
Temporal connectives versus explicit

timestamps to query temporal databases�

Serge Abiteboul� Laurent Herr
INRIA�Rocquencourty

Jan Van den Bussche
Limburgs Universitair Centrumz

Abstract

Temporal databases can be queried either by query languages work�

ing directly on a timestamp representation� or by languages using an

implicit access to time via temporal connectives� We study the dif�

ferences in expressive power between these two approaches� First� we

consider temporal and �rst�order logic� We show that future tem�

poral logic is strictly less powerful than past�future temporal logic�

and also that there are queries expressible in �rst�order logic with ex�

plicit timestamps that are not expressible in extended temporal logic�

Our proof technique is novel and based on communication complex�

ity� Then� we consider extensions of �rst�order logic with �xpoints or

while�loops� Again the explicit temporal version of these languages�

using timestamps� is compared with an implicit one� using instruc�

tions for moving in time� We also compare the temporal versions of

the �xpoint language with those of the while language�

�Preliminary reports on this work were presented at the International Workshop on
Temporal Databases �Z�urich� September ����� and the ��th ACM Symposium on Princi�
ples of Database Systems �Montreal� June �����	

yAddress
 Domaine de Voluceau� B	P	 ���� F��
��� Le Chesnay Cedex� France	 E�mail

serge	abiteboul�inria	fr and laurent	herr�inria	fr	

zAddress
 LUC� Department WNI� B����� Diepenbeek� Belgium	 E�mail
 vd�
buss�luc	ac	be	

�



� Introduction

A database history can be modeled as a �nite sequence of instances dis�
cretely ordered by time� We are concerned here with querying such �nite
sequences of database instances� also called �discrete�time� temporal data�

bases� As discussed by Chomicki ��	� there are two di
erent approaches to
de�ning temporal query languages�

One approach is to view the sequence as one single relational database
of an augmented schema where a �timestamp� column is added to each re�
lation� The new column holds the time instants of validity of each tuple�
This timestamp representation can then be queried using known relational
query languages� where the linear order on timestamps is given as a built�in
relation� The relational query languages we will be considering are the re�
lational calculus ��rst�order logic� fo� and its iterative extensions �xpoint
logic �fixpoint�� extending fo with in
ationary iteration� and while logic
�while�� o
ering arbitrary iteration� When applied to timestamp represen�
tations of temporal databases these languages will be denoted respectively
as ts�fo� ts�fixpoint and ts�while�

Alternatively� one can use languages providing a more �implicit� access
to time� A standard example is �rst�order temporal logic ��	� an extension
of classical logic with the temporal operators since� until� next� and previ�

ous� Since� as observed by Wolper ���	� these operators can be viewed as
searching for regular events� one can be more general and supply a temporal
operator for each regular language� We denote standard temporal logic by
tl� and extended temporal logic �with general regular events� by etl� The
sublanguage of tl o
ering only the future operators next and until� called
future tl� is denoted by ftl� We will also be considering extensions of the
languages fixpoint and while with implicit temporal access via instruc�
tions for moving in time� These languages will be denoted respectively as
t�fixpoint and t�while�

In this paper� we compare these languages with respect to expressive
power� Our results are depicted in Figure �� Note that the only new lan�
guages are t�fixpoint and t�while� Note also the central position of
t�fixpoint� We believe this is an important language� it can be evalu�
ated in polynomial time� it accesses time only implicitly� and it generalizes
ts�fo and etl� Of additional interest is that going from the in
ationary
language fixpoint to the temporal language t�fixpoint involves adding�
besides the movements in time already mentioned� some non�in
ationary

�



t�while ts�fixpoint

ts�while

ftl

tl

etlts�fo

t�fixpoint

Figure �� The relative power of temporal languages� Solid upward edges
indicate strict containment� Dashed lines indicate that the strictness of the
containment depends on unresolved questions in complexity theory�

language features as well�
Our results concerning ftl� tl and ts�fo should be contrasted to the

extensively studied propositional case� where the three languages are equiv�
alent ���� ��� �	� Evidences that this equivalence fails in the predicate case
already existed since ���� ���	� Indeed� Kamp obtained results implying that
tl is strictly weaker than ts�fo in the context of densely ordered temporal
structures �rather than the discretely ordered ones we study in the present
paper�� Moreover� Toman and Niwinski ���	 �still in the densely ordered case�
showed that no �nite set of �rst�order temporal operators can be added to
tl so as to achieve expressive completeness�

The proof technique we use for separating etl and ts�fo is novel and
based on communication complexity ���� ��	� To our knowledge� this is the
�rst time this tool is employed to analyze the expressive power of query
languages�

This paper is organized as follows� In Section �� we de�ne temporal data�
bases and their timestamp representations� and also brie
y introduce tem�
poral logic� In Section � we prove the results concerning ftl� tl and ts�fo�
In Section �� we brie
y introduce the language while� de�ne t�while� and

�



compare it with ts�while and ts�fo� In Section �� we brie
y introduce
the in
ationary language fixpoint� study its augmentation with certain
non�in
ationary features� and de�ne the central language t�fixpoint� In
Section �� we compare t�fixpoint to all other languages� In Section �� we
indicate special cases of temporal databases �including a notion of �local
time�� where the distinction between explicit versus implicit access to time
largely disappears� Concluding remarks are presented in Section ��

� Temporal databases and temporal logic

��� Temporal databases and the language ts�fo

We assume some familiarity with relational databases �see� e�g�� ��	�� A
database schema is a �nite set of relation names� where each relation name
has an associated arity� An instance of a schema assigns to each relation
name a �nite relation of appropriate arity over a �xed countably in�nite
domain of data elements� The active domain of an instance is the set of all
data elements appearing in some of its relations�

A temporal database over a database schema S is a non�empty �nite
sequence I � I�� � � � � In �n � �� of instances of S� Every j � f�� � � � � ng is
called a state of I� The active domain of a temporal database is the union
of the active domains of its instances�

A k�ary query Q on temporal databases over schema S is a mapping
assigning to each temporal database I over S a k�ary relation Q�I� on the
active domain of I� �A ��ary query is also called a Boolean query��

We can identify a temporal database I with a two�sorted relational struc�
ture called the timestamp representation of I� Data elements are taken
from the active domain of I� whereas timestamps are from the set of states
f�� � � � � ng�� The timestamp representation also contains the linear order on
the states as an explicit binary relation �� Furthermore� it contains� for each
relation R of arity k in the database schema� an extended relation �R of arity
k��� The �rst k columns of this relation hold data elements� the last column

�For clarity� we assume without loss of generality that the domain of data elements is
disjoint from the natural numbers	 However� it is sometimes possible �and interesting� to
simulate timestamps using data elements� we come back to this issue in Section �	

�



I �

I��R� I��R� I��R�

a

b

c

b

d

a

c

I� �R�

a �
b �
c �
b �
d �
a �
c �

Figure �� A temporal database and its timestamp representation�

holds timestamps� The contents of this relation� denoted I� �R�� is

n�
j��

�Ij�R�� fjg��

Example ��� A temporal database over a schema consisting of a single
unary relation R� together with its timestamp representation are shown in
Figure ��

Using �two�sorted� �rst�order logic on the timestamp representation of a
temporal database� we obtain a query language that is denoted by ts�fo�
The data�variables in a formula range over data elements in the active domain
and the time�variables range over states� The sorts of variables in a ts�fo

formula will always be clear from the context� A formula ��x�� � � � � xk� with
k free data�variables and no free time�variables expresses a k�ary query

