any locally finite stable model M of pure(P) on decl(H) a model of P on input H.
Importantly, we are using stable models of pure(P), not of P.

Remark (Choice of stable models). We have used the stable model semantics for pure(P) because this
semantics appears to be commonly used for Datalog¬. Moreover, it allows a seemingly elegant way to
think about asynchronous communication: the rules of pure(P) just say when a distributed computation
is allowable, and we do not have to think in operational terms like in what order the rules should fire.
Nonetheless, it might be an option for future work to define the declarative semantics with Datalog extensions
for nondeterminism [32].

Remark (Local finiteness). Regarding the local finiteness constraint, we first note that this property emerges
spontaneously in the operational semantics, because only a finite number of transitions come before the local
step of a node, and because each transition can only send a finite number of messages. In the declarative
semantics, however, using the construction of pure(P) as given above, this constraint is not automatically
satisfied for every stable model. In principle, the constraint could be directly enforced with additional rules
of pure(P) [9].13 But in this paper, we just need the assumption that the local finiteness constraint is
satisfied, no matter how it is enforced.

Remark (Well-formedness). We call a model M of P on H well-formed if (i) for each R(x, s, ā) ∈ M |sch(P),
we have x ∈ N and s ∈ N; (ii), letting c ∈ {cand, chosen, other}, for each cR(x, s, y, t, ā) ∈ M we have
x, y ∈ N and s, t ∈ N; and, (iii) for each before(x, s, y, t) ∈ M , we have x, y ∈ N and s, t ∈ N. Using the
definition of stable model, it can be shown that model M is always well-formed.

13Intuitively, these additional rules check for each receiving node, that for each of its timestamps, there are only a finite
number of sending-timestamps over all arriving messages.
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5.1.4. Correspondence with the Operational Semantics
We now recall the connection of the declarative semantics with the operational semantics [8, 9]. Towards

this end, we first capture the computed data during a run as a set of facts that we call the trace.
Let R be a run of P on some input H, over a network N . For each transition i ∈ N, let xi denote the

active node, and let Di denote the output of subprogram deducP during i. Intuitively, Di contains all local
facts over sch(P) that xi has during transition i. For each transition i ∈ N, let locR(i) denote the timestamp
of xi during transition i, as defined in Section 3.5.4. Also recall the notations for the location specifier and
timestamp from Section 5.1.1. Now, the trace of R is the following instance over sch(P)LT:

trace(R) =
⋃

i∈N
D⇑xi, locR(i)

i .

In words: the trace represents all locally computed facts during each transition, additionally carrying the
location specifier and timestamp of the active node. The trace shows in detail what happens in the run.

Now we can present the connection between the operational and causal declarative semantics:

Theorem 5.1 ([8, 9]). Let P be a Dedalus program. For each input H,

(i) for every fair run R of P there is a model M of P such that trace(R) = M |sch(P), and
(ii) for every model M of P there is a fair run R of P such that trace(R) = M |sch(P).

5.2. Non-Causal Declarative Semantics

In Section 5.1 we have seen that the operational semantics of Dedalus is equivalent to a declarative
semantics based on stable models. Concretely, we have given a transformation to convert a Dedalus program
P to a pure Datalog¬ program pure(P) that contains extra rules to enforce causality on message sending in
every stable model. In this section, we remove these causality rules and explain how stable models can now
represent non-causal message sending.

5.2.1. Non-Causal Transformation
Let P be a Dedalus program. To model non-causality, we describe the SZ-transformation to transform

P into pureSZ(P), which is obtained in a manner very much like pure(P), the only crucial difference being
that the use of relation before is completely removed.14 This is detailed below.

We again assume that each rule of P has at least one positive body atom. The deductive and inductive
rules of P are transformed just as in pure(P). For each asynchronous rule R(ū) | y ← B{ū, v̄, y} in P, letting
x, s and t be new variables, the old rule transformation (5.5) is modified to become:

candR(x, s, y, t, ū) ← B{ū, v̄, y}⇑x,s, all(y), time(t). (5.10)

Note, we have simply omitted relation before. Also, we retain rule transformations (5.6), (5.7), and (5.8).
We omit rule transformations (5.1), (5.2), and (5.9).

To illustrate, applying the SZ-transformation to the Dedalus program in Figure 1 gives the pure Datalog¬

program obtained from Figure 2 by removing relation before: we omit literal ¬before(y, t, x, s) from the
rule for candT , and we omit the rules with head predicate before.

5.2.2. Input and Stable Models
The semantics for pureSZ(P) is the same as for pure(P), but we repeat this for clarity. Let H be an

input for P, over a network N . We give pureSZ(P) the input decl(H), as defined in Section 5.1.3.
Recall the local finiteness constraint from Section 5.1.3. Now, we call any locally finite stable model M

of pureSZ(P) on decl(H) an SZ-model of P on input H. Program pureSZ(P) does not enforce causality on
the messages in M because the arrival timestamps can be chosen arbitrarily, even into the past.

14The non-causal semantics for asynchronous rules is thus completely specified by the technical construct due to Saccà and
Zaniolo [24]. This explains the subscript “SZ”.
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But causality could be respected in some models. In fact, P has at least one causal SZ-model on every
input. This is because P has at least one run on every input (possibly with only heartbeats), and because
each run can be naturally encoded into an SZ-model: we take the trace of the run united with message
sending and arrival events represented as candR-, chosenR- and otherR-facts.

Remark (Local finiteness). Note, we have again assumed the local finiteness constraint. This property plays
a crucial role in the proof technique of our main result (see Section 6). Essentially, when a stable model of
pureSZ(P) satisfies the constraint, the model has no “sinks” where an infinite number of arriving messages
are collected without contributing to computations on other local timestamps. From this viewpoint, the
constraint represents a notion of “progress” by the overall computation expressed by the stable model. If
viewed from the crash recovery scenario of the Introduction, the constraint expresses that no node can crash
infinitely often on the same timestamp; hence, the node has to process only a finite message log during each
recovery.

Remark (Well-formedness). Again, it can be shown that all SZ-models are well-formed in the sense of
Section 5.1.3.

5.2.3. Output and Tolerating Non-Causality
Let M be an SZ-model of P on an input H, over a network N . The output of M , denoted output(M),

is defined with ultimate facts like in the operational semantics (see Section 3.6):

output(M) =
⋃

R(k)∈out(P)

{R(ā) | ∃x ∈ N , ∃s ∈ N, ∀t ∈ N : t ≥ s ⇒ R(x, t, ā) ∈ M}.

Now, we say that an already consistent Dedalus program P tolerates non-causality if individually for
every input H, every SZ-model M yields the output outInst(P, H). Intuitively, if a consistent program
tolerates non-causality, then it also computes the same result when messages can be sent into the past.

6. Results

We have recalled the original CRON conjecture in Section 5. We now consider a semantical and syntac-
tical interpretation of this conjecture, and we present the results thereof.

6.1. Semantical Interpretation

In the first interpretation, we relate causality to the monotonicity of the queries computed by Dedalus
programs. Recall from Section 4.1 how Dedalus programs can compute queries.

In this context, we have looked at the following formalization of the CRON conjecture:

CRON Conjecture (Semantical). A Dedalus program computes a monotone query if and only if it
tolerates non-causality.

Both directions of this conjecture can be refuted by counterexamples, as we do in the following two
subsections. So, contrary to the CALM conjecture [3, 33, 13], a formalization of the CRON conjecture that
is situated purely on the semantical level does not seem insightful.15

6.1.1. If Direction
To refute the if-direction of the semantical CRON conjecture, we give a Dedalus program tolerating

non-causality that computes a non-monotone query.
Figure 3 gives a Dedalus program to compute the non-monotone emptiness query on a nullary relation

S, that is, output “true” (encoded by a nullary relation T ) if and only if S is empty (on all nodes). The

15For completeness, we should mention that depending on the formalization, the CALM conjecture either holds [13] or does
not hold [33].
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empty(x) | y ← ¬S( ), Id(x), Node(y).
empty(y)• ← empty(y).

missing( ) ← Node(y), ¬empty(y).
T ( ) ← Id(x), ¬missing( ).

Figure 3: Program for emptiness query

A( ) | x ← S( ), Id(x).

A( )• ← A( ).

B( ) | x ← A( ), ¬sentB( ), Id(x).
sentB( )• ← A( ).

T ( ) ← A( ), B( ).

T ( )• ← T ( ).

Figure 4: Program for non-emptiness query

asynchronous rule lets each node broadcast its own identifier if its relation S is empty. The inductive rule
lets a node remember all received node identifiers. The deductive rules let a node output T ( ) starting at
the moment that it has all identifiers (including its own).16 The program is consistent.

Now we consider the tolerance to non-causality. Intuitively, in an SZ-model for this program, even if
messages are sent into the past, the inductive rule persists any received identifier towards the future. If S is
empty on all nodes, each node x still has a timestamp s after which it has all node identifiers. Then, for all
timestamps t ≥ s, the deductive rules at x will no longer derive missing( ) and instead derive T ( ). Thus
every SZ-model yields the output T ( ) if and only if all nodes have an empty relation S. So, the program
tolerates non-causality. A formal proof can be found in Appendix C.1.

6.1.2. Only-If Direction
To refute the only-if direction of the semantical CRON conjecture, we give a Dedalus program computing

a monotone query that does not tolerate non-causality.
Figure 4 gives a (contrived) Dedalus program to compute the monotone non-emptiness query on a nullary

relation S, that is, output “true” if and only if S is not empty (on at least one node). In the program, a
node with nonempty relation S sends A( ) to itself. On receipt of A( ), the node stores A( ) and sends B( ) to
itself if it has not previously done so. Thus, if a node sends A( ) then it sends B( ) precisely once. When the
B( ) is later received, it is paired with the stored A( ), producing the fact T ( ) that is stored by an inductive
rule. The program is consistent.

However, the program does not tolerate non-causality, which we now explain. Let H be the input over
singleton network {z} with H(z) = {S( )}. On input H, we can exhibit an SZ-model M in which A( )-facts
arrive at node z starting at timestamp 1, which implies that sentB( ) will exist starting at timestamp 2.
This implies that B( ) is sent precisely once in M , namely, at timestamp 1. Now, the trick is to violate the
causal dependency between relations A and B, by letting B( ) arrive in the past, at timestamp 0 of z, which
is before any A( ) is received. Then the arriving B( ) cannot pair with any stored or arriving A( ). Since
B( ) itself is not stored, we have thus erased the single chance of producing T ( ). Hence output(M) = ∅, and
the program does not tolerate non-causality. Formal details can be found in Appendix C.2.

16The atom Id(x) in the rule for relation T is to satisfy the assumption that every rule has at least one positive body atom
(cf. Section 5.2.1).
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A( ) | x ← Id(x).

B( ) | x ← Id(x).

T ( ) ← A( ), B( ).

T ( )• ← T ( ).

Figure 5: Positive but not consistent

6.2. Syntactical Interpretation

Now we look at the CRON conjecture from a more syntactical point of view. A Dedalus program without
negation is called positive. Our main result is that the following does hold:

Theorem 6.1. Every positive consistent Dedalus program tolerates non-causality.

The converse direction of Theorem 6.1, to the effect that every consistent Dedalus program tolerating
non-causality is equivalent to a positive program, cannot hold by our counterexample for the if-direction of
the semantical CRON conjecture (see Section 6.1.1).

It is worth noting that Theorem 6.1 is not a purely syntactical interpretation of the CRON conjecture.
First, a positive program is not automatically consistent; Figure 5 gives a simple example.17 This example
is inspired by the work of Marczak et al. [29]: in any fair run, a node will send A( ) and B( ) to itself during
every transition, but the output T ( ) is only created when we deliver A( ) and B( ) simultaneously; some
fair runs never do this. Second, consistency of Dedalus programs is undecidable in general, as remarked in
Section 3.6.

The following subsections prove Theorem 6.1. In particular, we have to show for each positive consistent
Dedalus program P, and each input H, that every SZ-model of P on H produces (i) at least outInst(P, H)
and (ii) at most outInst(P, H), respectively shown in Sections 6.2.1 and 6.2.2.

6.2.1. At Least All Operational Outputs
Let P be a positive and consistent Dedalus program. Let H be an input for P, over a network N , and

let M be an SZ-model of P on H. We show outInst(P, H) ⊆ output(M). We construct a fair run R of P
on H such that output(R) ⊆ output(M). Then, since output(R) = outInst(P, H) by consistency of P, we
have outInst(P, H) ⊆ output(M), as desired.

Notations. We need some auxiliary notations. For each (x, s) ∈ N × N, let allM (x, s) be the set of facts
R(ā) for which R(x, s, ā) ∈ M |sch(P), i.e., the set of all facts over sch(P) in M at node x on timestamp s.

