
On the CRON Conjecture

Tom J. Ameloot � and Jan Van den Bussche

Hasselt University & Transnational University of Limburg, Hasselt, Belgium

Abstract. Declarative networking is a recent approach to programming
distributed applications with languages inspired by Datalog. A recent
conjecture posits that the delivery of messages should respect causality
if and only if they are used in non-monotone derivations. We present
our results about this conjecture in the context of Dedalus, a Datalog-
variant for distributed programming. We show that both directions of
the conjecture fail under a strong semantical interpretation. But on a
more syntactical level, we can show that positive Dedalus programs can
tolerate non-causal messages, in the sense that they compute the correct
answer when messages can be sent into the past.

1 Introduction

In declarative networking, distributed computations and networking protocols
are modeled and programmed using formalisms based on Datalog [17]. Heller-
stein has made a number of intriguing conjectures concerning the expressiveness
of declarative networking [14, 15]. In the present paper, we are focusing on the
CRON conjecture (Causality Required Only for Non-monotonicity).

Causality stands for the physical constraint that an effect can only happen
after its cause. Applied to message delivery, this intuitively means that a sent
message can only be delivered in the future, not in the past. Now, the conjecture
relates the causal delivery of messages to the nature of the computations that
those messages participate in, like monotone versus non-monotone, and asks us
to think about the cases where causality is really needed.

There seem to be interesting real-world applications of the CRON conjecture,
one of which is crash recovery. During crash recovery, a program can read an
old checkpointed state and a log of received messages, which is disjoint from
that state. These messages could appear to come from the “future” when put
side-by-side with the old state because according to the old state, those messages
have yet to be sent. Then, it is not always clear how the program should combine
the old state and the message log, certainly if negation and more generally non-
monotone operations are involved. One can understand the CRON conjecture as
saying that during recovery, for non-monotone operations, messages from the log
should be read in causal order, like the order in which they are received, and they
should not be exposed all at once. From the other direction, if you know that
only monotone operations are involved, the recovery could perhaps become more

� PhD. Fellow of the Fund for Scientific Research – Flanders (FWO)

P. Barceló and R. Pichler (Eds.): Datalog 2.0, LNCS 7494, pp. 44–55, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

On the CRON Conjecture 45

efficient by reading the messages all at once. Distributed computations happen
often in large clusters of compute nodes, where failure of nodes is not uncommon
[21], and indeed distributed computing software should be robust against failures
[9]. We want to avoid restarting entire computations when only a few nodes fail,
and therefore it seems natural to use some lightweight crash recovery facility for
individual nodes that can still make the computation succeed, although perhaps
some partial results might have to be recomputed. The CRON conjecture could
help us better understand how such recovery facilities can be designed.

In this paper we formally investigate the CRON conjecture in the setting of
the language Dedalus, which is a Datalog-variant for distributed programming
[4, 5, 15]. It turns out that stable models [12] provide a way to reason about
non-causality, and we use this to formalize the CRON conjecture. A strong in-
terpretation of the conjecture posits that causality is not needed if and only if
the query computed by a Dedalus program is monotone. Neither the “if” nor
the “only if” direction holds, however, which is perhaps not entirely surprising
as we can do special tricks with negation. Therefore we have turned attention to
a more syntactic version of the conjecture, and there we indeed find that causal
message ordering is not needed for positive Dedalus programs in order to com-
pute meaningful results, if these programs already behave correctly in a causal
operational semantics.

This paper is organized as follows. Preliminaries on databases and Dedalus are
given in Sect. 2. In Sect. 3 we give an intuitive operational semantics for Dedalus.
The formalization of non-causality, the CRON conjecture, and the related results
are all in Sect. 4. We conclude in Sect. 5.

2 Preliminaries

2.1 Databases and Network

A database schema D is a nonempty finite set of pairs (R, k) where R is a relation
name and k ∈ N its associated arity. A relation name occurs at most once in a
database schema. We also write (R, k) as R(k).

We assume a countably infinite universe dom of atomic data values that
includes the set N of natural numbers. A fact f with predicate R is of the
form R(a1, . . . , ak) with ai ∈ dom for each i = 1, . . . , k. We say that a fact
R(a1, . . . , ak) is over a database schema D if R(k) ∈ D. A database instance I
over D is a set of facts over D.

A network N is a nonempty finite subset of dom. Intuitively, N represents a
set of identifiers of compute nodes involved in a distributed system. This model
is general enough to represent distributed computing on any network topology,
because we can restrict attention to programs where nodes only send messages
to nodes to which they are explicitly linked, as expressed by input relations.
Now, a distributed database instance H over N and a database schema D is a
total function mapping every node of N to a finite (normal) database instance
over D.

46 T.J. Ameloot and J. Van den Bussche

2.2 Dedalus Programs

We now recall the language Dedalus, that can be used to describe distributed
computations [4, 5, 15]. Essentially, Dedalus is an extension of Datalog¬ to repre-
sent updateable memory for the nodes of a network and to provide a mechanism
for communication between these nodes. Here, we present Dedalus as Datalog¬

extended with annotations, which simplify the presentation.1

Let D be a database schema. Below, we write B{w̄}, where w̄ is a tuple of
variables, to denote any sequence β of atoms and negated atoms over database
schema D, such that the variables in β are precisely those in the tuple w̄. Also,
let R be a relation name in D. There are three types of Dedalus rules over D:
– A deductive rule is a normal Datalog¬ rule over D.
– An inductive rule is of the form

R(ū)• ← B{ū, v̄}.
– An asynchronous rule is of the form

R(ū) | y← B{ū, v̄, y}.
So, inductive and asynchronous rules are basically normal Datalog¬ rules with re-
spectively head-annotations “•” and “| y”, where y is a variable. For
asynchronous rules, the notation “| y” means that the derived head facts are
transferred (“piped”) to the node represented by y. Intuitively, deductive, induc-
tive and asynchronous rules express respectively local computation, updateable
memory, and message sending (cf. Sect. 3). We will only consider safe rules:
all variables of these rules occur in at least one positive body atom. Moreover,
because constants can always be represented by unary input relations, we will
assume that no values of dom occur in the rules. For technical simplicity, we
also assume that rule-bodies contain at least one positive atom.

To illustrate, if D = {R(2), S(1), T (2)}, then the following three rules are ex-
amples of, respectively, deductive, inductive and asynchronous rules over D:

T (u, v)← R(u, v), ¬S(v).
T (u, v)• ← R(u, v).

T (u, v) | y← R(u, v), S(y).

Definition 1. A Dedalus program over a schema D is a set of deductive, induc-
tive and asynchronous Dedalus rules over D, such that the set of deductive rules
is syntactically stratifiable.

Let P be a Dedalus program. We write sch(P) to denote the schema that P is
over. We define idb(P) ⊆ sch(P) to be the relations that occur in rule-heads
of P . We abbreviate edb(P) = sch(P) \ idb(P). An input for P is a distributed
database instance H over some network N and the schema edb(P).
1 These annotations correspond to syntactic sugar in the previous presentations of
Dedalus.

On the CRON Conjecture 47

3 Operational Semantics

Let P be a Dedalus program. Let H be an input distributed database instance
for P , over a network N . We give an operational semantics for Dedalus, which
respects causality. This operational semantics is in line with earlier formal work
on declarative networking [10, 19, 13, 6, 1]. In Sect. 4, we will contrast the opera-
tional semantics with a non-causal semantics, to formalize the CRON conjecture.