��I� �� f�a�� � � � � ak� j I j� ��a�� � � � � ak	g

in the standard way�

Example ��� If S is a unary relation holding employees of some company�
the following ts�fo formula expresses the query returning those employees
x who have been hired� later �red� and still later re�hired�

��t����t����t���t� � t� � t� � �S�x� t�� � � �S�x� t�� � �S�x� t����

�



��� Temporal logic

An alternative way of providing a temporal query language is to extend
�rst�order logic with temporal operators rather than explicit time�variables�
We will use temporal operators based on regular events� leading to extended

temporal logic� denoted by etl ���	� The syntax of etl over some database
schema S is obtained by using the formation rules for standard �rst�order
logic over S together with one additional formation rule�

Let L be a regular language over the �nite alphabet �v�� � � � � vp�� and
let ��� � � � � �p be formulas� Then

L����� � � � � �p� and L����� � � � � �p�

are also formulas�

The order of the letters in the alphabet �v�� � � � � vp� is relevant since it allows
to relate these letters to the arguments ���� � � � � �p��

The semantics of etl is as follows� Let I � I�� � � � � In be a temporal data�
base over S� Let ���x� be an etl formula with free variables �x � x�� � � � � xk�
let �a � a�� � � � � ak be data elements in the active domain of I� and let
j � f�� � � � � ng be a state� The truth of ���a	 in I at time j� denoted by
I� j j� ���a	� is de�ned as follows�

�� If � is an atomic formula� a conjunction� a negation� or a quanti�cation�
the de�nition is as usual� Quanti�cation is always on the active domain�

�� If � is of the form L����� � � � � �p�� with L a regular language over
the alphabet �v�� � � � � vp�� then I� j j� ���a	 if there exists a word w �
vwj

� � � vwn
of length �n� j � �� in L such that

I� j j� �wj
��a	 and � � � and I� n j� �wn

��a	�

�� Symmetrically� if � is L����� � � � � �p�� then I� j j� ���a	 if there exists a
word w � vwj

� � � vw�
of length j in L such that

I� j j� �wj
��a	 and � � � and I� � j� �w�

��a	�

Example ��� The formula L�
� �true� ��� where L� is the language a

�ba� over
the alphabet �a� b�� is true at time j i
 there is some time in the future of j

�



�including j itself� where � is true� Similarly� L�
� �true� �� expresses that �

holds sometime in the past�
Now recall Example ���� The following etl formula is true of x at some

time i
 x is not an employee now� has been one in the past� and will again
be one in the future�

�S�x� � L�
� �S�x�� � L�

� �S�x���

For another example� a formula which is true only in the last �or �rst�
state is L�

� �true� �or L
�
� �true��� where L� is the singleton language fag�

Finally� the formula L�
� �true�� where L� is the language �aa��� is true in

the �rst state i
 the length of the temporal database is even�

The previous example showed how the familiar temporal operators �some�
times in the future� and �sometimes in the past� of standard temporal logic
��	 can be expressed in etl� We next show how the other temporal operators
of standard temporal logic can be expressed�

The temporal connectives since and until can be expressed in etl as fol�
lows�

� since � � L�
� ��� � � �� true�

and
� until � � L�

� ��� � � �� true��

where L� is the language a�bc� over the alphabet �a� b� c�� The connectives
next and previous are expressed as

next� � L�
� �true� ��

and
previous� � L�

� �true� ���

where L� is the language aba� over the alphabet �a� b��
Standard temporal logic� i�e�� the fragment of etl having as only temporal

operators since� until� next� and previous� is denoted by tl� Future temporal
logic� i�e�� the fragment of tl having only the future operators next and until�
is denoted by ftl�

The above examples also illustrate a subtle feature of our de�nition�
When searching for a regular event in the future �using the L� connective��
we require that a word in L can be found which reaches precisely the last

�



state of the temporal database� Similarly� when searching in the past� a word
must be found which reaches precisely the �rst state� We refer to this as full
search� as opposed to partial search which does not require the match to
reach the beginning or end� As illustrated in some of the above examples�
it is easy to simulate partial search using full search� it su�ces to continue
testing for true after the desired match has been found��

We still have to de�ne formally how etl formula express queries� Let
��x�� � � � � xk� be an etl formula with k free variables� Then � expresses the
query

Q�I� �� f�a�� � � � � ak� j I� � j� ��a�� � � � � ak	g�

So the evaluation of an etl query is started in the �rst state�

� Comparing ts�fo with temporal logic

By the expressive power of a query language one means the class of queries
expressible in that language� In this section� we compare the languages
ts�fo� ftl� tl and etl with respect to expressive power� Their relationship
is depicted in Figure ��

The containments ftl � tl � etl are trivial� Also the containment
tl � ts�fo is clear� for example� to express that � until � holds at t� one
states that there exists t� � t such that � holds at t� and � holds at each
t�� between t and t�� As shown in Example ���� the query �the length of
the temporal database is even� is expressible in etl� It is not expressible
in ts�fo� since parity of a linear order is well�known not to be �rst�order
de�nable�

Hence� to complete the picture provided by Figure �� we have to prove
that �i� there are queries expressible in tl but not in ftl� and �ii� there are
queries expressible in ts�fo but not in etl� These two proofs are given in
the next two subsections�

��� tl versus ftl

Theorem ��� The Boolean query Q� ��t � ���	x�� �S�x� t� 
 �S�x� ���� is
expressible in tl but not in ftl�

�We leave it as an exercise for the reader to show that conversely� full search can be
simulated using partial search	

�



Proof� We can express Q in tl as

next���	x��S�x�
 �
���rst � S�x����

where we have used the abbreviations

�
� � � true until ��

�
� � � true since ��

�rst � � previous true�

�Note that �rst is only true in the �rst state��
To show that Q is not expressible in ftl� we �rst observe that ftl�

formulas can be written in a normal form� where the only way the operator
until can occur is in a combination with next of the form next�� until ���
Indeed� � until � is equivalent to �� � �� � �� � next�� until ����

Now let � be an ftl sentence in normal form� Let D be some arbitrary
�xed �nite domain of data elements� let d be the cardinality ofD� and let n �
� be some arbitrary �xed natural number� We consider temporal databases
I�� � � � � In on D� and de�ne the function F on the �tails� of such databases
by

F �I�� � � � � In� �� fI� j �I�� I�� � � � � In�� � j� �g�

If � expressed the query Q� then the cardinality of the image of F would
be

nX
k��

�
�d

k

�
�

Indeed� two sequences I�� � � � � In and I ��� � � � � I
�
n have the same image by F if

and only if the sets fI�� � � � � Ing and fI ��� � � � � I
�
ng are the same� But there are�

�d

k

�
ways to choose a set of k distinct subsets of D�

As a particular case� if n is �d� the cardinality of the image of F is ��
d

�
However� in Lemma ��� we will show that the cardinality of the image of F
is at most �d

�

� for some integer � depending only on �� and for su�ciently
large d� We thus arrive at a contradiction�

Lemma ��� The cardinality of the image of F is at most �d
�

� for some

integer � depending only on �� and for su�ciently large d�

Proof� Call a temporal subformula of �� any subformula of the form next�

or next�� until ��� A temporal subformula of � is called maximal if it is

�



not a subformula of another temporal subformula of �� Let ��� � � � � �k be
the maximal temporal subformulas of �� For each �i� the satisfaction of �i
on a temporal database �I�� I�� � � � � In� at the �rst state only depends on
the tail I�� � � � � In of that database� So� the following function Fi on tails is
well�de�ned and does not depend on a particular choice for I��

Fi�I�� � � � � In� �� f�a j �I�� I�� � � � � In�� � j� �i��a	g�

If �i denotes the number of free variables of �i� the image of Fi is a set of
relations of arity �i� and thus its cardinality is at most �d

�i � But� Lemma ���
will imply that the cardinality of the image of F is less than the product
of the cardinalities of the Fi�s� Hence� if we take � � max���� � � � � �k�� the
cardinality of the image of F is less than �d

�

for su�ciently large d� since �d
�

dominates �d
�������d�k for su�ciently large d�

Lemma ��� There is an injection � � ImF �
kY
i��

ImFi�
�

Proof� Let � be a function such that for each x in ImF � there is a tail
�I�� � � � � In� with F �I�� � � � � In� � x �we call such a tail an antecedent of x�
such that�

��F �I�� � � � � In�� � �F��I�� � � � � In�� � � � � Fk�I�� � � � � In���

Note that the choice of the antecedent of x by F is arbitrary�
Such a function � is injective� Indeed� if F �I�� � � � � In� and F �I ��� � � � � I

�
n�

have the same image by �� the de�nition of � ensures that Fi�I�� � � � � In�
and Fi�I

�
�� � � � � I

�
n� are equal for all i� But � is a �rst order combination of

the �i and of �rst�order formulas evaluated on I�� so that for a given I�� �
has the same value on I�� I�� � � � � In and I�� I

�
�� � � � � I

�
n� So� F �I�� � � � � In� �

F �I ��� � � � � I
�
n� which yields the result�

��� etl versus ts�fo

In this subsection� we �rst introduce a variant of the communication protocols
of Yao ���	 �see also ���	�� and introduce the notion of �constant communica�
tion complexity� of binary predicates on sets of sets �of data elements�� We

�By Im f we mean the image of a function f 	

��



also introduce the class of split temporal databases� Each binary predicate
on sets of sets gives rise to a query on split databases� We then prove that if
the communication complexity of a predicate is not constant� then the cor�
responding query is not expressible in etl� However� natural predicates of
non�constant communication complexity exist whose corresponding queries
are expressible in ts�fo�

����� Communication protocols

Let P be a binary predicate on sets of sets of data elements� We say that P
has constant communication complexity if there exist �xed natural numbers
k and r and a communication protocol between two parties �denoted by A
and B� that� for each �nite set D of data elements� can evaluate P �X� Y � on
any sets X and Y of non�empty subsets of D as follows�

�� A gets X and B gets Y � Both parties also know D�

�� A sends a message a� � a��D�X� to B� and B replies with a message
b� � b��D� Y� a�� to A� Each message is a k�ary relation on D�

�� A again sends a message a� � a��D�X� b�� to B� and B again replies
with a message b� � b��D� Y� a�� a���

�� After r such message exchanges� both A and B have enough information
to evaluate P �X� Y � correctly� Formally� they apply a Boolean function

ar���D�X� b�� � � � � br� �for A�

or
br���D� Y� a�� � � � � ar� �for B�

that evaluates to true i
 P �X� Y � is true�

So� formally� a protocol consists of the functions a�� � � � � ar� ar�� and b��
� � � � br� br��� Note that the computing power of A and B is unlimited� the
functions de�ning the protocol can be completely arbitrary�

Example ��� As a simple example� let P �X� Y � be true if the maximal
cardinality of an element in X is larger than the maximal cardinality of an
element in Y � Then P has constant communication complexity with k � �
and r � �� Indeed� A sends to B an element of X with maximal cardinality�
and B replies with an analogous element for Y � Both A and B can then
evaluate P �X� Y � on their own� by a simple comparison of cardinalities�

��



We have a �rst lemma�

Lemma ��� The equality� inclusion and disjointness predicates do not have

constant communication complexity�

Proof� Suppose there is a communication protocol for the equality predicate
with r exchanges of messages of arity k� Call any such sequence a�b� � � � arbr
of messages a dialogue� Since k is �xed� for large enough D there are less
dialogues than sets of non�empty subsets of D� Hence� there are two di
erent
such sets X and Y such that the protocol yields the same dialogue when
evaluating P �X�X� and P �Y� Y �� But then this same dialogue will also be
used for evaluating P �X� Y �� a contradiction�

It follows that the inclusion and disjointness predicates are not of con�
stant communication complexity either� Indeed� communication protocols
for these predicates can be easily transformed into a communication proto�
col for equality� It su�ces to observe that X � Y i
 X is included in Y and
vice versa� and that X � Y i
 X and the complement of Y are disjoint�

Our notion of communication protocols is a �set�based� variant of the
original bit�based one� where the predicate to be evaluated is a predicate on
bit�strings� and the exchanged messages are individual bits� Yao ���	 showed
in this setting that the equality predicate on strings of length n requires a
number of bit exchanges that is linear in n� Lemma ��� can also be proven
from this fact�

����� Split databases

We now �x the database schema to consist of one single unary relation S�
A temporal database is then a sequence of �nite sets of data elements� A
temporal database is called split if there is exactly one state whose instance
is empty� This state is called the middle state of the split database� If
I � I�� � � � � In is a split database with middle state m then its right part

Im� � � � � In is denoted by Iright and its left part I�� � � � � Im by Ileft � Observe
that one can test in tl whether a temporal database is split�

We next de�ne an auxiliary language split�etl whose semantics is only
de�ned on split databases� Syntactically� split�etl di
ers from etl only
in that each temporal operator L� �L�� is split into a �left� and a �right�
version L�

left and L�

right �L
�
left and L�

right��

��



Informally� the left �right� version of a temporal operator behaves roughly
the same as the operator itself� except that only the left �right� part of the
split database is taken into consideration� Formally� let I be a split database
of length n with middle state m� For each state j of I� we de�ne

left�j� ��
�
j if j 
 m

m if j � m

and

right�j� ��
�
� if j 
 m

j �m� � if j � m

So� left�j� �right�j�� is the state in the left �right� part of I corresponding
to j� if j is indeed contained in that part� if not� the default values m and ��
respectively� are used�

The semantics of the split temporal operators is then de�ned as follows�
For 	 being either � or �� I� j j� L�

left if Ileft � left�j� j� L�� and I� j j� L�
right

if Iright � right�j� j� L��
We now have our second lemma�

Lemma ��� On split databases� each etl formula is equivalent to a split�

etl formula�

Proof� Consider a temporal operator L� of etl� with L a regular language
over the alphabet �v�� � � � � vp�� Then L is de�ned by some �nite automaton
M � Let the states of M be numbered �� � � � � q� with � the initial state� and
let F be the set of �nal states� For z � f�� � � � � qg and Z � f�� � � � � qg� let
MzZ be the automaton obtained from M by changing the initial state to z

and the set of �nal states to Z� and denote by LzZ the language de�ned by
MzZ� Let v� be a symbol not in the alphabet fv�� � � � � vpg� Then the etl

formula L����� � � � � �p� can be expressed in split�etl as

��at right � at middle� � L�

right���� � � � � �p�� �

�at left �
q�

z��

��L�fzg�
�

left���� � � � � �p� �

�v�LzF �
�

right�true� ��� � � � � �p����
In the above� the language v�LzF is interpreted over the alphabet �v�� v�� � � � � vp��
and we have used the abbreviations

at middle � ���x�S�x��
at left � K�

left�true� at middle��
at right � K�

right�true� at middle��

��



where K is the language a�b over the alphabet �a� b��
The case L� is treated similarly�

����� Inexpressibility

Let P be a binary predicate on sets of sets� as in Subsection ������ Consider
the Boolean query QP on split databases de�ned as follows� For a split
database I � I�� � � � � In with middle state m� QP �I� � true if P �L�R� holds�
where L � fIj j � 
 j � mg and R � fIj j m � j 
 ng�

Our third lemma connects temporal queries to communication protocols�

Lemma ��� If QP is expressible in etl� then P has constant communication

complexity�

Proof� Assume QP is expressible in etl� By Lemma ���� QP is expressible
by a split�etl formula �� Consider all subformulas of � of the form L�

��� � ���
where 	 is � or � and 
 is left or right � and let ��� � � � � �r be a listing of
these such that each subformula occurs after its own subformulas� Let k be
the maximal number of free variables of any of these subformulas� We show
that � yields a communication protocol for P with r exchanges of messages
of arity k�

Let X and Y be two sets of non�empty subsets of a �nite set D of data
elements� and consider any split temporal database I with middle state m�
such that X � fIj j � 
 j � mg and Y � fIj j m � j 
 ng� In order to
evaluate P �X� Y �� it su�ces to evaluate QP �I�� for which in turn it su�ces
to evaluate � at some state of I� To do the latter� the parties evaluate� in
succession� each subformula �i on every k�tuple of active domain elements�
at the middle state� If the temporal operator of �i is a left �right� version�
then A �B� knows how to do this and he sends the resulting k�ary relation
to B �A��

Note in this respect that both parties can be assumed� without loss of
generality� to know the active domain of I� if not� they can send the set of
elements of D appearing in their set of sets to each other in a single exchange
of messages� When the values of all the �i are known to both parties� they
have enough information to evaluate ��

Putting everything together� we obtain our main result�

��



Theorem ��	 Over schemas containing at least one relation of non�zero

arity� there are queries expressible in ts�fo but not in etl� In particular�

query Q �are there two di�erent states with the same instance�	 is expressible

in ts�fo but not in etl�

Proof� Without loss of generality we assume the schema consists of a single
unary relation S� Query Q is obviously expressible in ts�fo�

��t���t���t �� t� � �	x�� �S�x� t�
 �S�x� t�����

On the class of split databases whose left and right parts do not contain
repetitions� Q corresponds to QP � where P is the non�disjointness predicate�
By Lemma ���� the complement of P �so also P itself� does not have constant
communication complexity� Hence� by Lemma ���� Q is not expressible in
etl�

An important remark that can be made concerning our result is that it
remains valid under the assumption that a total order on the data elements is
available� Indeed� the proof of Lemma ��� holds regardless of any additional
knowledge �e�g�� a total order� the parties may have of the set D�

����� In�nite temporal databases

We conclude this section by extending our result to the case of in�nite �but
still discrete�time� temporal databases�

An in�nite temporal database over a schema S is an in�nite sequence
I � I�� I�� � � � of instances of S� So� the set of states is the set of non�
negative natural numbers� and the active domain may be in�nite �although
every individual instance is� by de�nition� still �nite�� In the present discus�
sion� we focus on expressiveness� and not on the issue of �nitely representing
an in�nite temporal database� or e
ectively computing answers to queries�
References on these issues can be found in ��	�

The query languages ts�fo and etl can also be used on in�nite temporal
databases� For ts�fo� this is clear� For etl� one uses ��languages rather
than ordinary languages in de�ning the semantics of the future temporal
operators� since the future of every state is now in�nite� The past of every
state is� on the contrary� still �nite� �Though the present discussion extends
easily to the case of two�way in�nite temporal databases�� An ��language ���	
is a set of in�nite� rather than �nite� words� and that a regular ��language

��



can still be de�ned by a �nite automaton� an in�nite word is accepted by the
automaton if while reading the word it enters an accepting state in�nitely
often�

We now argue that our techniques of the previous section extend to the
in�nite case� An in�nite temporal database is again called split if there is
exactly one state whose instance is empty� The right part of an in�nite split
database is itself in�nite� the left part is �nite� Syntax and semantics of split�
etl on in�nite split databases are de�ned in terms of etl exactly as before�
The result that split�etl can simulate etl on split databases goes through
in the in�nite case� the only modi�cation to the proof of Lemma ��� is that
in the large expression for L�� LzF now becomes an ��language� Finally� the
proof of Lemma ��� carries over verbatim� with the condition that instead
of a �nite I � I�� � � � � In we use an in�nite I � I�� I�� � � �� and instead of
fIj j m � j 
 ng we use fIj j m � jg� Note that this implies that party B
of the protocol deals with an in�nite object� but this is of no concern since
his computing power is unlimited�

The result of this section can thus be summarized as follows�

Theorem ��
 Both on �nite and on in�nite temporal databases over a schema

containing at least one relation of non�zero arity� there are queries express�

ible in ts�fo but not in etl� As a consequence� tl is strictly weaker than

ts�fo�

� Iterative queries

Let us �rst brie
y recall how relational calculus is extended with iteration to
obtain the language while� �See ��	 for a more detailed presentation of the
languages while and fixpoint considered in the following sections��

An assignment statement is an expression of the form X �� E� where
X is an auxiliary relation and E is a relational calculus query which can
involve both relations from the database scheme and auxiliary relations� Each
auxiliary relation has a �xed arity� in the above assignment statement� the
arity of the result of E must match the arity of X�

We can now build programs from assignment statements using sequencing
P��P� and while�loops� if P is a program� then so is while � do P od� where
� is a relational calculus sentence� The query language thus obtained is called
while� The execution of a program on a database instance is de�ned in the

��



obvious manner� The result of the query expressed by a program is the value
of some designated answer relation at completion of the execution��

The language while on the timestamp representations of temporal data�
bases provides a very powerful temporal query language which is denoted by
ts�while�

Example ��� The query �give the elements that belong to all odd�numbered
states� is not expressible in the relational calculus with timestamps� but it
is expressible in ts�while as follows�

Current �� f�g�
A �� fx j S�x� ��g�
while ��t���t���Current�t� � t� � t � �� do
Current �� ft� j ��t��Current�t� � t� � t � ��g�
A �� A � fx j ��t��Current�t� � S�x� t��g

od�

In the above program� Current and A are auxiliary relations� and A is the
answer relation� The use of the constant ��� and the addition �t� � t� �� are
only abbreviations which can be directly expressed in terms of the order on
the timestamps�

An alternative temporal query language based on while� not involving
timestamps� can be obtained by extending while with more implicit tem�
poral features� One way to do this is to execute programs on a machine
which can move back and forth over time� Formally� we provide� in addition
to assignment statements� the two statements left and right which move
the machine one step in the required direction�� Furthermore� we partition
the auxiliary relations into state relations� which are stored in the di
erent
states� and shared relations� which are stored in the memory of the machine
itself� So� the values of �and assignments to� state relations depend on the
current state the machine is looking at� while this is not the case for shared
relations� Finally� we assume two built�in nullary state relations First and
Last � with First being true only in the �rst state� and Last being true only
in the last state� The machine always starts execution from the �rst state�

The temporal query language while extended with left and right moves
just described is denoted by t�while�

�If the execution loops inde�nitely� the result is unde�ned	 In�nite loops can always
be detected at run time in while ���	

�In the �rst state� left has no e�ect� in the last state� right has no e�ect	

��



Example ��� The query from Example ��� can be expressed in t�while as
follows�

shared A���� Even����

A �� fx j S�x�g� Even �� f��g�
while �Last do
right�
Even �� f��g � Even�
if Even �� � then A �� A � fx j S�x�g

od�

In the above program� A and Even are both shared relations� Note how they
are �declared� as variables in the beginning of the program� indicating their
status of shared relation and their arity� we will always use such declarations
when presenting t�while programs in the sequel� The if�then construct is
only an abbreviation and can be expressed in the relational calculus�

We next study the expressive power of t�while� We will see in the next
section that it strictly encompasses ts�fo� and hence tl as well� We now
show�

Proposition ��� t�while is strictly contained in ts�while�

Proof� The simulation of t�while by ts�while is done using a Current

relation as in Example ��� which holds the current temporal position of the
machine� The state relations are simulated by their time�stamped version�
whereas no special transformation is needed for shared relations� The re�
trieval of a state relation is simulated by a join between its time�stamped
version and Current� First is simulated by the formula

���t���t���Current�t� � t� � t�

Last is simulated symmetrically� A left move is simulated by updating the
Current relation �a right move is simulated symmetrically��

Current �� if �First then Current

else ft� j ��t��Current�t� � t� � t� �g�

��



where t� � t� � is an abbreviation for �t� � t� � ���t����t� � t�� � t��
The argument for strictness is based on complexity� If we restrict our

attention to propositional databases �having only relations of arity ��� the
complexity of ts�while programs in terms of the length n of the tempo�
ral database only is precisely pspace� Indeed� on propositional databases�
ts�while reduces to the language while on an ordered relational �non�
temporal� database consisting of a number of unary relations on timestamps�
while is well�known to coincide with pspace on ordered databases ��	� How�
ever� the space complexity of t�while programs in terms of n is linear� we
only have to store the state relations at each state� The proposition then
follows from the space hierarchy theorem ���	�

� Fixpoint queries

General while programs can only be guaranteed to run in polynomial space
�pspace� and hence their computational complexity is probably intractable
in general� However� there is a well�known restriction of while which runs
in polynomial time �ptime�� This restriction consists of allowing only in�


ationary assignment statements� of the form X �� X � E �abbreviated
X �� E�� Before execution of an in
ationary while program all auxiliary
relations are initialized to the empty set� In such an execution� a while�loop
whose stopping condition is never ful�lled� and thus seemingly loops forever�
will repeat a con�guration after an at most polynomial number of steps��

The computation has then �reached a �xpoint� and the result of the query
can be determined as well as if the program execution would have ended
normally� The query language thus obtained is therefore called fixpoint�	

On ordered databases �where a linear order on the active domain is avail�
able in a database relation�� a query is in ptime if and only if it is expressible
in fixpoint� It is an open question whether fixpoint is strictly weaker
than while� but it is known ��	 that this question is equivalent to the open
problem in computational complexity on the strict containment of ptime in

�A con�guration of a program execution consists of the values of the auxiliary relations
plus the position in the program	

�Usually ��� the language fixpoint is de�ned using �repeat�while�change� loops instead
of while�loops with a stopping condition	 We have chosen our de�nition because it yields a
more �exible language when extended to a temporal context �cf	 the language t�fixpoint
to be de�ned later�	

��



pspace�
Similarly to ts�while� the language fixpoint on timestamp representa�

tions of temporal databases provides a powerful yet computationally tractable
temporal query language denoted by ts�fixpoint�

Example ��� The query of Example ��� can also be expressed in ts�fixpoint
as follows�

Current �� f�g�
B �� fx j �S�x� ��g�
while ��t���t���Current�t� � �Current�t�� � t� � t� �� do
Current �� ft� j ��t��Current�t� � t� � t � ��g�
B �� fx j ��t��Current�t� � �S�x� t��g

od�
A �� fx j �B�x�g�

Remember that data variables �such as x in the formula �S�x� ��� range over
the data elements in the active domain only�

Note that this query could be expressed simpler by storing all odd states
in a relation� and then computing the intersection of these states�

As an alternative to ts�fixpoint� we could depart from the language
t�while and restrict it to in
ationary assignments only� to obtain a ptime
temporal query language� However� this language would be rather in
ex�
ible� since a pure in
ationary restriction is an obstacle to the inherently
non�in
ationary back�and�forth movements along time involved in temporal
querying� �For simple temporal queries involving only one single scan� this
would su�ce��

This obstacle can also be analyzed using a complexity argument� As we
have seen in Proposition ��� for t�while� the available space is linear in the
length n of the sequence� In fixpoint� the restriction to ptime is achieved
by a careful in
ationary use of space� Thus� the restriction of t�while to
in
ationary assignments would lead to a computation that would run in time
linear in n�

We propose to alleviate the problem by adding two extra features to stan�
dard fixpoint that allow to use non�in
ationary assignments in a controlled
manner� �local variables� and �non�in
ationary variables��

�a� Local variables to blocks� Certain auxiliary relations can be declared as
local variables to program blocks� These relations can only be assigned

��



to within the block� and each time the block is exited� they are emptied�
�If the local variables are state relations� they are emptied in each
state�� Syntactically� if P is a program then � local V�� � � � � Vr� P � is
a program block with local auxiliary relations V�� � � � � Vr�

�b� Non�in
ationary variables� Certain auxiliary relations can be declared
to be non�in
ationary� They can be assigned to without any in
ation�
ary restriction� However� they are not taken into account in determin�
ing whether the program has reached a �xpoint� �Hence� this remains
in ptime�� Syntactically� these variables will be declared using the
keyword noninf�

The in
ationary restriction of t�while� to which the above two extra
non�in
ationary features are added� yields a temporal query language that
we call t�fixpoint� Con�gurations of t�fixpoint programs now include
the current temporal state of the machine� which is taken into account to see
whether the computation has reached a �xpoint �i�e�� repeated a con�gura�
tion��

It is important to note that the extra features of local and non�in
ationary
variables only make a di
erence in the context of t�fixpoint� in the stan�
dard fixpoint language� they can be simulated as shown in the next propo�
sition� This result is interesting in its own right� since it facilitates expressing
ptime computations in fixpoint� It also indicates a fundamental distinction
between temporal querying and non�temporal querying�

Proposition ��� Adding program blocks with local variables and nonin
a�

tionary variables with the restrictions described above to fixpoint does not

increase the expressive power of the language�

Proof� We only present a sketch of the argument� The key observation is
that� due to the in
ationary nature of the computation� a program block
can be executed only so many times as tuples are inserted in the auxiliary
relations that are global �i�e�� not local� to this block� Hence� the contents
of the local variables can be simulated by versioning their tuples with the
tuples inserted in the global variables since the previous invocation of the
program block �using Cartesian product�� Emptying the local variables then
simply amounts to creating a new version� The old versions are accumulated
in a separate relation� In this manner the process is entirely in
ationary� as
desired�

��



We can also simulate the nonin
ationary variables using a similar ver�
sioning technique� The version consists of the tuples inserted in the ordinary�
in
ationary variables since the previous non�in
ationary assignment� Since
the program terminates as soon as the in
ationary variables reach a �xpoint�
we will not run out of versions�

We now illustrate the use of local variables and non�in
ationary variables
in t�fixpoint by means of the following two examples� We �rst illustrate
local variables�

Example ��� Assume the database scheme contains two unary relations S
and T � One way to express the temporal logic query fx j S�x� until T �x�g in
t�fixpoint is as follows�

state Mark����
shared N���� A����

Mark �� f��g�
N �� �S�
A �� �N � T

while �Last do
right�
N �� �S�
A �� �N � T

od�
while �Mark do left od�

In the above program�Mark is a �nullary� state relation which is used to mark
the initial state� Relations A and N are shared� A is the answer relation� and
N keeps track of the elements that are not in S in some state encountered
so far� if x is in N the �rst time it is found to be in T � x does not satisfy
S�x� until T �x�� The �nal while�loop returns to the marked state �the use of
this will become clear immediately��

Suppose now that we have an additional third unary database relation R�
and we want to express the more complex temporal logic query fx j R�x�until
�S�x�untilT �x��g� A simply way to do this would be to use the above program
as a subroutine� However� in doing this� care must be taken that the auxiliary
relations Mark � A and N are cleared after each invocation of the subroutine�
This is precisely the facility provided by the local variables in t�fixpoint�
Written out in full� we can thus express the query in t�fixpoint as follows�

��



shared N����� A�����

N� �� �R�
P �
while �Last do
right�
N� �� �R�
P

od�

where P is the following program block�

� local state Mark����
local shared N���� A����

Mark �� f��g�
N �� �S�
A �� �N � T �
while �Last do
right�
N �� �S�
A �� �N � T

od�
while �Mark do left od�
A� �� �N� � A

��

We next illustrate the kind of computations that can be performed using
nonin
ationary variables�

Example ��� Assume the database scheme consists of a single binary rela�
tion R� Consider the program�

noninf shared S����
S �� R�
while �Last do
right�
S �� fx� y j ��z��S�x� z� � R�z� y��g

od�

At the end� if the last state of the temporal database is numbered n� S
contains the set of pairs �x�� xn� such that there exist x�� x�� � � � � xn with
such that �xi� xi��� is in R in the i�th state� for each i � f�� � � � � ng�

��



� Comparisons

In this section� we �rst show that the expressive power of t�fixpoint lies
between ts�fo and ts�fixpoint� Then we show that etl can be simulated
in t�fixpoint� Finally� we compare t�fixpoint and t�while�

Theorem ��� ts�fo is strictly contained in t�fixpoint�

Proof� Each timestamp variable is represented by a nullary state relation
which is true exactly in the state numbered by the current value of the
variable� plus all states to the left of that state� The simulation now proceeds
by induction on the structure of the formulas� We show that for each ts�fo

formula � with free data variables x�� � � � � xk and free time variables t�� � � � � tl�
there is a t�fixpoint program which computes the relation consisting of all
data variables x�� � � � � xn for which � is true� when the time variables t�� � � � � tn
are �xed� The basis consists of atomic formulas� An atomic formula S�x� t�
is simulated by searching for the state where t is true and returning S in that
state� A comparison t � t� between timestamp variables is simulated by a
left�to�right scan checking whether t is true before t��

The induction is then clear if the formula � consists of a disjunction�
negation� and existential quanti�cation of data variables which are simulated
using union� complementation� and projection as usual� Finally� existential
quanti�cation of a timestamp variable is performed by a while�loop which
repeatedly sets the variable true from left to right� and computes the dis�
junction of all the partial results �

The inclusion is strict because we will see later that t�fixpoint can
simulate etl� and we already know that there are queries expressible in etl
but not in ts�fo�

Theorem ��� t�fixpoint is contained in ts�fixpoint�

Proof� The simulation is analogous to that of t�while by ts�while in the
proof of Proposition ���� The local and nonin
ationary relation variables
of the t�fixpoint program can be handled by Proposition ���� The only
di�culty that arises is the unary relation Current which is used in an entirely
non�in
ationary manner� We cannot simply change this relation into a non�
in
ationary one and apply Proposition ���� since a t�fixpoint programmust
be able to move in time �to be simulated by the relation Current� without

��



changing any of its in
ationary relation variables� However� the semantics of
t�fixpoint guarantees that such behavior can only last for at most n steps�
where n is the length of the temporal database� Hence� instead of using
a unary relation for Current � we can use a binary one which is organized
as a linear order and is versioned by the tuples inserted in the in
ationary
relation variables� as in the proof of Proposition ���� The current position is
always the maximum element in the order� Initially� Current contains ��� ���
to simulate a move to the right the tuples ��� �� and ��� �� are added� and
so on� This can go on until a move in the opposite direction occurs� then a
new version is created with initial contents �i� i� where i is the new current
position� Now repeated moves either to the left or the right can be recorded
in the same orderly fashion� again until a move in the opposite direction
occurs� after which again a new version is created� and so on�

It is not clear whether the converse of Theorem ��� holds� This is again
because of the linear space complexity in the number of states of t�while
�and hence also of t�fixpoint� programs already mentioned in the proof of
Proposition ���� Indeed� we can reduce the containment of ts�fixpoint in
t�fixpoint to the containment of ptime in the complexity class plinspace
which we de�ne as follows�

A problem is in plinspace if it can be solved by a Turing machine
in polynomial time using only linear space�

Observe that if ptime is included in plinspace� then in particular� ptime
is included in linspace which is an open question of complexity theory� We
observe�

Lemma ��� Every plinspace query on ordered temporal databases is ex�
pressible in t�fixpoint�

Here� by an ordered temporal database we mean that a total order on the
active domain is explicitly given by some relation� the same in all states�

Proof� The structure of the proof is the same as that of the proof presented
in ��� Chapter ����	 of the well�known fact that the language fixpoint can
express any ptime query on ordered relational �non�temporal� databases�

Let Q be a plinspace query on ordered temporal databases� To each
ordered temporal database I� Q associates an answer relation Q�I�� of some

��



�xed arity� on the active domain of I� Moreover� there is a polynomial�time�
linear�space Turing machine M which� given as input an encoding of some I�
produces as output an encoding of Q�I��

We will show there exists a t�fixpoint program qM expressing Q in three
phases� ��� construct an encoding of I that can be used to simulate M � ���
simulate M � and ��� decode the output of M �

We assume the reader is familiar with a standard way of encoding an
ordinary �i�e�� non�temporal� relational database on a Turing machine tape
��� Chapter ����	� Now recall that a temporal database is a sequence of
relational databases �states� of a common schema and over a common domain
of data elements� Let d be the number of data elements and let n be the
length of the sequence� We assume that a temporal database is encoded on
a Turing machine tape simply as the sequence of encodings of its states� The
size of this encoding is O�ndk� for some �xed natural number k�

Since M uses linear space� we need to be able to represent� in qM � a
tape of length ndk� This can be done by using several k�ary non�in
ationary
auxiliary state relation variables� one with name �� for each letter � of the
tape alphabet� and one with name Head � For example� assume the idk� j�th
cell on the tape contains the letter �� with � 
 i 
 n � � and � 
 j 
 dk�
This is represented by having the tuple �a�� � � � � ak� in the contents of �� at
the i � ��th state� where �a�� � � � � ak� is the j�th tuple in the lexicographic
ordering of k�tuples of data elements according to the given total order on
the active domain� The position of the Turing machine head on the tape is
represented using relation Head in a similar manner�

SinceM runs in polynomial time� the length of its computation is bounded
by �ndk�l for some �xed natural number l� To represent a clock ticking pre�
cisely this many times� we use l auxiliary state relation variables A�� � � � � Al

of arity k� These variables will be local to nested while�loop blocks� The
nested blocks encapsulate the actual simulation of M in qM � and clock the
simulation as shown schematically below for l � ��

� local state A��k��

while change do
in the �rst state where A� is not yet full�
add the lexicographically �rst k�tuple
not yet in A� to A��

� local state A��k��

while change do

��



in the �rst state where A� is not yet full�
add the lexicographically �rst k�tuple
not yet in A� to A��

Simulate the next step of M �s computation

od
�

od
��

The actual construction of the encoded database on the input tape �us�
ing the representation described above� as well as the actual simulation of
M �s con�guration transitions and the �nal decoding phase� are very much
standard ��� Chapter ����	� The only non�standard aspect is that here� the
program qM must use the t�fixpoint capability of moving over the time
instants to access the various portions of the simulated tape�

Theorem ��� Assuming ordered databases� ts�fixpoint � t�fixpoint if

and only if ptime � plinspace�

Proof� If� Consider a ts�fixpoint query Q� Then Q is in ptime� Note
that this means that Q is computable by a polynomial�time Turing machine
working on an encoding of the timestamp representation of the input tempo�
ral database� However� such a machine can be readily modi�ed so as to work
on the direct encoding of the temporal database used to prove Lemma ����
Moreover� since we assume ptime � plinspace� the machine can be assumed
to work in linear space� Lemma ��� then shows that plinspace queries can
be computed in t�fixpoint� Thus Q is in t�fixpoint�

Only if� Let Q be a set of binary words decidable in ptime� Consider the
coding of Q as a Boolean query on temporal databases over a scheme con�
sisting of a single relation name T � of arity �� a word x� � � � xn is represented
by the database I� � � � In� where Ij�T � � � if xj � � and Ij�T � � f��g �the
empty tuple� if xj � �� for j � �� � � � � n� The timestamp representations of
such databases are ordered relational databases� since the order on the states
is given and there are no data elements� As mentioned in the beginning of
Section �� any ptime query on ordered databases is expressible in fixpoint�
Hence� Q can be computed by a ts�fixpoint�program� and thus by our as�
sumption� also by a t�fixpoint�program� This program runs in polynomial
time� and since the active domain of each database is empty� it uses only
linear space� Thus� Q is in plinspace�

��



Theorem ��� etl is strictly contained in t�fixpoint�

Proof� The simulation of etl in t�fixpoint is analogous to the simulation
of tl in t�fixpoint illustrated in Example ���� To simulate a temporal
operator associated to a regular language L� we consider a �nite automaton
accepting L� For each state of the automaton we use an auxiliary relation
playing a role similar to N in Example ���� keeping track of the status of
the elements during the simulation of the automaton� The state�changes of
the automaton are performed while moving over the states of the temporal
database� The state�changing relations must be implemented using non�
in
ationary variables� since the working of the automaton is not in
ationary�

To show that the inclusion is strict� one may want to argue simply that in
t�fixpoint one can compute the transitive closure of a binary relation� which
is impossible in etl �on temporal databases of length one� etl collapses to
ordinary �rst�order logic�� However� this argument is insu�ciently general
because it does not apply in the case of unary or nullary relational schemas�
Instead� we show that it is possible in t�fixpoint to check whether the
length of the temporal database is a prime number� This is impossible in
etl� since etl is known ��	 to be able to express only regular properties of
the length of a database �representing a number as a unary word�� Actually�
we will show how to express the complementary query� checking whether the
length is a composite number�

Consider the algorithm shown in Figure �� which tests whether a natural
number n � � is composite� This algorithm is special in that the auxiliary
variables it uses take only values between � and n� the only test it uses is
equality between one variable and another or n� and the only operations it
uses is assigning one variable to another� incrementing a variable by one� and
setting a variable to one�

We can simulate the algorithm of Figure � by a program in t�fixpoint�
A variable having a value i between � and n �the length of the temporal
database� can be simulated by a nullary state relation variable whose value is
f��g �the non�empty nullary relation� used as the truth value �true�� in state
i and � �used as the truth value �false�� in all other states� The simulation
is shown in Figure �� Nullary relation variables are used as propositional
variables in the obvious manner�

Finally� we compare t�fixpoint to t�while� It is quite easy to see that
their equality is very unlikely�

��



begin
composite �� false�
factor �� �� factor �� factor � ��
while not composite and factor �� n do
product �� factor �
while product �� n do
counter �� ��
product �� product � ��
while counter �� factor and product �� n do
counter �� counter � ��
product �� product � �

od�
if counter � factor and product � n then
composite �� true

od�
factor �� factor � �

od
end�

Figure �� A special algorithm for testing compositeness of a natural num�
ber n�

��



shared Composite���� state Factor����
right� Factor �� true�
while �Composite � �Last do
� local state Product����
while �First do left od�
Product �� true�
while �Last do
� local state Counter����
local shared Counter eq Factor����
while �First do left od�
Counter �� true�
while �Product do right od�
Product �� false� right� Product �� true�
while �Counter eq Factor � �Last do
while �Counter do left od�
Counter �� false� right� Counter �� true�
Counter eq Factor �� Factor �
while �Product do right od�
Product �� false� right� Product �� true

od�
Composite �� Counter eq Factor � Last �

od�
while �Factor do left od�
Factor �� false� right� Factor �� true �

od�

Figure �� Program in t�fixpoint for testing compositeness of the length of
the temporal database�

��



Proposition ��� If t�fixpoint � t�while� then ptime � pspace�

Proof� Suppose that t�fixpoint � t�while� Then� in particular� t�fixpoint
equals t�while on temporal databases consisting of a single state� and hence�
fixpoint equals while� As mentioned in the beginning of Section �� this is
known to imply ptime � pspace�

It remains open whether the converse of the above proposition holds�

� Simulating timestamps by data elements

For clarity� we have separated the data elements in a temporal database from
the natural numbers used to number its states� If� however� one allows these
natural numbers to be stored in the database instances� interesting cases can
be indicated in which the di
erences between implicit and explicit access to
time disappear�

A class of situations in which ts�fo is no longer more powerful than tl

is given by the following general de�nition� Let 
��z� be an arbitrary �xed
tl�formula� For each state j of a temporal database I� 
 de�nes a relation

�Ij� on the j�th instance Ij� If 
�Ij� and 
�I�� are non�empty and disjoint
for any two di
erent states j and �� I is called 
�diverse� We observe�

Proposition ��� Let 
 be a tl�formula� On 
�diverse databases� tl is

equivalent to ts�fo�

Proof� We show inductively how a ts�fo�formula � can be translated into
an equivalent tl�formula ��� For simplicity we assume the schema consists
of a single relation S� We will use the abbreviation �� for true until ��

� To each time�variable t of ts�fo we associate distinct variables zt�� � � � �
ztm� where m is the number of free variables of 
� We denote the tuple
zt�� � � � � z

t
m by �zt�

� An atomic formula �S��x� t� is translated into ��S��x� � 
��zt���

� An atomic formula t � t� is translated into ��
��zt� � next�
��zt����

� � � � and �� are translated into �� � �� and ���� respectively�

� Finally� ��t�� is translated into ���zt��
��

��



Two examples of 
�diverse databases are the following�

� Assume the database schema contains a unary relation Time� and as�
sume the contents of that relation at the i�th state is the singleton
fig� Temporal databases of this kind are said to have local time� Since
local�time databases are 
�diverse� with 
 simply being Time�z�� the
above proposition yields that tl is equivalent to ts�fo on local�time
databases� The local time assumption is quite realistic in practice� and
has been made� e�g�� by Gabbay and McBrien ��	� It also seems to
be implicitly made by Tuzhilin and Cli
ord ���	� Proposition ��� thus
provides an a posteriori justi�cation of the� at �rst sight erroneous�
expressive completeness claims on tl made in ��� ��	�

� Insert�only databases are databases where for each j� the instance at
state j � � is obtained from the instance at state j by inserting a non�
zero number of tuples in some of the relations� Insert�only databases are
��disjoint with � being

W
�R��x��� previousR��x�� �where the disjunction

is over all relations R in the schema��

By an analogous proof to that of Proposition ��� we also readily see that
on 
�diverse databases� t�fixpoint is equivalent to ts�fixpoint and that
t�while is equivalent to ts�while� Moreover� in these query languages�

�diversity can sometimes be simulated� as shown in the following�

Proposition ��� Let p be a natural number� On ordered temporal databases

of length at most dp� where d is the size of the active domain� t�while is

equivalent to ts�while and t�fixpoint is equivalent to ts�fixpoint�

Proof� We can turn a database satisfying the property expressed in the
proposition into an A��z��diverse database� where A is a p�ary auxiliary state
relation� de�ned using a t�fixpoint�program which generates the p�tuples
of data elements one after the other in lexicographical order while moving
over the temporal database from left to right and assigning them to the state
relations A�

We conclude this brief section by noting that a result more general than
Proposition ��� can be proven� Indeed� the proposition remains true without
the assumption that the database is ordered� if we replace d by i� where i
is the number of k�types in the database for some k� �For the de�nition of

��



k�types we refer to ��� �	�� This is because the collection of k�types� with an
order on them� can be computed in t�fixpoint� in much the same way this
can be done in fixpoint on non�temporal databases�

� Concluding remarks

The main technical problem left open by our work is to determine whether
or not the converse to Proposition ��� holds� One way to approach this
problem is by trying to adapt the known proof ��	 that ptime � pspace

implies fixpoint � while �on non�temporal databases� to the temporal
setting�

Another natural open research issue is to further relate the fixpoint�
and while�based temporal query languages proposed in this paper to other
temporal query languages with iteration or recursion capabilities considered
in the literature� The prime example of such a languge is �the �rst�order
version of� �xpoint temporal logic �denoted �tl and proposed by Vardi ���	��
This language is clearly subsumed by ts�fixpoint� but its exact relation�
ship to ts�fixpoint as well as to t�fixpoint remains open� Other interest�
ing languages are Templog � a logic�programming language based on tl� and
Datalog�S� which extends Datalog with the successor function on timestamps�
A comprehensive presentation of these two languages was given by Baudinet�
Chomicki� and Wolper ��	� who also showed that they are equivalent to each
other� and that in the propositional case� they are equivalent to the positive
fragment of �tl� An important feature of Datalog�S is that programs can
use the successor function on timestamps in an unbounded way� it is not
only given on the set f�� � � � � ng of states of the input temporal database�
but on the whole of the natural numbers� The in�nite timestamped relations
that can result from this can always be �nitely represented� as shown by
Chomicki and Imieli�nski ��	� It is not di�cult to simulate a bounded version
of Datalog�S� where the successor function is only de�ned on the �nite set of
states of the input� in t�fixpoint�

We conclude this paper with a discussion on our proof of the separation
of ts�fo from tl and etl� presented in Section �� An alternative approach
to establish this result would be to prove that ts�fo�� the � time�variable
fragment of ts�fo� is strictly less expressive than full ts�fo� Indeed� it is
known and not di�cult to verify that every tl query is already expressible
by a formula in ts�fo using at most � distinct time�variables� Note that our

��



proof of Theorem ��� implies that tl is strictly contained in ts�fo�� actually�
the proof shows that even some ts�fo� queries are not expressible in tl�

More generally� one might conjecture that there is a strict hierarchy in
expressive power among the fragments ts�fok for each k� �It is known that
ts�fo

� ��� ts�fo
� ��� ts�fo

��� A closely related question from the �eld of
�nite model theory is whether there is a strict fok�hierarchy on the class of
ordered �nite graphs� Here� fok denotes the k variable fragment of standard
�rst�order logic on ordered graphs�

One might also try to separate tl and ts�fo with a proof based on
Ehrenfeucht�Fra !ss�e style games� Segou�n ���	 designed a very elegant exten�
sion of Ehrenfeucht�Fra !ss�e games capturing precisely the expressive power
of tl� In our experience� however� it is quite hard to explicitly construct
families of pairs of temporal databases that are indistinguishable in tl� Our
approach based on communication complexity turned out to be more suc�
cessful� Our proof is robust under built�in relations on data elements� such
as total order� and at the same time separates the more powerful etl from
ts�fo�

Acknowledgment

We thank Victor Vianu and Luc Segou�n for helpful discussions and encour�
agements during the course of this work� The third author also thanks Frank
Neven for proofreading a draft of this paper�

References

��	 S� Abiteboul� R� Hull� and V� Vianu� Foundations of Databases�
Addison�Wesley� �����

��	 S� Abiteboul and E� Simon� Fundamental properties of deterministic and
nondeterministic extensions of Datalog� Theoretical Computer Science�
������"���� �����

��	 S� Abiteboul and V� Vianu� Computing with �rst�order logic� Journal
of Computer and System Sciences� ���������"���� �����

��



��	 M� Baudinet� J� Chomicki� and P� Wolper� Temporal deductive data�
bases� In A� Tansel et al�� editors� Temporal Databases� Theory� Design�
and Implementation� Benjamin#Cummings� �����

��	 J� Chomicki� Temporal query languages� a survey� In D�M� Gabbay and
H�J� Ohlbach� editors� Temporal Logic� ICTL��
� volume ��� of Lecture
Notes in Computer Science� pages ���"���� Springer�Verlag� �����

��	 J� Chomicki and T� Imieli�nski� Finite representation of in�nite query
answers� ACM Transactions on Database Systems� ���������"���� June
�����

��	 E�A� Emerson� Temporal and modal logic� In J� van Leeuwen� editor�
Handbook of Theoretical Computer Science� volume B� Elsevier� �����

��	 D� Gabbay and P� McBrien� Temporal logic and historical databases�
In Proceedings ��th International Conference on Very Large Databases�
pages ���"���� �����

��	 D�M� Gabbay� I� Hodkinson� and M� Reynolds� Temporal Logic� Math�

ematical Foundations and Computational Aspects� volume � of Oxford
Logic Guides� Oxford University Press� �����

���	 D� Gabby� A� Pnueli� S� Shelah� and J� Stavi� On the temporal analysis
of fairness� In Conference Record �th ACM Symposium on Principles of

Programming Languages� pages ���"���� �����

���	 J�E� Hopcroft and J�D� Ullman� Introduction to Automata Theory� Lan�

guages� and Computation� Addison�Wesley� �����

���	 H� Kamp� Formal properties of �now�� Theoria� ������"���� �����

���	 J�A�W� Kamp� Tense Logic and the Theory of Linear Order� PhD thesis�
University of California� Los Angeles� �����

���	 C�H� Papadimitriou� Computational Complexity� Addison�Wesley� �����

���	 D� Perrin� Finite automata� In Handbook of Theoretical Computer Sci�

ence� volume B� Elsevier� �����

���	 L� Segou�n� Temporal logic and games� INRIA� VERSO� �����

��



���	 D� Toman and D� Niwinski� First�order queries over temporal data�
bases inexpressible in temporal logic� In P�M�G� Apers� M� Bouzeghoub�
and G� Gardarin� editors� Advances in Database Technology�EDBT����
volume ���� of Lecture Notes in Computer Science� pages ���"����
Springer� �����

���	 A� Tuzhilin and J� Cli
ord� A temporal relational algebra as a basis for
temporal relational completeness� In D� McLeod� R� Sacks�Davis� and
H� Schek� editors� Proceedings of the ��th International Conference on

Very Large Data Bases� pages ��"��� Morgan Kaufmann� �����

���	 M�Y� Vardi� A temporal �xpoint calculus� In Proceedings ��th ACM

Symposium on Principles of Programming Languages� pages ���"����
�����

���	 P� Wolper� Temporal logic can be more expressive� Information and

Control� �����"��� �����

���	 A� C��C� Yao� Some complexity questions related to distributive comput�
ing� In Proceedings ��th ACM Symposium on the Theory of Computing�
pages ���"���� �����

��


