Temporal connectives versus explicit
timestamps to query temporal databases®

Serge Abiteboul, Laurent Herr
INRIA-Rocquencourt!

Jan Van den Bussche
Limburgs Universitair Centrum?

Abstract

Temporal databases can be queried either by query languages work-
ing directly on a timestamp representation, or by languages using an
implicit access to time via temporal connectives. We study the dif-
ferences in expressive power between these two approaches. First, we
consider temporal and first-order logic. We show that future tem-
poral logic is strictly less powerful than past-future temporal logic,
and also that there are queries expressible in first-order logic with ex-
plicit timestamps that are not expressible in extended temporal logic.
Our proof technique is novel and based on communication complex-
ity. Then, we consider extensions of first-order logic with fixpoints or
while-loops. Again the explicit temporal version of these languages,
using timestamps, is compared with an implicit one, using instruc-
tions for moving in time. We also compare the temporal versions of
the fixpoint language with those of the while language.

*Preliminary reports on this work were presented at the International Workshop on
Temporal Databases (Ziirich, September 1995) and the 15th ACM Symposium on Princi-
ples of Database Systems (Montreal, June 1996).

tAddress: Domaine de Voluceau, B.P. 105, F-78153 Le Chesnay Cedex, France. E-mail:
serge.abiteboul@inria.fr and laurent.herr@inria.fr.

tAddress: LUC, Department WNI, B-3590 Diepenbeek, Belgium. E-mail: vd-
buss@luc.ac.be.

1 Introduction

A database history can be modeled as a finite sequence of instances dis-
cretely ordered by time. We are concerned here with querying such finite
sequences of database instances, also called (discrete-time) temporal data-
bases. As discussed by Chomicki [5], there are two different approaches to
defining temporal query languages.

One approach is to view the sequence as one single relational database
of an augmented schema where a “timestamp” column is added to each re-
lation. The new column holds the time instants of validity of each tuple.
This timestamp representation can then be queried using known relational
query languages, where the linear order on timestamps is given as a built-in
relation. The relational query languages we will be considering are the re-
lational calculus (first-order logic, FO) and its iterative extensions fixpoint
logic (FIXPOINT), extending FO with inflationary iteration, and while logic
(WHILE), offering arbitrary iteration. When applied to timestamp represen-
tations of temporal databases these languages will be denoted respectively
as TS-FO, TS-FIXPOINT and TS-WHILE.

Alternatively, one can use languages providing a more “implicit” access
to time. A standard example is first-order temporal logic [7], an extension
of classical logic with the temporal operators since, until, next, and previ-
ous. Since, as observed by Wolper [20], these operators can be viewed as
searching for regular events, one can be more general and supply a temporal
operator for each regular language. We denote standard temporal logic by
TL, and extended temporal logic (with general regular events) by ETL. The
sublanguage of TL offering only the future operators next and wuntil, called
future TL, is denoted by FTL. We will also be considering extensions of the
languages FIXPOINT and WHILE with implicit temporal access via instruc-
tions for moving in time. These languages will be denoted respectively as
T-FIXPOINT and T-WHILE.

In this paper, we compare these languages with respect to expressive
power. Our results are depicted in Figure 1. Note that the only new lan-
guages are T-FIXPOINT and T-WHILE. Note also the central position of
T-FIXPOINT. We believe this is an important language: it can be evalu-
ated in polynomial time; it accesses time only implicitly; and it generalizes
Ts-FO and ETL. Of additional interest is that going from the inflationary
language FIXPOINT to the temporal language T-FIXPOINT involves adding,
besides the movements in time already mentioned, some non-inflationary

TS-WHILE

~
~
~
~

T-WHILE TS-FIXPOINT

~ -
~ s
~ -
~ s

T-FIXPOINT

TS-FO ETL
TL
FTL

Figure 1: The relative power of temporal languages. Solid upward edges
indicate strict containment. Dashed lines indicate that the strictness of the
containment depends on unresolved questions in complexity theory.

language features as well.

Our results concerning FTL, TL and TS-FO should be contrasted to the
extensively studied propositional case, where the three languages are equiv-
alent [13, 10, 9]. Evidences that this equivalence fails in the predicate case
already existed since 1971 [12]. Indeed, Kamp obtained results implying that
TL is strictly weaker than TS-FO in the context of densely ordered temporal
structures (rather than the discretely ordered ones we study in the present
paper). Moreover, Toman and Niwinski [17] (still in the densely ordered case)
showed that no finite set of first-order temporal operators can be added to
TL so as to achieve expressive completeness.

The proof technique we use for separating ETL and TS-FO is novel and
based on communication complexity [21, 14]. To our knowledge, this is the
first time this tool is employed to analyze the expressive power of query
languages.

This paper is organized as follows. In Section 2, we define temporal data-
bases and their timestamp representations, and also briefly introduce tem-
poral logic. In Section 3 we prove the results concerning FTL, TL and TS-FO.
In Section 4, we briefly introduce the language WHILE, define T-WHILE, and

compare it with TS-WHILE and TS-FO. In Section 5, we briefly introduce
the inflationary language FIXPOINT, study its augmentation with certain
non-inflationary features, and define the central language T-FIXPOINT. In
Section 6, we compare T-FIXPOINT to all other languages. In Section 7, we
indicate special cases of temporal databases (including a notion of “local
time”) where the distinction between explicit versus implicit access to time
largely disappears. Concluding remarks are presented in Section 8.

2 Temporal databases and temporal logic

2.1 Temporal databases and the language TS-FO

We assume some familiarity with relational databases (see, e.g., [1]). A
database schema is a finite set of relation names, where each relation name
has an associated arity. An instance of a schema assigns to each relation
name a finite relation of appropriate arity over a fixed countably infinite
domain of data elements. The active domain of an instance is the set of all
data elements appearing in some of its relations.

A temporal database over a database schema S is a non-empty finite
sequence I = I,..., I, (n > 1) of instances of S. Every j € {1,...,n} is
called a state of I. The active domain of a temporal database is the union
of the active domains of its instances.

A k-ary query Q on temporal databases over schema S is a mapping
assigning to each temporal database I over S a k-ary relation Q(I) on the
active domain of I. (A 0-ary query is also called a Boolean query.)

We can identify a temporal database I with a two-sorted relational struc-
ture called the timestamp representation of 1. Data elements are taken
from the active domain of I, whereas timestamps are from the set of states
{1,...,n}.! The timestamp representation also contains the linear order on
the states as an explicit binary relation <. Furthermore, it contains, for each
relation R of arity k in the database schema, an extended relation R of arity
k+1. The first k£ columns of this relation hold data elements; the last column

'For clarity, we assume without loss of generality that the domain of data elements is
disjoint from the natural numbers. However, it is sometimes possible (and interesting) to
simulate timestamps using data elements; we come back to this issue in Section 7.

L(R) L(R) I3(R) a 1

b 1

I= |a b a ¢ 1
b b 2

c d 2

a 3

c 3

Figure 2: A temporal database and its timestamp representation.

holds timestamps. The contents of this relation, denoted I(R), is

n

U (T (R) x {5}).

J=1

Example 2.1 A temporal database over a schema consisting of a single
unary relation R, together with its timestamp representation are shown in
Figure 2. [|

Using (two-sorted) first-order logic on the timestamp representation of a
temporal database, we obtain a query language that is denoted by TS-FoO.
The data-variables in a formula range over data elements in the active domain
and the time-variables range over states. The sorts of variables in a TS-FO
formula will always be clear from the context. A formula p(z1,...,z;) with
k free data-variables and no free time-variables expresses a k-ary query

o) :={(ar,...,ar) | T E lay, ..., a]}

in the standard way.

Example 2.2 If S is a unary relation holding employees of some company,
the following Ts-FO formula expresses the query returning those employees
x who have been hired, later fired, and still later re-hired:

(Ft1) (Fta) (3t3) (1 < ta <tz AS(w,t) AS(x,ta) A S(z,t3)). |

2.2 Temporal logic

An alternative way of providing a temporal query language is to extend
first-order logic with temporal operators rather than explicit time-variables.
We will use temporal operators based on regular events, leading to extended
temporal logic, denoted by ETL [20]. The syntax of ETL over some database
schema & is obtained by using the formation rules for standard first-order
logic over S together with one additional formation rule:

Let L be a regular language over the finite alphabet (vy,...,v,), and
let ¢1, ..., ¢, be formulas. Then

L+(g01,...,g0p) and L (¢1,---,0p)
are also formulas.

The order of the letters in the alphabet (vy, ..., v,) is relevant since it allows
to relate these letters to the arguments (¢4, ..., @,).

The semantics of ETL is as follows. Let I = I, ..., I, be a temporal data-
base over S. Let ¢(Z) be an ETL formula with free variables T = x4, ..., zy,
let @ = ay,...,a; be data elements in the active domain of I, and let
j € {1,...,n} be a state. The truth of p[a] in I at time j, denoted by
I, j & pla], is defined as follows:

1. If ¢ is an atomic formula, a conjunction, a negation, or a quantification,
the definition is as usual. Quantification is always on the active domain.

2. If ¢ is of the form L*(¢1,...,p,), with L a regular language over
the alphabet (vy,...,uv,), then I j = ¢[a] if there exists a word w =
Vw; - - - Vu, Of length (n — j + 1) in L such that

LjEouwla and ... and I nE @,,lal.

3. Symmetrically, if ¢ is L™ (¢4, ..., ¢p), then I, j = p[a] if there exists a
word W = Uy, « .« Vyy of length j in L such that

LjEeuwla and ... and I,1E @, [al.

Example 2.3 The formula L{ (true, ¢), where L, is the language a*ba* over
the alphabet (a,b), is true at time j iff there is some time in the future of j

6

(including j itself) where ¢ is true. Similarly, L; (true, ¢) expresses that ¢
holds sometime in the past.

Now recall Example 2.2. The following ETL formula is true of z at some
time iff x is not an employee now, has been one in the past, and will again
be one in the future:

=8(x) A Ly (S(x)) A LY (S(2)).

For another example, a formula which is true only in the last (or first)
state is L3 (true) (or L, (true)), where L, is the singleton language {a}.

Finally, the formula Lj (true), where Lj is the language (aa)*, is true in
the first state iff the length of the temporal database is even. [|

The previous example showed how the familiar temporal operators “some-
times in the future” and “sometimes in the past” of standard temporal logic
[7] can be expressed in ETL. We next show how the other temporal operators
of standard temporal logic can be expressed.

The temporal connectives since and until can be expressed in ETL as fol-
lows:

psince) = L (v, ¢ A1, true)
and
@ untily = L (o, 0 A1), true),

where L, is the language a*bc* over the alphabet (a,b,c). The connectives
next and previous are expressed as

next p = L} (true, ¢)

and
previous ¢ = Lz (true, p),

where Ls is the language aba* over the alphabet (a,b).

Standard temporal logic, i.e., the fragment of ETL having as only temporal
operators since, until, next, and previous, is denoted by TL. Future temporal
logic, i.e., the fragment of TL having only the future operators next and until,
is denoted by FTL.

The above examples also illustrate a subtle feature of our definition.
When searching for a regular event in the future (using the L™ connective),
we require that a word in L can be found which reaches precisely the last

state of the temporal database. Similarly, when searching in the past, a word
must be found which reaches precisely the first state. We refer to this as full
search, as opposed to partial search which does not require the match to
reach the beginning or end. As illustrated in some of the above examples,
it is easy to simulate partial search using full search: it suffices to continue
testing for true after the desired match has been found.?

We still have to define formally how ETL formula express queries. Let
©(x1,...,2r) be an ETL formula with & free variables. Then ¢ expresses the
query

Q) ={(ar,...,ar) | L1 E pla,...,al}.

So the evaluation of an ETL query is started in the first state.

3 Comparing Ts-FO with temporal logic

By the expressive power of a query language one means the class of queries
expressible in that language. In this section, we compare the languages
TS-FO, FTL, TL and ETL with respect to expressive power. Their relationship
is depicted in Figure 1.

The containments FTL C TL C ETL are trivial. Also the containment
TL C TS-FO is clear; for example, to express that ¢ until ¢/ holds at ¢, one
states that there exists ¢ > ¢ such that ¢ holds at ¢ and ¢ holds at each
t" between t and t'. As shown in Example 2.3, the query “the length of
the temporal database is even” is expressible in ETL. It is not expressible
in TS-FO, since parity of a linear order is well-known not to be first-order
definable.

Hence, to complete the picture provided by Figure 1, we have to prove
that (i) there are queries expressible in TL but not in FTL, and (ii) there are
queries expressible in TS-FO but not in ETL. These two proofs are given in
the next two subsections.

3.1 TL versus FTL

Theorem 3.1 The Boolean query Q: (3t > 1)(Vz)(S(z,t) < S(z,1)), is
expressible in TL but not in FTL.

2We leave it as an exercise for the reader to show that conversely, full search can be
simulated using partial search.

Proof. We can express () in TL as
next OF (V) (S(z) «» O (first A S(x))),
where we have used the abbreviations

Ot = trueuntil ;
&7 = truesince p;

first = - previoustrue.

(Note that first is only true in the first state.)

To show that () is not expressible in FTL, we first observe that FTL-
formulas can be written in a normal form, where the only way the operator
until can occur is in a combination with next of the form next(p until).
Indeed, ¢ until ¢ is equivalent to (¢ A ¥) V (¢ A next(p until ¢)).

Now let # be an FTL sentence in normal form. Let D be some arbitrary
fixed finite domain of data elements, let d be the cardinality of D, and let n >
1 be some arbitrary fixed natural number. We consider temporal databases
I,..., I, on D, and define the function F' on the “tails” of such databases
by

F([Q,...,In) = {Il | ([1,[2,...,In),]_): 9}

If 6 expressed the query @), then the cardinality of the image of F' would

be
i \k/)
Indeed, two sequences I, ..., I, and I}, ... I' have the same image by F if
and only if the sets {I5,...,I,} and {I},...,] } are the same. But there are
(2:) ways to choose a set of k£ distinct subsets of D.
As a particular case, if n is 2¢, the cardinality of the image of F is 22",
However, in Lemma 3.2 we will show that the cardinality of the image of F

is at most 2%, for some integer o depending only on 6, and for sufficiently
large d. We thus arrive at a contradiction. [|

Lemma 3.2 The cardinality of the image of F is at most 2%, for some
integer o depending only on 0, and for sufficiently large d.

Proof. Call a temporal subformula of 6, any subformula of the form next ¢
or next(p until ¢»). A temporal subformula of 6 is called maximal if it is

9

not a subformula of another temporal subformula of 0. Let 6;,...,0; be
the maximal temporal subformulas of f. For each 6;, the satisfaction of 6;
on a temporal database (Iy,I,...,I,) at the first state only depends on
the tail I, ..., I, of that database. So, the following function F; on tails is
well-defined and does not depend on a particular choice for I;:

.FZ'(IQ, PN ,[n) = {(L | ([1,[2, .. .,In), 1): 91[@]}

If a; denotes the number of free variables of 6;, the image of Fj is a set of
relations of arity «;, and thus its cardinality is at most 2¢**. But, Lemma 3.3
will imply that the cardinality of the image of F' is less than the product

of the cardinalities of the F;’s. Hence, if we take o > max(ay, ..., ay), the
cardinality of the image of F is less than 2¢° for sufficiently large d, since 2%°
dominates 297 -+ for sufficiently large d. [
k
Lemma 3.3 There is an injection w : Im F' — H Im F;.3
i=1

Proof. Let w be a function such that for each z in Im F, there is a tail
(I, ..., I,) with F(I,,...,I,) = = (we call such a tail an antecedent of x)
such that:

w(F([Q, .. ,In)) = (Fl(lg, .. .,In), .. .,Fk(IQ, PN ;In))

Note that the choice of the antecedent of x by F' is arbitrary.

Such a function w is injective. Indeed, if F(Iy,...,I,) and F(I},...,I})
have the same image by w, the definition of w ensures that F;(ly,...,I,)
and F;(I},...,I]) are equal for all i. But 6 is a first order combination of
the 6; and of first-order formulas evaluated on Iy, so that for a given I, #
has the same value on Iy, I, ..., I, and I1,I},...,I). So, F(ls,...,I,) =
F(I,...,1I) which yields the result.]

3.2 ETL versus TS-FO

In this subsection, we first introduce a variant of the communication protocols
of Yao [21] (see also [14]), and introduce the notion of “constant communica-
tion complexity” of binary predicates on sets of sets (of data elements). We

*By Im f we mean the image of a function f.

10

also introduce the class of split temporal databases. Each binary predicate
on sets of sets gives rise to a query on split databases. We then prove that if
the communication complexity of a predicate is not constant, then the cor-
responding query is not expressible in ETL. However, natural predicates of
non-constant communication complexity exist whose corresponding queries
are expressible in TS-FO.

3.2.1 Communication protocols

Let P be a binary predicate on sets of sets of data elements. We say that P
has constant communication complexity if there exist fixed natural numbers
k and r and a communication protocol between two parties (denoted by A
and B) that, for each finite set D of data elements, can evaluate P(X,Y") on
any sets X and Y of non-empty subsets of D as follows:

1. A gets X and B gets Y. Both parties also know D.

2. A sends a message a; = a1(D, X) to B, and B replies with a message
by = b1(D,Y,a;) to A. Each message is a k-ary relation on D.

3. A again sends a message as = az(D, X,b) to B, and B again replies
with a message by = by(D, Y, ay, as).

4. After r such message exchanges, both A and B have enough information
to evaluate P(X,Y) correctly. Formally, they apply a Boolean function

CLT+1(D,X, bl,...,b,«) (fOI' A)

or
byy1(D,Y,ay,...,a.) (for B)

that evaluates to true iff P(X,Y) is true.

So, formally, a protocol consists of the functions a, ..., a,, a,.1 and by,
..., by, byy1. Note that the computing power of A and B is unlimited; the
functions defining the protocol can be completely arbitrary.

Example 3.4 As a simple example, let P(X,Y) be true if the maximal
cardinality of an element in X is larger than the maximal cardinality of an
element in Y. Then P has constant communication complexity with k£ = 1
and 7 = 1. Indeed, A sends to B an element of X with maximal cardinality,
and B replies with an analogous element for Y. Both A and B can then
evaluate P(X,Y’) on their own, by a simple comparison of cardinalities. ®

11

We have a first lemma:;:

Lemma 3.5 The equality, inclusion and disjointness predicates do not have
constant communication complexity.

Proof. Suppose there is a communication protocol for the equality predicate
with r exchanges of messages of arity k. Call any such sequence a,b; ... a,b,
of messages a dialogue. Since k is fixed, for large enough D there are less
dialogues than sets of non-empty subsets of D. Hence, there are two different
such sets X and Y such that the protocol yields the same dialogue when
evaluating P(X, X) and P(Y,Y’). But then this same dialogue will also be
used for evaluating P(X,Y); a contradiction.

It follows that the inclusion and disjointness predicates are not of con-
stant communication complexity either. Indeed, communication protocols
for these predicates can be easily transformed into a communication proto-
col for equality. It suffices to observe that X =Y iff X is included in Y and
vice versa, and that X C Y iff X and the complement of Y are disjoint. ®

Our notion of communication protocols is a “set-based” variant of the
original bit-based one, where the predicate to be evaluated is a predicate on
bit-strings, and the exchanged messages are individual bits. Yao [21] showed
in this setting that the equality predicate on strings of length n requires a
number of bit exchanges that is linear in n. Lemma 3.5 can also be proven
from this fact.

3.2.2 Split databases

We now fix the database schema to consist of one single unary relation S.
A temporal database is then a sequence of finite sets of data elements. A
temporal database is called split if there is exactly one state whose instance
is empty. This state is called the middle state of the split database. If
I =1,,...,1, is a split database with middle state m then its right part
I, ..., I, is denoted by I, and its left part Iy,..., I, by Lin. Observe
that one can test in TL whether a temporal database is split.

We next define an auxiliary language split-ETL whose semantics is only
defined on split databases. Syntactically, split-ETL differs from ETL only
in that each temporal operator Lt (L7) is split into a “left” and a “right”

version L?;ﬁ and L;fight (Ligs, and Ligyp,).-

12

Informally, the left (right) version of a temporal operator behaves roughly
the same as the operator itself, except that only the left (right) part of the
split database is taken into consideration. Formally, let I be a split database
of length n with middle state m. For each state j of I, we define

N [J ifj<m
left(j) := {m if j >m
and . o o
. . if 7<m
right(j) = {j—m+1 iftj>m
So, left(j) (right(j)) is the state in the left (right) part of I corresponding
to j, if j is indeed contained in that part; if not, the default values m and 1,
respectively, are used.

The semantics of the split temporal operators is then defined as follows.
For x being either — or +, L, j = Lj, if Ligg, left(j) = L*, and L, j |= Ly,
if Lpigne, right(j) = L*.

We now have our second lemma.

Lemma 3.6 On split databases, each ETL formula is equivalent to a split-
ETL formula.

Proof. Consider a temporal operator L™ of ETL, with L a regular language
over the alphabet (vi,...,v,). Then L is defined by some finite automaton
M. Let the states of M be numbered 1,...,q, with 1 the initial state, and
let F' be the set of final states. For z € {1,...,¢} and Z C {1,...,q}, let
M7 be the automaton obtained from M by changing the initial state to z
and the set of final states to Z, and denote by L,; the language defined by
M,z. Let vy be a symbol not in the alphabet {v,...,v,}. Then the ETL
formula L™ (¢4, ..., ¢,) can be expressed in split-ETL as

((at_right v at_middle) A L}, (1, ., 0p)) V
q
(at-teft AN/ (Log))ip(prs - 00) A
z=1

(voLor) figns (true, gy, ..., <pp))).

In the above, the language vy L, is interpreted over the alphabet (vg, vy, ..., v,),
and we have used the abbreviations

at_middle = —(3x)S(x);

at_left = K(true, at_middle);
at_right = K, (true, at_middle),

13

where K is the language a*b over the alphabet (a,b).
The case L~ is treated similarly. [|

3.2.3 Inexpressibility

Let P be a binary predicate on sets of sets, as in Subsection 3.2.1. Consider
the Boolean query (Qp on split databases defined as follows. For a split
database I = I, ..., I, with middle state m, Qp(I) = true if P(L, R) holds,
where L={[; |1 <j<m}and R={[; | m <j<n}.

Our third lemma connects temporal queries to communication protocols:

Lemma 3.7 If Qp is expressible in ETL, then P has constant communication
complexity.

Proof. Assume Q)p is expressible in ETL. By Lemma 3.6, Qp is expressible
by a split-ETL formula . Consider all subformulas of ¢ of the form Lj(...),
where x is + or — and ¢ is left or right, and let my, ..., m, be a listing of
these such that each subformula occurs after its own subformulas. Let k& be
the maximal number of free variables of any of these subformulas. We show
that # yields a communication protocol for P with r exchanges of messages
of arity k.

Let X and Y be two sets of non-empty subsets of a finite set D of data
elements, and consider any split temporal database I with middle state m,
such that X = {I; |1 < j <m}and Y = {[; | m < j < n}. In order to
evaluate P(X,Y), it suffices to evaluate Qp(I), for which in turn it suffices
to evaluate 6 at some state of I. To do the latter, the parties evaluate, in
succession, each subformula 7; on every k-tuple of active domain elements,
at the middle state. If the temporal operator of 7; is a left (right) version,
then A (B) knows how to do this and he sends the resulting k-ary relation
to B (A).

Note in this respect that both parties can be assumed, without loss of
generality, to know the active domain of I; if not, they can send the set of
elements of D appearing in their set of sets to each other in a single exchange
of messages. When the values of all the m; are known to both parties, they
have enough information to evaluate 6. [|

Putting everything together, we obtain our main result:

14

Theorem 3.8 Quver schemas containing at least one relation of non-zero
arity, there are queries expressible in TS-FO but not in ETL. In particular,
query QQ “are there two different states with the same instance?” is expressible
in TS-FO but not in ETL.

Proof. Without loss of generality we assume the schema consists of a single
unary relation S. Query @) is obviously expressible in TS-FO:

(33 (t # ' A (Vo) (S(w,t) <> S(z,1'))).

On the class of split databases whose left and right parts do not contain
repetitions,) corresponds to ()p, where P is the non-disjointness predicate.
By Lemma 3.5, the complement of P (so also P itself) does not have constant
communication complexity. Hence, by Lemma 3.7, () is not expressible in
ETL. [|

An important remark that can be made concerning our result is that it
remains valid under the assumption that a total order on the data elements is
available. Indeed, the proof of Lemma 3.5 holds regardless of any additional
knowledge (e.g., a total order) the parties may have of the set D.

3.2.4 Infinite temporal databases

We conclude this section by extending our result to the case of infinite (but
still discrete-time) temporal databases.

An infinite temporal database over a schema S is an infinite sequence
I = I,1,,... of instances of §. So, the set of states is the set of non-
negative natural numbers, and the active domain may be infinite (although
every individual instance is, by definition, still finite). In the present discus-
sion, we focus on expressiveness, and not on the issue of finitely representing
an infinite temporal database, or effectively computing answers to queries.
References on these issues can be found in [5].

The query languages TS-FO and ETL can also be used on infinite temporal
databases. For TS-FO, this is clear. For ETL, one uses w-languages rather
than ordinary languages in defining the semantics of the future temporal
operators, since the future of every state is now infinite. The past of every
state is, on the contrary, still finite. (Though the present discussion extends
easily to the case of two-way infinite temporal databases.) An w-language [15]
is a set of infinite, rather than finite, words, and that a regular w-language

15

can still be defined by a finite automaton; an infinite word is accepted by the
automaton if while reading the word it enters an accepting state infinitely
often.

We now argue that our techniques of the previous section extend to the
infinite case. An infinite temporal database is again called split if there is
exactly one state whose instance is empty. The right part of an infinite split
database is itself infinite; the left part is finite. Syntax and semantics of split-
ETL on infinite split databases are defined in terms of ETL exactly as before.
The result that split-ETL can simulate ETL on split databases goes through
in the infinite case; the only modification to the proof of Lemma 3.6 is that
in the large expression for L™, L,r now becomes an w-language. Finally, the
proof of Lemma 3.7 carries over verbatim, with the condition that instead
of a finite I = I ,...,I, we use an infinite I = I;,I,,..., and instead of
{I; | m < j <n} weuse {I; | m < j}. Note that this implies that party B
of the protocol deals with an infinite object, but this is of no concern since
his computing power is unlimited.

The result of this section can thus be summarized as follows:

Theorem 3.9 Both on finite and on infinite temporal databases over a schema
containing at least one relation of non-zero arity, there are queries express-
ible in TS-FO but not in ETL. As a consequence, TL is strictly weaker than
TS-FO.

4 Iterative queries

Let us first briefly recall how relational calculus is extended with iteration to
obtain the language WHILE. (See [1] for a more detailed presentation of the
languages WHILE and FIXPOINT considered in the following sections.)

An assignment statement is an expression of the form X := FE, where
X is an auziliary relation and E is a relational calculus query which can
involve both relations from the database scheme and auxiliary relations. Each
auxiliary relation has a fixed arity; in the above assignment statement, the
arity of the result of F must match the arity of X.

We can now build programs from assignment statements using sequencing
Py; Py and while-loops: if P is a program, then so is while ¢ do P od, where
@ is a relational calculus sentence. The query language thus obtained is called
WHILE. The execution of a program on a database instance is defined in the

16

obvious manner. The result of the query expressed by a program is the value
of some designated answer relation at completion of the execution.?

The language WHILE on the timestamp representations of temporal data-
bases provides a very powerful temporal query language which is denoted by
TS-WHILE.

Example 4.1 The query “give the elements that belong to all odd-numbered
states” is not expressible in the relational calculus with timestamps, but it
is expressible in TS-WHILE as follows:

Current := {1};

A= A{z | Sz, 1)}

while (3t)(3¢')(Current(t) ANt =t + 2) do
Current := {t" | (3t)(Current(t) Nt' =t + 2)};
A= An{x | (3t)(Current(t) N S(z,t))}

od.

In the above program, Current and A are auxiliary relations, and A is the
answer relation. The use of the constant ‘1’ and the addition ‘¢’ =t + 2’ are
only abbreviations which can be directly expressed in terms of the order on
the timestamps. [|

An alternative temporal query language based on WHILE, not involving
timestamps, can be obtained by extending WHILE with more implicit tem-
poral features. One way to do this is to execute programs on a machine
which can move back and forth over time. Formally, we provide, in addition
to assignment statements, the two statements left and right which move
the machine one step in the required direction.® Furthermore, we partition
the auxiliary relations into state relations, which are stored in the different
states, and shared relations, which are stored in the memory of the machine
itself. So, the values of (and assignments to) state relations depend on the
current state the machine is looking at, while this is not the case for shared
relations. Finally, we assume two built-in nullary state relations First and
Last, with First being true only in the first state, and Last being true only
in the last state. The machine always starts execution from the first state.

The temporal query language WHILE extended with left and right moves
just described is denoted by T-WHILE.

4If the execution loops indefinitely, the result is undefined. Infinite loops can always
be detected at run time in WHILE [2].
5In the first state, left has no effect; in the last state, right has no effect.

17

Example 4.2 The query from Example 4.1 can be expressed in T-WHILE as
follows:

shared A(1), Fven(0);
A:={z | S(z)}; Bven :={()};
while —Last do
right;
Fven := {()} — Even;
if Even # () then A:= An{x | S(x)}
od.

In the above program, A and Even are both shared relations. Note how they
are “declared” as variables in the beginning of the program, indicating their
status of shared relation and their arity; we will always use such declarations
when presenting T-WHILE programs in the sequel. The if-then construct is
only an abbreviation and can be expressed in the relational calculus. [|

We next study the expressive power of T-WHILE. We will see in the next
section that it strictly encompasses TS-FO, and hence TL as well. We now
show:

Proposition 4.3 T-WHILE is strictly contained in TS-WHILE.

Proof. The simulation of T-WHILE by TS-WHILE is done using a Current
relation as in Example 4.1 which holds the current temporal position of the
machine. The state relations are simulated by their time-stamped version,
whereas no special transformation is needed for shared relations. The re-
trieval of a state relation is simulated by a join between its time-stamped
version and Current. First is simulated by the formula

=(3t)(3t") (Current(t) A t' < t)

Last is simulated symmetrically. A left move is simulated by updating the
Current relation (a right move is simulated symmetrically):

Current := if = First then Current
else {t' | (3t)(Current(t) Nt' =t — 1},

18

where ¢ =t — 1 is an abbreviation for (¢’ <t) A =(3t")(t' < " < t).

The argument for strictness is based on complexity. If we restrict our
attention to propositional databases (having only relations of arity 0), the
complexity of TS-WHILE programs in terms of the length n of the tempo-
ral database only is precisely PSPACE. Indeed, on propositional databases,
TS-WHILE reduces to the language WHILE on an ordered relational (non-
temporal) database consisting of a number of unary relations on timestamps.
WHILE is well-known to coincide with PSPACE on ordered databases [1]. How-
ever, the space complexity of T-WHILE programs in terms of n is linear: we
only have to store the state relations at each state. The proposition then
follows from the space hierarchy theorem [11].]

5 Fixpoint queries

General WHILE programs can only be guaranteed to run in polynomial space
(PSPACE) and hence their computational complexity is probably intractable
in general. However, there is a well-known restriction of WHILE which runs
in polynomial time (PTIME). This restriction consists of allowing only in-
flationary assignment statements, of the form X := X U E (abbreviated
X += FE). Before execution of an inflationary WHILE program all auxiliary
relations are initialized to the empty set. In such an execution, a while-loop
whose stopping condition is never fulfilled, and thus seemingly loops forever,
will repeat a configuration after an at most polynomial number of steps.®
The computation has then “reached a fixpoint” and the result of the query
can be determined as well as if the program execution would have ended
normally. The query language thus obtained is therefore called FIXPOINT.’
On ordered databases (where a linear order on the active domain is avail-
able in a database relation), a query is in PTIME if and only if it is expressible
in FIXPOINT. It is an open question whether FIXPOINT is strictly weaker
than WHILE, but it is known [3] that this question is equivalent to the open
problem in computational complexity on the strict containment of PTIME in

6 A configuration of a program execution consists of the values of the auxiliary relations
plus the position in the program.

"Usually [1] the language FIXPOINT is defined using “repeat-while-change” loops instead
of while-loops with a stopping condition. We have chosen our definition because it yields a
more flexible language when extended to a temporal context (cf. the language T-FIXPOINT
to be defined later).

19

PSPACE.

Similarly to TS-WHILE, the language FIXPOINT on timestamp representa-
tions of temporal databases provides a powerful yet computationally tractable
temporal query language denoted by TS-FIXPOINT.

Example 5.1 The query of Example 4.1 can also be expressed in TS-FIXPOINT
as follows:

Current += {1};

B +={x | =Sz, 1)};

while (3t)(3¢')(Current(t) A =Current(t') ANt' =t +2) do
Current +={t" | (3t)(Current(t) Nt' =1+ 2)};
B +={x | (3t)(Current(t) AN =S(x,t))}

od;

?

A+={z | ~B(x)}.

Remember that data variables (such as z in the formula —~S(z, 1)) range over
the data elements in the active domain only.

Note that this query could be expressed simpler by storing all odd states
in a relation, and then computing the intersection of these states. [|

As an alternative to TS-FIXPOINT, we could depart from the language
T-WHILE and restrict it to inflationary assignments only, to obtain a PTIME
temporal query language. However, this language would be rather inflex-
ible, since a pure inflationary restriction is an obstacle to the inherently
non-inflationary back-and-forth movements along time involved in temporal
querying. (For simple temporal queries involving only one single scan, this
would suffice.)

This obstacle can also be analyzed using a complexity argument. As we
have seen in Proposition 4.3 for T-WHILE, the available space is linear in the
length n of the sequence. In FIXPOINT, the restriction to PTIME is achieved
by a careful inflationary use of space. Thus, the restriction of T-WHILE to
inflationary assignments would lead to a computation that would run in time
linear in n.

We propose to alleviate the problem by adding two extra features to stan-
dard FIXPOINT that allow to use non-inflationary assignments in a controlled
manner: “local variables” and “non-inflationary variables”.

(a) Local variables to blocks: Certain auxiliary relations can be declared as
local variables to program blocks. These relations can only be assigned

20

to within the block, and each time the block is exited, they are emptied.
(If the local variables are state relations, they are emptied in each
state.) Syntactically, if P is a program then [local Vi, ..., V;; P] is
a program block with local auxiliary relations Vi, ..., V;.

(b) Non-inflationary variables: Certain auxiliary relations can be declared
to be non-inflationary. They can be assigned to without any inflation-
ary restriction. However, they are not taken into account in determin-
ing whether the program has reached a fixpoint. (Hence, this remains
in PTIME.) Syntactically, these variables will be declared using the
keyword noninf.

The inflationary restriction of T-WHILE, to which the above two extra
non-inflationary features are added, yields a temporal query language that
we call T-FIXPOINT. Configurations of T-FIXPOINT programs now include
the current temporal state of the machine, which is taken into account to see
whether the computation has reached a fixpoint (i.e., repeated a configura-
tion).

It is important to note that the extra features of local and non-inflationary
variables only make a difference in the context of T-FIXPOINT: in the stan-
dard FIXPOINT language, they can be simulated as shown in the next propo-
sition. This result is interesting in its own right, since it facilitates expressing
PTIME computations in FIXPOINT. It also indicates a fundamental distinction
between temporal querying and non-temporal querying.

Proposition 5.2 Adding program blocks with local variables and noninfla-
tionary variables with the restrictions described above to FIXPOINT does not
increase the expressive power of the language.

Proof. We only present a sketch of the argument. The key observation is
that, due to the inflationary nature of the computation, a program block
can be executed only so many times as tuples are inserted in the auxiliary
relations that are global (i.e., not local) to this block. Hence, the contents
of the local variables can be simulated by versioning their tuples with the
tuples inserted in the global variables since the previous invocation of the
program block (using Cartesian product). Emptying the local variables then
simply amounts to creating a new version. The old versions are accumulated
in a separate relation. In this manner the process is entirely inflationary, as
desired.

21

We can also simulate the noninflationary variables using a similar ver-
sioning technique. The version consists of the tuples inserted in the ordinary,
inflationary variables since the previous non-inflationary assignment. Since
the program terminates as soon as the inflationary variables reach a fixpoint,
we will not run out of versions. [|

We now illustrate the use of local variables and non-inflationary variables
in T-FIXPOINT by means of the following two examples. We first illustrate
local variables.

Example 5.3 Assume the database scheme contains two unary relations S
and 7. One way to express the temporal logic query {z | S(z) until T'(z)} in
T-FIXPOINT is as follows:

state Mark(0);
shared N(1), A(1);
Mark += {()};
N +==S;
A+=-NnNT
while —Last do
right;
N +=-5;
A4+=-NnNT
od;
while ~Mark do left od.

In the above program, Mark is a (nullary) state relation which is used to mark
the initial state. Relations A and N are shared: A is the answer relation, and
N keeps track of the elements that are not in S in some state encountered
so far; if x is in N the first time it is found to be in 7', x does not satisfy
S(x) until T'(x). The final while-loop returns to the marked state (the use of
this will become clear immediately).