For each (x, s) ∈ N ×N, let rcvM (x, s) be the set of facts R(ā) for which there is some y and t such that
chosenR(y, t, x, s, ā) ∈ M , i.e., the set of all messages arriving at (x, s) in M . Note, rcvM (x, s) ⊆ allM (x, s)
by rules of the form (5.8) in pureSZ(P).

For each x ∈ N , let sndM (x) be the set of pairs (y,R(ā)) for which there is some s and t such that
chosenR(x, s, y, t, ā) ∈ M , i.e., the set of all messages (with addressee) that x ever sends in M .

We define sndFinM (x) ⊆ sndM (x) to be the subset of pairs (y,R(ā)) for which there are only a finite
number of times s such that chosenR(x, s, y, t, ā) ∈ M for some t ∈ N, i.e., there are only a finite number of
times s on which x sends R(ā) to y in M . Now, for each x ∈ N , we define startM (x) = 0 if sndFinM (x) = ∅
and otherwise we define startM (x) to be 1 plus the largest timestamp on which x sends a pair of sndFinM (x)
in M . Intuitively, startM (x) is the first local timestamp of x at which x no longer sends messages in
sndFinM (x), so the messages that x sends starting from startM (x) are sent infinitely often.

17Relation Id is from Section 4.1.

18



Main idea. We construct R as follows. Assuming some arbitrary order on N , consider the following
(co-lexical) total order ≤ on N × N:

(x, s) ≤ (y, t) ⇐⇒ s < t or (s = t and x ≤ y).

For each (x, s) ∈ N × N, let ord(x, s) denote the ordinal of (x, s) in this total order. For each transition
index i of R, we define the active node, denoted xi, to be the unique node x ∈ N that satisfies ord(x, s) = i
for some s ∈ N.

Although the actual message deliveries of R are defined later, we can already give the approach. We

define for each transition index i ∈ N the arrival function α(i)
R that contains for each transition j with j ≤ i

mappings of the form (j, y, R(ā)) 1→ k, where R(ā) is a message with addressee y sent in transition j, to
say that R(ā) is delivered to y in transition k (with j < k), which implies xk = y.18 In particular, letting

α(−1)
R = ∅, we define α(i)

R as an extension of α(i−1)
R to choose arrival transitions for the newly sent messages

during transition i. The message deliveries of the entire run R are thus defined by
⋃

i∈N α(i)
R . As a small

remark, we denote mappings (j, y, R(ā)) 1→ k simply as (j, y, R(ā), k).
We now give properties that we want the message deliveries to satisfy. For each i ∈ N, we write Di, xi

and si to denote respectively the deductive fixpoint, active node and timestamp (of the active node) during
transition i. For each i ∈ N, we want the following properties to be satisfied, for which the intuition is
provided below:

Di ⊆ allM (xi, si) (6.1)

∀(j, y,f , k) ∈ α(i)
R : f ∈ rcvM (xk, sk) (6.2)

∀(j, y,f , k) ∈ α(i)
R : sk ≥ startM (y) (6.3)

Property (6.1) ensures all ultimate facts of R are ultimate facts of M , resulting in output(R) ⊆ output(M),
as desired. Property (6.2) ensures we do not have more opportunities in R for messages to arrive “together”
when compared to M , so that induction property (6.1) can be satisfied. To explain property (6.3), note
that some messages in M are sent only a finite number of times, even into the past. Such messages are the
result of a coincidence, like the coincident arrival of messages, and because such messages can not be sent
into the past in R, we would have to deliver them somewhere in the future, risking a violation of induction
property (6.2). Now, induction property (6.3) will ensure that we only send messages in R that are sent an
infinite number of times in M , and this can be used to satisfy induction property (6.2).

We now define the message deliveries of R, i.e., the arrival functions, by induction on the transitions.

Inductive construction. For uniformity, we start with i = −1, and define α(−1)
R = ∅ and D−1 = ∅. So,

properties (6.1) through (6.3) are trivially satisfied for i = −1.
For the induction hypothesis, we assume R has been partially constructed up to and including transition

i − 1, where i ≥ 0, and we assume the properties hold for all transitions j = −1, 0, . . ., i − 1. For the

inductive step, we show that property (6.1) is satisfied for i, and we show how to extend α(i−1)
R to α(i)

R
such that properties (6.2) and (6.3) are satisfied. First, the set mi of (tagged) messages to be delivered in

transition i consists of all pairs (j,f) for which α(i−1)
R contains (j, xi,f , i), i.e., all messages scheduled by

α(i−1)
R to be delivered in transition i.19

Property (6.1) We show Di ⊆ allM (xi, si). Let ρi = (st i, bf i) denote the source-configuration of
transition i. By definition, Di = deducP(st i(xi) ∪ untag(mi)). Now, by Claim 6.2 (below), it suffices to
show st i(xi) ∪ untag(mi) ⊆ allM (xi, si).

First, we know untag(mi) ⊆ rcvM (xi, si) ⊆ allM (xi, si) by applying the induction hypothesis for property

(6.2) to α(i−1)
R .

18To satisfy fairness (see Section 3.5.3), all messages sent in transitions j ≤ i will get a mapping in α
(i)
R .

19Note, the design of α
(i−1)
R implies for each (j, y,f , i) ∈ α

(i−1)
R that y = xi.
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We are left to show st i(xi) ⊆ allM (xi, si). We have st i(xi)|edb(P) ⊆ allM (xi, si) because st i(xi)|edb(P) =
H(xi) by the operational semantics and H(xi)⇑xi,si ⊆ decl(H) ⊆ M by definition of M . Next, if i is the
first transition of xi, we have st i(xi)|idb(P) = ∅ ⊆ allM (xi, si). Otherwise, we consider the last transition
j of R before i in which xi was also the active node. By the operational semantics, st i(xi)|idb(P) =
inducP(Dj). Because Dj ⊆ allM (xi, sj) by the induction hypothesis for property (6.1), Claim 6.3 (below)
gives inducP(Dj) ⊆ allM (xi, sj + 1) = allM (xi, si), as desired.

Claim 6.2. Let (x, s) ∈ N × N and let I be an instance over sch(P). If I ⊆ allM (x, s) then deducP(I) ⊆
allM (x, s). (Shown in Appendix D.)

Claim 6.3. Let (x, s) ∈ N ×N and let D be an instance over sch(P). If D ⊆ allM (x, s) then inducP(D) ⊆
allM (x, s+ 1). (Shown in Appendix D.)

Properties (6.2) and (6.3) We extend α(i−1)
R to α(i)

R so that properties (6.2) and (6.3) are satisfied.
Suppose node xi during transition i sends a message R(ā) to an addressee y ∈ N . We have to choose a
transition k with i < k in which to deliver R(ā) to y. We start by showing there are an infinite number of
timestamps s on which xi sends R(ā) to y in M . We differentiate between two cases.

First, suppose si < startM (xi). The induction hypothesis for property (6.3) implies xi has only done
heartbeats up to and including transition i, i.e., no messages have been delivered to xi yet. Then by
Claim 6.4 (below), node xi sends R(ā) to y during an infinite number of timestamps in M .

Now suppose si ≥ startM (xi). We know Di ⊆ allM (xi, si) (shown above), R(y, ā) ∈ asyncP(Di), and
y ∈ N ; hence, by Claim 6.5 (below), there is a t ∈ N for which chosenR(xi, si, y, t, ā) ∈ M . So, in M ,
node xi sends R(ā) to y during a timestamp that is at least startM (xi), which, by definition of startM (xi),
implies that node xi sends R(ā) to y during an infinite number of timestamps in M .

Now, because xi sends R(ā) to y during an infinite number of timestamps in M , and y receives only
a finite number of messages on each timestamp by the local finiteness assumption (Section 5.2.2), there
must be an infinite number of timestamps on which y receives R(ā) from xi in M . Among these arrival
timestamps, we can surely choose some timestamp t ∈ N for which ord(y, t) > i and t ≥ startM (y). Next,

we extend α(i−1)
R by adding the mapping (i, y, R(ā), k) where k = ord(y, t). Note, sk = t by design of the

above total order on N × N. So, by choice of t, this added mapping satisfies properties (6.2) and (6.3).

Claim 6.4. Let S be the set of transition ordinals of R up to and including i in which xi is the active
node. Suppose all transitions in S are heartbeat transitions. Let R(ā) be a message that xi sends during
transition i to a node y ∈ N . In M , the number of timestamps on which xi sends R(ā) to y is infinite.
(Shown in Appendix D.)

Claim 6.5. Let (x, s) ∈ N × N and let D be an instance over sch(P). Suppose D ⊆ allM (x, s). For each
R(y, ā) ∈ asyncP(D) with y ∈ N there exists a value t such that chosenR(x, s, y, t, ā) ∈ M . (Shown in
Appendix D.)

6.2.2. No Wrong Outputs
Let P be a positive and consistent Dedalus program. Let H be an input for P, and let M be an SZ-

model of P on H. We show output(M) ⊆ outInst(P, H). We construct a fair run R of P on H such
that output(M) ⊆ output(R). Then, using output(R) = outInst(P, H) by consistency of P, we obtain
output(M) ⊆ outInst(P, H), as desired.

Run R proceeds in rounds: in each round we let each node become active precisely once to receive its
entire buffer at the beginning of the round. Messages sent in each round are accumulated and are delivered
only during the next round. The number of rounds is infinite. Because P is positive, the programs deducP ,
inducP , and asyncP are monotone. Then, since always the entire buffer is delivered to each node, the set of
deductively derived facts monotonously grows over the steps of a node.

For each transition i of R, let Di denote the output of deducP during i. For each fact R(x, s, ā) ∈
M |sch(P), we show there is a transition i of x in R with R(ā) ∈ Di. This gives output(M) ⊆ output(R)
because for each ultimate fact R(ā) in M at some node x, surely R(x, s, ā) ∈ M for some s ∈ N, and so if
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R(ā) ∈ Di for some transition i of x then R(ā) ∈ Dj for all subsequent transitions j of x by the monotonous
nature of R.

Abbreviate GM (P) = groundM (P ′, I) where P ′ = pureSZ(P) and I = decl(H). Because M = GM (P)(I)
by definition of stable model, we can consider the infinite sequence M0, M1, M2, . . ., such that M =

⋃
l Ml;

M0 = I; and, for each l ≥ 1 the instance Ml is obtained from Ml−1 by applying the immediate consequence
operator of GM (P). This implies Ml−1 ⊆ Ml for each l ≥ 1. By induction on l, we show that for each
R(x, s, ā) ∈ Ml|sch(P) there is a transition i of x in R with R(ā) ∈ Di.

For the base case, R(x, s, ā) ∈ M0|sch(P) implies R(ā) ∈ H(x). Then R(ā) ∈ Di for any transition i of x
because each state of x contains H(x) by the operational semantics. For the induction hypothesis, assume
the property holds for Ml−1 where l ≥ 1. Now, let R(x, s, ā) ∈ Ml|sch(P) \ Ml−1. Let ψ ∈ GM (P) be a
ground rule responsible for deriving this fact, i.e., posψ ⊆ Ml−1 and headψ = R(x, s, ā). Rule ψ must have
one of the following three forms: the deductive form (5.3), the inductive form (5.4), or the delivery form
(5.8). We handle each case in turn.

Deductive. Let ϕ ∈ pureSZ(P) be the rule corresponding to ψ, so ϕ is of the form (5.3). Let V be the
valuation for ϕ such that ψ results from applying V to ϕ. In turn, let ϕ′ ∈ P be the original deductive
rule on which ϕ is based. Note, ϕ′ ∈ deducP . By the syntactical correspondence between ϕ and ϕ′, we
can apply V to ϕ′. Now, it suffices to show V (posϕ′) ⊆ Di for some transition i of x in R, resulting in
V (headϕ′) = R(ā) ∈ Di by the fixpoint semantics of deducP , as desired.

Let S(b̄) ∈ V (posϕ′). By the syntactical correspondence between ϕ′ and ϕ, we have S(x, s, b̄) ∈
V (posϕ) = posψ. Using posψ ⊆ Ml−1 gives S(x, s, b̄) ∈ Ml−1|sch(P). Then the induction hypothesis implies
there is a transition j of x in R satisfying S(b̄) ∈ Dj . And because deductive facts monotonously grow at x
in R, there is a transition i of x such that S(b̄) ∈ Di for each S(b̄) ∈ V (posϕ′).

Inductive. Let ϕ and V be like in the deductive case, but now ϕ is of the form (5.4). Let ϕ′ ∈ inducP be
the rule corresponding to ϕ. Again, we can apply V to ϕ′, and it suffices to show V (posϕ′) ⊆ Di for some
transition i of x in R, causing V (headϕ′) = R(ā) to be stored in the next state of x. Then, with j being the
first transition of x after i, we obtain R(ā) ∈ Dj by the operational semantics, as desired. The existence of
i is established similarly to the deductive case.

Delivery. Rule ψ is of the form (5.8), having a body fact chosenR(y, t, x, s, ā) ∈ Ml−1 with (y, t) ∈ N ×N.
We show there is a transition i of y in R, in which y sends R(ā) to x. Then, in the next round of R following
i, we deliver R(ā) to x in some transition j. Then R(ā) ∈ Dj by the operational semantics, as desired.

Now, because chosenR(y, t, x, s, ā) ∈ Ml−1, there is some k ∈ N with 0 < k < l − 1 such that
candR(y, t, x, s, ā) ∈ Mk \ Mk−1. Let ψ′ ∈ GM (P) be a rule responsible for deriving the candR-fact.
Let ϕ′ ∈ pureSZ(P) be the rule corresponding to ψ′, and let V ′ be the valuation for ϕ′ giving rise to ψ′. In
turn, let ϕ′′ ∈ asyncP be the rule corresponding to ϕ′. By the syntactical correspondence between ϕ′ and
ϕ′′, we can apply V ′ to ϕ′′. Note, V ′(headϕ′′) = R(x, ā). To make y send R(ā) to x in some transition i, we
need V ′(posϕ′′) ⊆ Di. The existence of transition i is again established like in the deductive case.

7. Discussion

In this paper, we have presented an initial investigation of the CRON conjecture by Hellerstein. For the
formalization, we have used the language Dedalus, a language that has inspired multiple other languages in
the field of declarative networking. We have confirmed that positive Dedalus programs tolerate non-causality
if they already behave correctly in the operational semantics, where non-causality means that messages can
be sent into the past. Also, to better understand its fundamental properties, we have argued that Dedalus
captures the While queries and has PSPACE data complexity.

In future work, the spectrum of causality needs to be better understood. Indeed, besides positive
programs, perhaps richer classes of programs can tolerate some relaxations of causality as well. Also, it
might be useful to link the CRON conjecture more concretely to crash recovery mechanisms, or other
application scenarios.
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As argued in the related work, the inductive rules of Dedalus have a strong connection to temporal
deductive databases and temporal logic programming [14, 15, 16, 21]. It appears interesting to further
investigate how the asynchronous rules of Dedalus relate to this prior work, because their semantics is
challenging to represent and reason about. Prior work, like the language Datalog LITE [34], might also
reveal the existence of Dedalus fragments with PTIME data complexity and characterize the expressive power
of such fragments.

In practice, there might be a need for finite representations of stable models for Dedalus programs, for
both the causal declarative semantics and the non-causal declarative semantics. Such representations could
be used for simulations and testing purposes. The work of Baudinet et al. [35] provides strong indications
that only periodic phenomena can be finitely represented (in a logic programming framework). In our
semantics for Dedalus, however, asynchronous rules do not observe this restriction, since messages can be
arbitrarily delayed. Hence, it remains a challenge to find finite representations for such cases. A possible
idea could be to focus on just the ultimate facts. Alternatively, asynchronous rules could be given a more
restricted semantics, where the delay on messages is limited, and such that this semantics still corresponds
with practical scenarios.

Lastly, it might also be useful to investigate alternative semantics for Dedalus, for example by adopting
some Datalog extensions proposed by Abiteboul and Vianu [32], and see if the results of this paper can be
extended to such frameworks.
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Appendix

Appendix A. Consistency Undecidability

Using similar arguments as in our previous work [13], we show that consistency of Dedalus programs is
undecidable. Concretely, we reduce finite satisfiability of FO to inconsistency of Dedalus programs.

Let ϕ be an FO sentence, over a database schema D. Let S, A, B, and T be relation names not yet used
in D. First, there exists a stratified Datalog¬ program P over D that simulates ϕ: program P has a nullary
idb-relation S such that for each instance I over D, relation S is made nonempty by P if and only if ϕ is
satisfied on I.

Next, we extend P to a Dedalus program that is inconsistent if and only if ϕ is finitely satisfiable. The
idea is that each node of the network is given a local input fragment over D, and by running program P
as the deductive rules, the nodes can discover whether ϕ is satisfied on their input fragment. If so, a node
sends messages A( ) and B( ) to itself. The output fact T ( ) is produced at a node when A( ) and B( ) are
delivered simultaneously. Some fair runs never do this, and the program is thus inconsistent. This behavior
is achieved with the additional rules shown in Figure A.6, where we assume the existence of relation Id
from Section 4.1. Note, if ϕ is not finitely satisfiable, all runs produce the empty output, and the program
is consistent.

Appendix B. Complexity Lower Bound

We define a specific Dedalus program P for which evalP is PSPACE-hard. Concretely, P takes as input
the description of a (deterministic) PSPACE Turing machine and an input tape, and simulates the Turing
machine on this input. We first describe P and then we argue PSPACE-hardness for evalP .
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A( ) | x ← S( ), Id(x).

B( ) | x ← S( ), Id(x).

T ( ) ← A( ), B( ).

T ( )• ← T ( ).

Figure A.6: Rules for Inconsistency

Appendix B.1. Turing Machine Simulator

Let l, r, s ∈ dom be three distinct symbols representing the head movements of a Turing machine, called
respectively “left”, “right” and “stay”. The edb relations of P are as follows:

• delta(5) containing tuples (q1, s1, q2, s2, h) expressing that if the Turing machine reads symbol s1 in
state q1 then it goes to state q2, writes symbol s2, and moves the head according to h where h ∈ {l, r, s};

• relations left(1), right(1), and stay(1) to contain respectively l, r, and s;

• relation initState(1) to represent the initial state;

• relation initTape(2) to represent the initial tape; and,

• relations first(1) and succ(2) to represent tape addresses, where first contains the smallest address.

The output relation of P is the relation state(1), that represents the state of the simulated Turing machine.
The rules of P are given below, where we also use some auxiliary idb-relations: relation tape(2) represents
the current tape; relation head(1) represent the current location of the head; relation go(0) helps to separate
the first step of P from subsequent ones; and, relation fires(5) contains the transition from delta that is
currently applicable.

go( )• ← .

state(q)• ←¬ go( ), initState(q).

tape(a, s)• ←¬ go( ), initTape(a, s).

head(a)• ←¬ go( ), first(a).

fires(q1, s1, q2, s2, h) ← go( ), delta(q1, s1, q2, s2, h), state(q1),

head(a), tape(a, s1).

state(q2)• ← go( ), fires(q1, s1, q2, s2, h).

tape(a, s2)• ← go( ), fires(q1, s1, q2, s2, h), head(a).

tape(a, s)• ← go( ), tape(a, s), ¬head(a).

head(a)• ← go( ), fires(q1, s1, q2, s2, h), stay(h), head(a).

head(b)• ← go( ), fires(q1, s1, q2, s2, h), left(h), head(a),

succ(b, a).

head(b)• ← go( ), fires(q1, s1, q2, s2, h), right(h), head(a),

succ(a, b).

Note, P is consistent on each input because there are no asynchronous rules.

Appendix B.2. Hardness
Let A be a problem from PSPACE. We reduce A to evalP with P as above.
Let M be a PSPACE Turing machine M for A. Let k ∈ N be a number such that on each input string w

for A, machine M consumes at most nk space, where n = |w|. We regard M and k as constant during the
reduction. We can naturally encode M over edb relations delta, left, right, and stay. We also create
the fact initState(q) where q is the start state of M .
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Now, let w be an input for A. Let n = |w|. We encode the sequence of natural numbers 1, . . . , nk in edb
relations first and succ; these are all tape cell addresses that M can visit during its computation on w.
For w itself, for each i = 1, . . . , n, we create the fact initTape(i, w[i]); and, for each i = n + 1, . . . , nk, we
create the fact initTape(i, b), where b is the blank symbol of M .

Let us refer to the set of all facts over edb(P) from above as encP(w). Now, to reduce input w for A, we
give evalP (i) the facts encP(w) placed on a single-node network, and (ii) the output fact state(qa), where
qa is the accept state of M . We assume here that, when qa is reached, machine M remains in state qa and
no longer moves the head. So, M accepts w if and only if state(qa) is an ultimate fact of P on encP(w)
(on the single-node network). Note, the reduction can be done in PTIME.20

Appendix C. Semantical CRON

Before presenting the proof of the counterexamples, we consider the following lemma:

Lemma Appendix C.1. Let P be a Dedalus program. Let H be an input for P, and let M be an SZ-model
of P on H. For each fact candR(x, s, y, t, ā) ∈ M there is a value t′ ∈ N such that chosenR(x, s, y, t′, ā) ∈ M .

Proof. Abbreviate GM (P) = groundM (P ′, I) where P ′ = pureSZ(P) and I = decl(H). Towards a proof by
contradiction, suppose there is no such timestamp t′. Consider the following ground rule of the form (5.6),
after removing the negative body literal:

chosenR(x, s, y, t, ā) ← candR(x, s, y, t, ā).

This rule can not be in GM (P) because otherwise candR(x, s, y, t, ā) ∈ M implies chosenR(x, s, y, t, ā) ∈ M ,
which is assumed to be false. The absence of the above ground rule fromGM (P) implies otherR(x, s, y, t, ā) ∈
M . This otherR-fact must be derived by a ground rule of the form (5.7):

otherR(x, s, y, t, ā) ← candR(x, s, y, t, ā), chosenR(x, s, y, t
′, ā), t += t′.

So, chosenR(x, s, y, t′, ā) ∈ M after all, which is the desired contradiction.

Appendix C.1. If Direction

Let Q and P be respectively the emptiness query and the Dedalus program from Figure 3. We show
that P tolerates non-causality.

Appendix C.1.1. Empty Input
Let H be an input for P over a network N that assigns each x ∈ N an empty relation S. So,

outInst(P, H) = {T ( )}. Let M be an SZ-model of P on H. We have to show that output(M) = {T ( )}.
Because T is the only output relation, it suffices to show T ( ) ∈ output(M). Abbreviate GM (P) =
groundM (P ′, I) where P ′ = pureSZ(P) and I = decl(H).

Let y ∈ N be arbitrary. We start by showing there is a timestamp s of y such that for all timestamps
t ≥ s and all x ∈ N we have empty(y, t, x) ∈ M . Let x ∈ N . We show that x at every local timestamp
u sends empty(x) to y. We have S(x, u) /∈ decl(H) by assumption on H. Hence, S(x, u) /∈ M . Therefore,
GM (P) contains a ground rule of the following form, obtained by applying transformation (5.10) to the
asynchronous rule of P, where v ∈ N is arbitrary:

candempty(x, u, y, v, x) ← Id(x, u, x), Node(x, u, y), all(y), time(v).

The body facts of this rule are inM by definition of decl(H). Hence, candempty(x, u, y, v, x) ∈ M becauseM is
stable. Then, by Lemma Appendix C.1, there is a timestamp w ∈ N such that chosenempty(x, u, y, w, x) ∈ M .
Next, a ground rule of the form (5.8) derives empty(y, w, x) ∈ M , and inductive ground rules for relation

20In particular, each of the numbers 1, . . . , nk has a logarithmic representation size in n.
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empty will derive empty(y, w′, x) ∈ M for all w′ ≥ w. Because x is arbitrary in the above reasoning, there
is a timestamp s on which empty(y, s, x) ∈ M for each x ∈ N .

Now we can show T ( ) ∈ output(M). Let y and s be from above. It suffices to show for each t ≥ s that
missing(y, t) /∈ M , because then GM (P) contains the following ground rule, based on the last deductive
rule of P:

T (y, t) ← Id(y, t, y).

We show GM (P) contains no rule with head missing(y, t). Towards a contradiction, if GM (P) would contain
a ground rule with head-fact missing(y, t), then it has the following form, where x ∈ N is arbitrary:

missing(y, t) ← Node(y, t, x).

The presence of this rule would imply empty(y, t, x) /∈ M , which is impossible by selection of s.

Appendix C.1.2. Nonempty Input
Let H be an input for P over a network N that assigns S( ) to some z ∈ N . So, outInst(P, H) = ∅. Let

M be an SZ-model of P on H. We have to show output(M) = ∅. Abbreviate GM (P) = groundM (P ′, I)
where P ′ = pureSZ(P) and I = decl(H).