In this section we will sketch the most important concepts of the operational
semantics. The interested reader can consult the formal details in the appendix.
To represent a possible execution of P on input H , we use a run. A run consists
of configurations and transitions. A configuration describes for each node of
N the facts that it has stored locally (state), and also what messages are in
flight on the network. At the beginning, the start configuration assigns to each
node only its local input fragment in H , and there are no messages. Now, a
transition transforms one configuration into another: it selects one active node
x ∈ N to receive some messages addressed to x and to do a local computation.
Specifically, the active node x reads its old state together with the received
messages. The node then executes the deductive rules to “complete” these facts,
using the stratified semantics. We consider the resulting set D of deductive facts
as being “all” facts that x locally has during the transition. Next, the inductive
rules are given input D, and the derived facts are stored in the next state of x,
always together with the local input fragment of x in H (which is preserved).
Similarly, the asynchronous rules are also given input D, and the derived facts
are considered messages that are sent around the network. The first component
in these facts represents the addressee. The resulting configuration reflects all
these actions taken by x. Then, a runR is an infinite sequence of such transitions,
initially departing from the start configuration. Natural fairness conditions are
imposed: we consider only runs in which each node is made active an infinite
number of times and every sent message is eventually delivered. The operational
semantics closely corresponds to that of the language Webdamlog [1].

This operational semantics is highly nondeterministic because in each transi-
tion we can choose which node is made active and also what messages it receives
(from those that are in flight).

Assume a subset out(P) ⊆ idb(P), called the output schema, is selected: the
relation names in this schema designate the intended output of the program.
Following Marczak et al. [18], we define this output based on ultimate facts. In
a run R, we say that a fact f over schema out(P) is ultimate at some node x if
there is some transition after which f is present at x during every subsequent
transition of x once the deductive rules are executed. Thus, this is a fact that
will eventually always be present at x. The output of R, denoted output(R), is
the union of all ultimate facts over all nodes. In this definition we ignore what
node is responsible for what piece of the output, which follows the intuition of
cloud computing. Since the operational semantics is nondeterministic, there can
be different runs producing a different output. Program P is called consistent if
individually for every input distributed database instance H , every run produces
the same output, which we denote as outInst(P , H). This is an instance over

48 T.J. Ameloot and J. Van den Bussche

out(P). Guaranteeing or deciding consistency in special cases is an important
research topic [1, 18, 7].

As some additional terminology, in a run, for each transition t, we define the
timestamp of the active node x during t to be the number of transitions of x that
come strictly before t. This can be thought of as the local (zero-based) clock of x
during t. For example, suppose we have the following sequence of active nodes:
x, y, y, x, x, etc. If we would write the timestamps next to the nodes, we get
this sequence: (x, 0), (y, 0), (y, 1), (x, 1), (x, 2), etc.

4 CRON Conjecture

Conjecture 1. Causality Required Only for Non-monotonicity (CRON) [15]:
Program semantics require causal message ordering if and only if the messages
participate in non-monotonic derivations.

The CRON conjecture talks about an intuitive notion of “causality” on mes-
sages. As mentioned in the introduction, causality here stands for the physical
constraint that an effect can only happen after its cause. Our operational se-
mantics respects causality because a message can only be delivered after it was
sent. When the delivery of one message causes another one to be sent, then the
second one is delivered in a later transition. For this reason, we want a new for-
malism to reason about non-causality, which entails sending messages into the
“past”. We introduce such a formalism in Sect. 4.1, and in Sect. 4.2 we look at
our formalizations of the CRON conjecture and the associated results.

4.1 Modeling Non-causality

In a previous work [3], we have shown that the operational semantics of Dedalus
is equivalent to a declarative semantics based on stable models [12]. There,
we described a causality transform that converts a Dedalus program to a pure
Datalog¬ program containing extra rules, called the causality rules. When the
stable model semantics is applied to this pure Datalog¬ program, these rules
enforce causality on message sending. For the current work, we will remove the
causality rules, and now stable models can represent non-causal message sending.

Let P be a Dedalus program. Below, we present the SZ-transformation that
transforms P into pureSZ(P), which is a pure Datalog¬ program that models the
distributed computation in a holistic fashion: the distributed data of a network
across all nodes and their local timestamps is modeled as facts of the form
R(x, s, ā), representing that the fact R(ā) is present at node x at its timestamp s.
In pureSZ(P), for asynchronous rules, we also use a rewriting technique inspired
by the work of Saccà and Zaniolo, who show how to express dynamic choice
under the stable model semantics [20].

In pureSZ(P), we will use relations of the following database schema:

Dtime = {time(1), tsucc(2), �=(2)} .

On the CRON Conjecture 49

We may assume that these relations are not in sch(P), which can be solved
with namespaces if needed. The relation ‘ �=’ will be written in infix notation. We
consider only the following instance over Dtime:

Itime = {time(s), tsucc(s, s+ 1) | s ∈ N} ∪ {(s �= t) | s, t ∈ N : s �= t} .

This instance provides timestamps, together with a non-equality relation. Next,
we will specify pureSZ(P) incrementally. Let x, s, t and t′ be variables not yet
used in P . For any sequence L of atoms and negated atoms, let L⇑x,s denote the
sequence obtained by adding x and s as first and second components to each
atom in L (negated atoms stay negated).

For each deductive rule ‘R(ū) ← B{ū, v̄}’ in P , we add to pureSZ(P) the
following rule:

R(x, s, ū)← B{ū, v̄}⇑x,s. (1)

This expresses that deductively derived facts are directly visible within the same
step (of the same node) in which they were derived.

For each inductive rule ‘R(ū)• ← B{ū, v̄}’ in P , we add to pureSZ(P) the
following rule:

R(x, t, ū)← B{ū, v̄}⇑x,s, tsucc(s, t). (2)

This expresses that inductively derived facts appear in the next step of the same
node.

We will also assume that the following relation names are not in sch(P):
name All, and the names candR, chosenR and otherR for each name R in
idb(P). Now, for each asynchronous rule ‘R(ū) | y← B{ū, v̄, y}’ in P , we add to
pureSZ(P) the following rules, for which the intuition is given below:

candR(x, s, y, t, ū)← B{ū, v̄, y}⇑x,s, All(y), time(t). (3)

chosenR(x, s, y, t, ū)← candR(x, s, y, t, ū), ¬otherR(x, s, y, t, ū). (4)

otherR(x, s, y, t, ū)← candR(x, s, y, t, ū), chosenR(x, s, y, t
′, ū), t �= t′. (5)

R(y, t, ū)← chosenR(x, s, y, t, ū). (6)

A fact of the form All(x) means that x is a node of the network. Rule (3)
represents message sending: it derives messages by evaluating the original asyn-
chronous rule, verifies that the addressee of each message is in the network,
and it considers for each message all possible candidate arrival timestamps at
the addressee. In the derived facts, we include the sender’s location and send-
timestamp, the addressee’s location and arrival-timestamp, and the actual trans-
mitted data. Next, rules (4) and (5) together enforce under the stable model
semantics that precisely one arrival timestamp will be chosen for every sent
message, using the technique of [20]. Rule (6) models the actual arrival of mes-
sages, where the sender-information is projected away, and the data-tuple in
the message becomes part of the addressee’s state for relation R. We repeat
the above transformation for all asynchronous rules in P , and pureSZ(P) is now
completed. Remark: multiple asynchronous rules in P can have the same head

50 T.J. Ameloot and J. Van den Bussche

predicate R, and after the above transformation, there can be multiple rules
with head predicates candR, chosenR, otherR and R.

Let H be an input for P , over a network N . We define

inputSZ(H) =
⋃

x∈N

⋃

s∈N

{R(x, s, ā) | R(ā) ∈ H(x)} ∪ {All(x) | x ∈ N} ∪ Itime .

Intuitively, in inputSZ(H), for each node its input facts are available at each of
its local timestamps; relation All represents the network; and all timestamps are
provided, together with a non-equality relation. Now, we call any stable model
M of pureSZ(P) on input inputSZ(H) an SZ-model of P on input H . Program
pureSZ(P) does not enforce causality on the messages in M since the arrival
timestamps can be chosen arbitrarily, even into the past.

Similar to [3], we only consider “fair” models, defined as follows. We say
that an SZ-model M is fair if for each pair (y, t) ∈ N × N there are only a
finite number of facts in M of the form chosenR(x, s, y, t, ā). This expresses that
every node receives only a finite number of messages at any given timestamp. We
focus on fair models because in reality a node always processes a finite number
of messages at each computation step.

We define the output of an SZ-model M , denoted output(M), as

⋃

R(k)∈out(P)

{R(ā) | ∃x ∈ N , ∃s ∈ N, ∀t ∈ N : t ≥ s⇒ R(x, t, ā) ∈M} .

Thus, we use the intuition of ultimate facts, as was used in the operational seman-
tics (cf. Sect. 3). Now, a consistent program P is called SZ-consistent if individ-
ually for every input distributed database instance H , every SZ-model M yields
the output outInst(P , H). Intuitively, if a consistent program is SZ-consistent,
then it also computes the same result when messages can be sent into the past.

4.2 Results

We have first formalized the CRON conjecture purely on the semantical level,
by relating causality to the monotonicity of the queries computed by Dedalus
programs. A query Q is a function from database instances over an input schema
D1 to database instances over an output schema D2. A Dedalus program P can
compute a query as follows: we say that P (distributedly) computes a query Q
if P is consistent and for every input instance I for Q, for every network N ,
for every partition H of I over N , we have outInst(P , H) = Q(I). To compute
non-monotone queries, every node needs its own identifier and the identifiers of
the other nodes, or equivalent information [6]. Therefore, we restrict attention
to Dedalus programs P for which {Id(1), Node(1)} ⊆ edb(P), where relation Id

is initialized to contain on every node the identifier of that node, and relation
Node is initialized to contain the identifiers of all nodes (including the local
node). These node identifiers are not considered part of the query input. In this
context, we have looked at the following formalization of the CRON conjecture:

On the CRON Conjecture 51

A Dedalus program computes a monotone query if and only if it is
SZ-consistent.

Both directions of this conjecture can be refuted by counterexamples. First, for
the if-direction, we give a Dedalus program that computes the non-monotone
emptiness query on a nullary relation S, that is, output “true” (encoded by a
nullary relation T) if and only if S is empty (at all nodes):

empty(x) | y ← ¬S(), Id(x), Node(y).
empty(y)• ← empty(y).

notDone()← Node(y), ¬empty(y).
T ()← Id(x), ¬notDone().

Here, the asynchronous rule lets each node broadcast its own identifier if its
relation S is empty. The inductive rule lets a node remember all received node
identifiers. The rules on the right let a node output T () starting at the moment
that it has all identifiers (including its own). This program is consistent. There
are no causal message dependencies, so it does not really matter at what time a
node receives some identifier: in every SZ-model, after a while this node will still
have received and stored the identifier. Thus every SZ-model yields the output
T () iff all nodes have an empty relation S. The program is SZ-consistent.

Second, for the only-if direction, we give a (contrived) Dedalus program that
computes the monotone non-emptiness query on a nullary relation S, that is,
output “true” if and only if S is not empty (on at least one node):

A() | x← S(), Id(x).

A()• ← A().

sentB()• ← A().

B() | x← A(), ¬sentB(), Id(x).
T ()← A(), B().

T ()• ← T ().

Here, when a node has a nonempty relation S, it sends A() to itself continuously.
On receipt of A(), it stores this fact, and it sends B() to itself if it has not
previously done so. Thus, if a node sends A() then it sends B() precisely once.
When the B() is later received, it is paired with the stored A(), producing the
fact T () that is stored indefinitely. The program is consistent, but is however not
SZ-consistent, which we now explain. Let H be the input over singleton network
{z} with H(z) = {S()}. On input H , we can exhibit an SZ-model M in which
A()-facts arrive at node z starting at timestamp 1, which implies that sentB()
will exist starting at timestamp 2. This implies that B() is sent precisely once in
M , namely, at timestamp 1. Now, the trick is to violate the causal dependency
between relations A and B, and to let B() arrive in the past, at timestamp 0 of
z, which is before any A() is received. Then the arriving B() cannot pair with
any stored or arriving A(). Since B() itself is not stored, we have thus erased
the single chance of producing T (). Hence output(M) = ∅, and the program is
not SZ-consistent.

So, contrary to the CALM conjecture [15, 6, 22], a formalization of the CRON
conjecture that is situated purely on the semantical level does not seem to give
any results. A Dedalus program without negation is called positive. Our main
result now is that the following does hold:

52 T.J. Ameloot and J. Van den Bussche

Theorem 1. Every positive, consistent Dedalus program is SZ-consistent.

Note that the converse direction of Theorem 1, to the effect that every
SZ-consistent Dedalus program is equivalent to a positive program, cannot hold
by our above counterexample for the if-direction. We sketch the proof of Theo-
rem 1. Let P be a positive, consistent Dedalus program, and let H be an input
for P . Let M be an SZ-model of P on H . To show output(M) ⊆ outInst(P , H),
we show output(M) ⊆ output(R) where R is the run of P on H that operates
in rounds: in every round all nodes empty their entire buffer, and this run satu-
rates towards the derivation of all “possible” deductive facts per node. To show
outInst(P , H) ⊆ output(M), we convert M to a run R in which we create no
more opportunities for messages to “join” in comparison to M . Concretely, we
make sure that in R we only send messages that are sent an infinite number
of times in M , which, by the “fairness” assumption on M , allows us to pick an
arrival time that is still represented by M . Hence, output(R) ⊆ output(M).

5 Discussion

In future work, we may want to understand better the spectrum of causality. We
have seen that for positive programs no causality at all is required, and perhaps
richer classes of programs can tolerate some relaxations of causality as well. We
would also like to investigate how the CRON conjecture can be concretely linked
to crash recovery applications, and the design of recovery mechanisms. It might
also be interesting to look at other local operational semantics for Dedalus,
besides the stratified semantics used here.

Acknowledgment. We thank Joseph M. Hellerstein for his thoughtful com-
ments on an earlier draft of this paper.

References

[1] Abiteboul, S., Bienvenu, M., Galland, A., et al.: A rule-based language for
Web data management. In: Proceedings 30th ACM Symposium on Principles
of Database Systems, pp. 293–304. ACM Press (2011)

[2] Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

[3] Alvaro, P., Ameloot, T.J., Hellerstein, J.M., Marczak, W., Van den Bussche, J.: A
declarative semantics for dedalus. Technical Report UCB/EECS-2011-120, EECS
Department, University of California, Berkeley (November 2011)

[4] Alvaro, P., Marczak, W., et al.: Dedalus: Datalog in time and space. Technical
Report EECS-2009-173, University of California, Berkeley (2009)

[5] Alvaro, P., Marczak, W.R., Conway, N., Hellerstein, J.M., Maier, D., Sears, R.:
Dedalus: Datalog in Time and Space. In: de Moor, O., Gottlob, G., Furche, T.,
Sellers, A. (eds.) Datalog 2010. LNCS, vol. 6702, pp. 262–281. Springer, Heidelberg
(2011)

On the CRON Conjecture 53

[6] Ameloot, T.J., Neven, F., Van den Bussche, J.: Relational transducers for declara-
tive networking. In: Proceedings 30th ACM Symposium on Principles of Database
Systems, pp. 283–292. ACM Press (2011)

[7] Ameloot, T.J., Van den Bussche, J.: Deciding eventual consistency for a simple
class of relational transducers. In: Proceedings of the 15th International Confer-
ence on Database Theory, pp. 86–98. ACM Press (2012)

[8] Apt, K.R., Francez, N., Katz, S.: Appraising fairness in languages for distributed
programming. Distributed Computing 2, 226–241 (1988)

[9] Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations, and
Advanced Topics. Wiley (2004)

[10] Deutsch, A., Sui, L., Vianu, V., Zhou, D.: Verification of communicating data-
driven Web services. In: Proceedings 25th ACM Symposium on Principles of
Database Systems, pp. 90–99. ACM Press (2006)

[11] Francez, N.: Fairness. Springer-Verlag New York, Inc., New York (1986)
[12] Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming.

In: Proceedings of the Fifth International Conference on Logic Programming, pp.
1070–1080. MIT Press (1988)

[13] Grumbach, S., Wang, F.: Netlog, a Rule-Based Language for Distributed Program-
ming. In: Carro, M., Peña, R. (eds.) PADL 2010. LNCS, vol. 5937, pp. 88–103.
Springer, Heidelberg (2010)

[14] Hellerstein, J.M.: Datalog redux: experience and conjecture. Video available
(under the title The Declarative Imperative) (2010), PODS 2010 keynote
http://db.cs.berkeley.edu/jmh/

[15] Hellerstein, J.M.: The declarative imperative: experiences and conjectures in dis-
tributed logic. SIGMOD Record 39(1), 5–19 (2010)

[16] Lamport, L.: Fairness and hyperfairness. Distributed Computing 13, 239–245
(2000)

[17] Loo, B.T.: et al. Declarative networking. Communications of the ACM 52(11),
87–95 (2009)

[18] Marczak, W., Alvaro, P., Conway, N., Hellerstein, J.M., Maier, D.: Confluence
analysis for distributed programs: A model-theoretic approach. Technical Report
UCB/EECS-2011-154, EECS Department, University of California, Berkeley (De-
cember 2011)

[19] Navarro, J.A., Rybalchenko, A.: Operational Semantics for Declarative Network-
ing. In: Gill, A., Swift, T. (eds.) PADL 2009. LNCS, vol. 5418, pp. 76–90. Springer,
Heidelberg (2008)

[20] Saccà, D., Zaniolo, C.: Stable models and non-determinism in logic programs with
negation. In: Proceedings of the Ninth ACM Symposium on Principles of Database
Systems, pp. 205–217. ACM Press (1990)

[21] Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and re-
search challenges. Journal of Internet Services and Applications 1, 7–18 (2010)

[22] Zinn, D., Green, T.J., Ludaescher, B.: Win-move is coordination-free. In: Pro-
ceedings of the 15th International Conference on Database Theory, pp. 99–113.
ACM Press (2012)

http://db.cs.berkeley.edu/jmh/

54 T.J. Ameloot and J. Van den Bussche

Appendix

A Operational Semantics

Let P be a Dedalus program. LetH be an input distributed database instance for
P , over a network N . We define formally an operational semantics for Dedalus.

A.1 Subprograms

We split the program P into three subprograms, that contain respectively the
deductive, inductive and asynchronous rules. First, we define deducP to be the
Datalog¬ program consisting of precisely all deductive rules of P . Secondly, we
define inducP to be the Datalog¬ program consisting of all inductive rules of P
after the annotation “•” in their head is removed. Thirdly, we define asyncP to be
the Datalog¬ program consisting of precisely all rules ‘T (y, ū)← B{ū, y}’ where
‘T (ū) | y ← B{ū, y}’ is an asynchronous rule of P . The first component in the
rules of asyncP will represent the addressee of messages. The programs deducP ,
inducP and asyncP are just Datalog¬ programs over the schema sch(P), or a
sub-schema thereof. Moreover, deducP is syntactically stratifiable because the
deductive rules in P must be syntactically stratifiable. The semantics of these
subprograms is given below.