Suppose now that we have an additional third unary database relation R,
and we want to express the more complex temporal logic query {z | R(x)until
(S(z)untilT(x))}. A simply way to do this would be to use the above program
as a subroutine. However, in doing this, care must be taken that the auxiliary
relations Mark, A and N are cleared after each invocation of the subroutine.
This is precisely the facility provided by the local variables in T-FIXPOINT.
Written out in full, we can thus express the query in T-FIXPOINT as follows:

22

shared Ny(1), Ag(1);

NO += _'R;

P;

while —Last do
right;
No += ~R;
P

od,

where P is the following program block:

[local state Mark(0);
local shared N (1), A(1);
Mark +={()};

N 4= =5;
A+=-NnNT;
while —Last do
right;
N +==5;
A+=-NNT
od;
while =Mark do left od;
Ag+=-NyN A
|.]

We next illustrate the kind of computations that can be performed using
noninflationary variables.

Example 5.4 Assume the database scheme consists of a single binary rela-
tion R. Consider the program:

noninf shared S(2);

S =R,
while —Last do
right;
S=A{z,y | (32)(S(x,2) A R(z,9))}
od.
At the end, if the last state of the temporal database is numbered n, S
contains the set of pairs (zg,x,) such that there exist xg,zy,...,z, with
such that (z;,z;+1) is in R in the i-th state, for each i € {1,...,n}.]

23

6 Comparisons

In this section, we first show that the expressive power of T-FIXPOINT lies
between TS-FO and TS-FIXPOINT. Then we show that ETL can be simulated
in T-FIXPOINT. Finally, we compare T-FIXPOINT and T-WHILE.

Theorem 6.1 TS-FO s strictly contained in T-FIXPOINT.

Proof. Each timestamp variable is represented by a nullary state relation
which is true exactly in the state numbered by the current value of the
variable, plus all states to the left of that state. The simulation now proceeds
by induction on the structure of the formulas. We show that for each TS-FO

formula ¢ with free data variables x4, ...,z and free time variables 1, ..., 1,
there is a T-FIXPOINT program which computes the relation consisting of all
data variables x4, ..., x, for which ¢ is true, when the time variables ¢, ..., %,

are fixed. The basis consists of atomic formulas. An atomic formula S(z,)
is simulated by searching for the state where ¢ is true and returning S in that
state. A comparison ¢ < t’ between timestamp variables is simulated by a
left-to-right scan checking whether ¢ is true before ¢'.

The induction is then clear if the formula ¢ consists of a disjunction,
negation, and existential quantification of data variables which are simulated
using union, complementation, and projection as usual. Finally, existential
quantification of a timestamp variable is performed by a while-loop which
repeatedly sets the variable true from left to right, and computes the dis-
junction of all the partial results .

The inclusion is strict because we will see later that T-FIXPOINT can
simulate ETL, and we already know that there are queries expressible in ETL
but not in TS-FO. [|

Theorem 6.2 T-FIXPOINT 18 contained in TS-FIXPOINT.

Proof. The simulation is analogous to that of T-WHILE by TS-WHILE in the
proof of Proposition 4.3. The local and noninflationary relation variables
of the T-FIXPOINT program can be handled by Proposition 5.2. The only
difficulty that arises is the unary relation Current which is used in an entirely
non-inflationary manner. We cannot simply change this relation into a non-
inflationary one and apply Proposition 5.2, since a T-FIXPOINT program must
be able to move in time (to be simulated by the relation Current) without

24

changing any of its inflationary relation variables. However, the semantics of
T-FIXPOINT guarantees that such behavior can only last for at most n steps,
where n is the length of the temporal database. Hence, instead of using
a unary relation for Current, we can use a binary one which is organized
as a linear order and is versioned by the tuples inserted in the inflationary
relation variables, as in the proof of Proposition 5.2. The current position is
always the maximum element in the order. Initially, Current contains (1, 1);
to simulate a move to the right the tuples (1,2) and (2,2) are added, and
so on. This can go on until a move in the opposite direction occurs; then a
new version is created with initial contents (i,7) where i is the new current
position. Now repeated moves either to the left or the right can be recorded
in the same orderly fashion, again until a move in the opposite direction
occurs, after which again a new version is created, and so on. [|

It is not clear whether the converse of Theorem 6.2 holds. This is again
because of the linear space complexity in the number of states of T-WHILE
(and hence also of T-FIXPOINT) programs already mentioned in the proof of
Proposition 4.3. Indeed, we can reduce the containment of TS-FIXPOINT in
T-FIXPOINT to the containment of PTIME in the complexity class PLINSPACE
which we define as follows:

A problem is in PLINSPACE if it can be solved by a Turing machine
in polynomial time using only linear space.

Observe that if PTIME is included in PLINSPACE, then in particular, PTIME
is included in LINSPACE which is an open question of complexity theory. We
observe:

Lemma 6.3 Every PLINSPACE query on ordered temporal databases is ex-
pressible in T-FIXPOINT.

Here, by an ordered temporal database we mean that a total order on the
active domain is explicitly given by some relation, the same in all states.

Proof. The structure of the proof is the same as that of the proof presented
in [1, Chapter 17.4] of the well-known fact that the language FIXPOINT can
express any PTIME query on ordered relational (non-temporal) databases.
Let @@ be a PLINSPACE query on ordered temporal databases. To each
ordered temporal database I,) associates an answer relation Q(I), of some

25

fixed arity, on the active domain of I. Moreover, there is a polynomial-time,
linear-space Turing machine M which, given as input an encoding of some I,
produces as output an encoding of Q(I).

We will show there exists a T-FIXPOINT program ¢, expressing () in three
phases: (1) construct an encoding of I that can be used to simulate M; (2)
simulate M; and (3) decode the output of M.

We assume the reader is familiar with a standard way of encoding an
ordinary (i.e., non-temporal) relational database on a Turing machine tape
[1, Chapter 17.4]. Now recall that a temporal database is a sequence of
relational databases (states) of a common schema and over a common domain
of data elements. Let d be the number of data elements and let n be the
length of the sequence. We assume that a temporal database is encoded on
a Turing machine tape simply as the sequence of encodings of its states. The
size of this encoding is O(nd*) for some fixed natural number k.

Since M uses linear space, we need to be able to represent, in qys, a
tape of length nd*. This can be done by using several k-ary non-inflationary
auxiliary state relation variables: one with name ¢ for each letter ¢ of the
tape alphabet, and one with name Head. For example, assume the id* + j-th
cell on the tape contains the letter ¢, with 0 < i <n —1and 1 < j < d*.
This is represented by having the tuple (aq,...,a;) in the contents of ? at
the ¢ + 1-th state, where (aq,...,a;) is the j-th tuple in the lexicographic
ordering of k-tuples of data elements according to the given total order on
the active domain. The position of the Turing machine head on the tape is
represented using relation Head in a similar manner.