Towards a proof by contradiction, suppose output(M) += ∅. This means T ( ) ∈ output(M) because T is
the only output relation. We will show z has an empty relation S, which is the desired contradiction. First,
T ( ) ∈ output(M) implies there is a node x ∈ N and a local timestamp s of x, such that T (x, t) ∈ M for
all t ≥ s. We start by showing empty(x, s, z) ∈ M . The following ground rule must be in GM (P) to derive
T (x, s) ∈ M :

T (x, s) ← Id(x, s, x).

The existence of this rule implies missing(x, s) /∈ M . Now, if empty(x, s, z) /∈ M then the following ground
rule would be in GM (P):

missing(x, s) ← Node(x, s, z).

Then, since Node(x, s, z) ∈ decl(H), we would have missing(x, s) ∈ M , which is false. So, empty(x, s, z) ∈
M .

Now we show relation S is empty at z. The fact empty(x, s, z) ∈ M can only be explained by ground
rules in GP(P) of the following two forms, where the first one is obtained by applying transformation (5.8)
to the asynchronous rule of P and the second one is based on the inductive rule of P:

empty(x, s, z) ← chosenempty(y, t, x, s, z).

empty(x, s, z) ← empty(x, r, z), tsucc(r, s).

Intuitively, the second form is like a chain we can follow backwards in time, locally at node x. So we must
eventually use the first form: there is a value u ∈ N such that empty(x, u, z) ∈ M and chosenempty(y, t, x, u, z) ∈
M for some y ∈ N and t ∈ N. We have y = z because the sender sends its own identifier. Now, the fact
chosenempty(z, t, x, u, z) was derived by a ground rule in GM (P) of the form (5.6):

chosenempty(z, t, x, u, z) ← candempty(z, t, x, u, z).

Hence, candempty(z, t, x, u, z) ∈ M . This candempty-fact is derived by a ground rule in GM (P) obtained by
applying transformation (5.10) to the asynchronous rule of P:

candempty(z, t, x, u, z) ← Id(z, t, z), Node(z, t, x), all(x), time(u).

The existence of this rule in GM (P) implies S(z, t) /∈ M and thus S(z, t) /∈ decl(H), which by definition of
decl(H) implies that S is empty at z.
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Appendix C.2. Only-if Direction

Let P be the program in Figure 4. Let H be the input over singleton network N = {z} that assigns S( )
to z. So, outInst(P, H) = {T ( )}. We define an SZ-model M of P on H such that output(M) = ∅, showing
P does not tolerate non-causality.

In any fair run of P on H, message B( ) always arrives after message A( ) at z. In M we will not respect
this causality: we let node z send B( ) into the past, before any A( ) has arrived, thus erasing the chance of
having relations A and B nonempty simultaneously. Formally, we define

M = decl(H) ∪M snd
A ∪M rcv

A ∪M snd
B ∪M rcv

B ,

where

M snd
A = {candA(z, u, z, v) | u, v ∈ N}

∪ {chosenA(z, u, z, u+ 1) | u ∈ N}
∪ {otherA(z, u, z, v) | u ∈ N, v ∈ N, v += u+ 1};

M rcv
A = {A(z, u) | u ∈ N, u ≥ 1};

M snd
B = {candB(z, 1, z, u) | u ∈ N}

∪ {chosenB(z, 1, z, 0)}
∪ {otherB(z, 1, z, u) | u ∈ N, u += 0}
∪ {sentB(z, u) | u ∈ N, u ≥ 2};

M rcv
B = {B(z, 0)}.

Intuitively, set M snd
A expresses that A( ) is sent on every timestamp of z and this message arrives already

on the next timestamp. Set M rcv
A expresses that A( ) is available starting at timestamp 1. Note, the effect of

the inductive rule for relation A is made invisible by these tight message deliveries. Set M snd
B expresses that

precisely one B( ) is sent on timestamp 1, which is when the first A( ) is delivered. Set M rcv
B expresses that

the single B( ) arrives on timestamp 0, violating the causal relationship with the message A( ) on timestamp
1.

Note, M is locally finite as required by Section 5.2.2. Also, because M contains no T -facts, we have
output(M) = ∅ as desired.

Next, we show that M is a stable model of pureSZ(P) on decl(H). We only provide a sketch; the technical
details can be filled in with straightforward arguments. Abbreviate P ′ = pureSZ(P) and I = decl(H).
Consider the ground program G = groundM (P ′, I). To show that M is stable, we have to show M = G(I).
This consists of two inclusions M ⊆ G(I) and G(I) ⊆ M , that we handle below.

Appendix C.2.1. First Inclusion
To show M ⊆ G(I), the idea is to argue for each fact of M that there is a ground rule in G to derive it

on input I. For example, consider candA(z, u, z, v) ∈ M . Consider the following ground rule, obtained by
applying transformation (5.10) to the asynchronous rule for relation A:

candA(z, u, z, v) ← S(z, u), Id(z, u, z), all(z), time(v).

This rule is in G because it is positive and uses values from I. Moreover, this rule derives candA(z, u, z, v) ∈
G(I) because its body facts are in decl(H). For the other facts of M , because some rules of pureSZ(P)
contain negative body literals, the existence of a ground rule in G has to be argued by checking that certain
facts are purposely omitted from M . Moreover, in order to derive their head, these ground rules could
require the presence of certain facts of M in G(I); to achieve this, the inclusion of facts of M in G(I) should
be argued in the order that they are given above.
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Appendix C.2.2. Second Inclusion
To show G(I) ⊆ M , we consider the fixpoint computation of G(I). Concretely, there is an infinite

sequence of sets N0, N1, N2, etc, so that G(I) =
⋃
Ni, with N0 = I and Ni for each i ≥ 1 is obtained by

applying the immediate consequence operator of G to Ni−1. This implies Ni−1 ⊆ Ni for each i ≥ 1. We
show by induction on i = 0, 1, . . ., that Ni ⊆ M . For the base case, we immediately have N0 = I ⊆ M
by definition of M . For the inductive step, we show Ni ⊆ M , where i ≥ 1. We illustrate the approach for
one relation. Let candA(x, u, y, v) ∈ Ni \Ni−1. This fact can only be derived by a ground rule in G of the
following form, based on applying transformation (5.10) to the asynchronous rule for relation A:

candA(x, u, y, v) ← S(x, u), Id(x, u, y), all(y), time(v).

By the induction hypothesis, the body facts are in Ni−1 ⊆ M . More specifically, because there are no rules
in pureSZ(P) with head predicate S, Id, all, or time, the body facts are in I. So, x = y = z and u, v ∈ N.
Hence, we have explicitly added candA(x, u, y, v) ∈ M snd

A ⊆ M , as desired.