Let I be an instance over sch(P). We define the output of deducP on input I,
denoted as deducP(I), to be given by the stratified semantics [2]. This implies
I ⊆ deducP(I). We define the output of inducP on input I to be the set of facts
derived by the rules of inducP for all possible satisfying valuations in I, in just
one derivation step. This output is denoted as inducP〈I〉. The output of asyncP
on input I is defined in the same way as for inducP , except that we now use the
rules of asyncP instead of inducP . This output is denoted as asyncP〈I〉.

A.2 Configurations

A configuration ρ of P on input H is a pair (stρ, bfρ) where stρ is a function
that maps each node of N to a set of facts over sch(P), and bfρ is a function
that maps each node of N to a set of pairs of the form 〈i,f〉, where i ∈ N

and f is a fact over idb(P). The set stρ represents the state of each node. The
set bfρ, called (message) buffer, represents for each node all messages addressed
to that node but that are not yet received. The reason for having numbers i,
called send-tags, attached to facts in the image of bfρ is to differentiate between
multiple instances of the same message being sent at different moments (to the
same addressee), and these tags are not visible to the Dedalus program. The
start configuration of P on input H , denoted start(P , H), is the configuration ρ
defined for each x ∈ N as stρ(x) = H(x) and bfρ(x) = ∅.

A.3 Transitions and Runs

To transform one configuration ρa into another configuration ρb, we describe
transitions in each of which one active node does a local computation and

On the CRON Conjecture 55

possibly sends messages around the network. Such transitions can be chained
to form a run that describes a full execution of the Dedalus program on the
given input. As a small notational aid, for a set m of pairs of the form 〈i,f〉, we
define untag(m) = {f | ∃i ∈ N : 〈i,f〉 ∈ m}. Now, a transition with send-tag
i ∈ N is a five-tuple (ρa, x,m, i, ρb) such that ρa and ρb are configurations of P
on input H , x ∈ N , m ⊆ bfρa(x), and, letting

I = stρa(x) ∪ untag(m), D = deducP(I),
δi→y = {〈i, R(ā)〉 | R(y, ā) ∈ asyncP〈D〉} for each y ∈ N ,

for x and each y ∈ N \ {x} we have

stρb(x) = H(x) ∪ inducP〈D〉,
bfρb(x) = (bfρa(x) \m) ∪ δi→x,

stρb(y) = stρa(y),

bfρb(y) = bfρa(y) ∪ δi→y .

We say that this transition is of the active node x. The transition models that
the active node x reads its old state stρa(x) together with the received facts
in untag(m) (thus without the tags), and then completes this information with
subprogram deducP . Next, the state of x is changed to stρb(x), which always
contains the input facts of x, over schema edb(P), and it also includes all facts
derived by subprogram inducP , which is applied to the deductive fixpoint. This
represents that input facts are never lost, and that the facts over idb(P) that
are explicitly derived by inducP are remembered. Only the state of x changes.
The facts generated by asyncP are called messages. By the syntax of asyncP ,
these facts have an additional first component to indicate the addressee. For
each y ∈ N , the set δi→y contains all messages addressed to y: we drop the
addressee-component because it is now redundant, and we attach the send-tag i.
The set δi→y is added to the buffer of y. We ignore messages with an addressee
outside N .

A run R of P on input H is an infinite sequence of transitions, such that
(i) the very first configuration is start(P , H), (ii) the output configuration of
each transition is the input configuration for the next transition, and (iii) the
transition at ordinal i of the sequence uses send-tag i. The transition system is
highly non-deterministic because in each transition we can choose the active node
and also what messages to deliver. Note that messages with a valid addressee
are never lost.

It is natural to require certain “fairness” conditions on the execution of a
system [11, 8, 16]. A run R of P on H is called fair if (i) every node does an
infinite number of transitions, and (ii) every sent message is eventually delivered.

	On the CRON Conjecture
	Introduction
	Preliminaries
	Databases and Network
	Dedalus Programs

	Operational Semantics
	CRON Conjecture
	Modeling Non-causality
	Results

	Discussion
	Operational Semantics
	Subprograms
	Configurations
	Transitions and Runs