Appendix D. Syntactical CRON

Proof of Claim 6.2
We proceed by induction on the fixpoint computation of deducP . Formally, deducP(I) =

⋃
j D

j where

D0 = I and for each j ≥ 1, the set Dj is obtained by applying the immediate consequence operator of
deducP to Dj−1. For the base case, we have D0 = I ⊆ allM (x, s) by the given assumption.

For the induction hypothesis, we assume Dj−1 ⊆ allM (x, s) with j ≥ 1. For the inductive step, let
R(ā) ∈ Dj \ Dj−1. We show R(x, s, ā) ∈ M . We first establish the existence of a ground rule ψ with
headψ = R(x, s, ā) in the ground program GM (P) = groundM (P ′, J) where P ′ = pureSZ(P) and J =
decl(H). Let ϕ ∈ deducP and V be a rule and valuation that have derived R(ā) ∈ Dj . Let ϕ′ ∈ pureSZ(P)
be obtained by applying transformation (5.3) to ϕ. Let V ′ be V extended to assign x and s to respectively
the location variable and timestamp variable of ϕ′. Let ψ be the ground rule based on ϕ′ and V ′. Note,
headψ = R(x, s, ā). Moreover, because ϕ is positive by assumption on P, rule ψ is also positive; hence,
ψ ∈ GM (P).

Lastly, we show posψ ⊆ M , which, together with ψ ∈ GM (P), implies headψ = R(x, s, ā) ∈ M .21 Since

V (posϕ) ⊆ Dj−1 ⊆ allM (x, s) by the induction hypothesis, we have posψ = V (posϕ)
⇑x,s ⊆ allM (x, s)⇑x,s ⊆

M . !

Proof of Claim 6.3
This is similar to the proof of Claim 6.2. Let R(ā) ∈ inducP(D). We show R(x, s + 1, ā) ∈ M . Let ϕ

and V be a rule and valuation deriving R(ā) ∈ inducP(D). Let ϕ′ ∈ pureSZ(P) be obtained by applying
transformation (5.4) to ϕ. Let V ′ be the extension of V to assign x to the location variable and to assign s
and s+1 to the timestamp variable in respectively the body and head. Let ψ denote the ground rule based
on ϕ′ and V ′. Note, headψ = R(x, s + 1, ā). Abbreviate GM (P) = groundM (P ′, J) where P ′ = pureSZ(P)
and J = decl(H). We have ψ ∈ GM (P) because ψ is positive; indeed, ϕ is positive by assumption on P, and,
transformation (5.4) does not introduce negative literals. We are left to show posψ ⊆ M . Since V (posϕ) ⊆ D

and D ⊆ allM (x, s) by the given assumption, we have posψ = V (posϕ)
⇑x,s ∪ {tsucc(s, s+ 1)} ⊆ M . !

Proof of Claim 6.4
Necessarily, R(y, ā) ∈ asyncP(Di). Suppose we would know Di ⊆ allM (xi, t) for each t ≥ si. Then

Claim 6.5 would imply that for each t ≥ si there is a value u such that chosenR(xi, t, y, u, ā) ∈ M , as
desired.

Now, we show by induction on j ∈ S that

Dj ⊆ allM (xj , t) for all t ≥ sj .

21Letting J = decl(H), we use that M = GM (P)(J) by definition of stable model.
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For each j ∈ S, let ρj = (stj , bf j) denote the source configuration of transition j, and let mj denote the set
of (tagged) messages delivered in transition j. Since Dj = deducP(stj(xj) ∪ untag(mj)) by the operational
semantics, Claim 6.2 implies that it is sufficient to show for each j ∈ S that

stj(xj) ∪ untag(mj) ⊆ allM (xj , t) for all t ≥ sj .

As additional simplification, stj(xj) ∪ untag(mj) = stj(xj) because j is a heartbeat transition. In the base
case, j = min(S), i.e., j is the first transition of xj . So, stj(xj) = H(xj) by the operational semantics;
hence, decl(H) ⊆ M implies stj(xj) ⊆ allM (xj , t) for all t. For the induction hypothesis, let j ∈ S with
j > min(S), and we assume for all k ∈ S with k < j that

stk(xk) ⊆ allM (xk, t) for all t ≥ sk.

For the inductive step, we show stj(xj) ⊆ allM (xj , t) for all t ≥ sj . Let k be the predecessor of j in S
(which exists because j > min(S)). By the operational semantics, stj(xj) = H(xk) ∪ inducP(Dk). The
inclusion of H(xk) in M is established as in the base case. Next, the induction hypothesis on k gives
stk(xk) ⊆ allM (xk, u) for all u ≥ sk. Hence, by Claim 6.2 we have Dk ⊆ allM (xk, u) for all u ≥ sk. Then
Claim 6.3 gives inducP(Dk) ⊆ allM (xk, u+1) for all u ≥ sk. Using stj(xj) = H(xk)∪ inducP(Dk), xj = xk,
and sj = sk + 1, we can thus say stj(xj) ⊆ allM (xj , t) for all t ≥ sj . !

Proof of Claim 6.5
Let R(y, ā) ∈ asyncP(D) with y ∈ N , derived by a rule ϕ and valuation V . By Lemma Appendix C.1,

it suffices to show candR(x, s, y, u, ā) ∈ M for some u ∈ N.
Let ϕ′ ∈ P be the original rule on which ϕ is based. Let ϕ′′ ∈ pureSZ(P) be the result of applying

transformation (5.10) to ϕ′. Note, ϕ′′ is positive because ϕ′ is positive. Let V ′′ be the extension of V to
assign x and s to respectively the sender variable and send-timestamp variable of ϕ′′, and to assign some
arbitrary u ∈ N to the arrival-timestamp variable of ϕ′′. Let ψ be the ground rule based on ϕ′′ and V ′′. Note,
headψ = candR(x, s, y, u, ā). Because ψ is positive, we have ψ ∈ groundM (P ′, I) where P ′ = pureSZ(P) and
I = decl(H). It remains to be shown that posψ ⊆ M , so that headψ ∈ M . Transformation (5.10) implies

posψ = V (posϕ)
⇑x,s ∪ {all(y), time(u)}. First, we have {all(y), time(u)} ⊆ decl(H) ⊆ M . Second,

V (posϕ)
⇑x,s ⊆ D⇑x,s ⊆ allM (x, s)⇑x,s ⊆ M . !
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