Since M runs in polynomial time, the length of its computation is bounded
by (nd*)! for some fixed natural number /. To represent a clock ticking pre-
cisely this many times, we use [auxiliary state relation variables Aq,..., A;
of arity k. These variables will be local to nested while-loop blocks. The
nested blocks encapsulate the actual simulation of M in ¢,;, and clock the
simulation as shown schematically below for [= 2:

[local state A;(k);

while change do
in the first state where A; is not yet full,
add the lexicographically first k-tuple
not yet in A; to Ay;
[local state Ay(k);

while change do

26

in the first state where A, is not yet full,
add the lexicographically first k-tuple
not yet in Ay to As;

Simulate the next step of M’s computation

od

]
od

The actual construction of the encoded database on the input tape (us-
ing the representation described above) as well as the actual simulation of
M’s configuration transitions and the final decoding phase, are very much
standard [1, Chapter 17.4]. The only non-standard aspect is that here, the
program ¢,; must use the T-FIXPOINT capability of moving over the time
instants to access the various portions of the simulated tape. [|

Theorem 6.4 Assuming ordered databases, TS-FIXPOINT = T-FIXPOINT if
and only if PTIME = PLINSPACE.

Proof. If. Consider a TS-FIXPOINT query (). Then () is in PTIME. Note
that this means that () is computable by a polynomial-time Turing machine
working on an encoding of the timestamp representation of the input tempo-
ral database. However, such a machine can be readily modified so as to work
on the direct encoding of the temporal database used to prove Lemma 6.3.
Moreover, since we assume PTIME = PLINSPACE, the machine can be assumed
to work in linear space. Lemma 6.3 then shows that PLINSPACE queries can
be computed in T-FIXPOINT. Thus () is in T-FIXPOINT.

Only if. Let () be a set of binary words decidable in PTIME. Consider the
coding of () as a Boolean query on temporal databases over a scheme con-
sisting of a single relation name 7', of arity 0; a word x; ... x, is represented
by the database I ...I,, where [;(T) = 0 if z; = 0 and [;(T) = {()} (the
empty tuple) if z; = 1, for j = 1,...,n. The timestamp representations of
such databases are ordered relational databases, since the order on the states
is given and there are no data elements. As mentioned in the beginning of
Section 5, any PTIME query on ordered databases is expressible in FIXPOINT.
Hence, @) can be computed by a TS-FIXPOINT-program, and thus by our as-
sumption, also by a T-FIXPOINT-program. This program runs in polynomial
time, and since the active domain of each database is empty, it uses only
linear space. Thus, () is in PLINSPACE. [|

27

Theorem 6.5 ETL is strictly contained in T-FIXPOINT.

Proof. The simulation of ETL in T-FIXPOINT is analogous to the simulation
of TL in T-FIXPOINT illustrated in Example 5.3. To simulate a temporal
operator associated to a regular language L, we consider a finite automaton
accepting L. For each state of the automaton we use an auxiliary relation
playing a role similar to N in Example 5.3, keeping track of the status of
the elements during the simulation of the automaton. The state-changes of
the automaton are performed while moving over the states of the temporal
database. The state-changing relations must be implemented using non-
inflationary variables, since the working of the automaton is not inflationary.

To show that the inclusion is strict, one may want to argue simply that in
T-FIXPOINT one can compute the transitive closure of a binary relation, which
is impossible in ETL (on temporal databases of length one, ETL collapses to
ordinary first-order logic). However, this argument is insufficiently general
because it does not apply in the case of unary or nullary relational schemas.
Instead, we show that it is possible in T-FIXPOINT to check whether the
length of the temporal database is a prime number. This is impossible in
ETL, since ETL is known [7] to be able to express only regular properties of
the length of a database (representing a number as a unary word). Actually,
we will show how to express the complementary query, checking whether the
length is a composite number.

Consider the algorithm shown in Figure 3, which tests whether a natural
number n > 2 is composite. This algorithm is special in that the auxiliary
variables it uses take only values between 1 and n; the only test it uses is
equality between one variable and another or n; and the only operations it
uses is assigning one variable to another, incrementing a variable by one, and
setting a variable to one.

We can simulate the algorithm of Figure 3 by a program in T-FIXPOINT.
A variable having a value i between 1 and n (the length of the temporal
database) can be simulated by a nullary state relation variable whose value is
{()} (the non-empty nullary relation, used as the truth value “true”) in state
i and () (used as the truth value “false”) in all other states. The simulation
is shown in Figure 4. Nullary relation variables are used as propositional
variables in the obvious manner. [|

Finally, we compare T-FIXPOINT to T-WHILE. It is quite easy to see that
their equality is very unlikely:

28

begin
composite := false;
factor .= 1; factor := factor + 1,
while not composite and factor # n do
product = factor;
while product # n do
counter := 1;
product := product + 1;
while counter # factor and product # n do
counter := counter + 1;
product := product + 1
od;
if counter = factor and product = n then
composite ;= true
od;
factor := factor + 1
od
end.

Figure 3: A special algorithm for testing compositeness of a natural num-
ber n.

29

shared Composite(0); state Factor(0);
right; Factor := true;
while —Composite A ~Last do
[local state Product(0);
while —First do left od;
Product := true;
while —Last do
[local state Counter(0);
local shared Counter_eq_Factor(0);
while —First do left od,;
Counter := true;
while —Product do right od;
Product := false; right; Product := true;
while —Counter_eq_Factor N\ = Last do
while —Counter do left od;

Counter := false; right; Counter := true;

Counter_eq_Factor := Factor;

while = Product do right od;

Product := false; right; Product := true
od;
Composite :== Counter_eq_Factor A Last |

od;

while = Factor do left od;

Factor .= false; right; Factor := true |
od.

Figure 4: Program in T-FIXPOINT for testing compositeness of the length of
the temporal database.

30

Proposition 6.6 If T-FIXPOINT = T-WHILE, then PTIME = PSPACE.

Proof. Suppose that T-FIXPOINT = T-WHILE. Then, in particular, T-FIXPOINT
equals T-WHILE on temporal databases consisting of a single state, and hence,
FIXPOINT equals WHILE. As mentioned in the beginning of Section 5, this is
known to imply PTIME = PSPACE. [|

It remains open whether the converse of the above proposition holds.

7 Simulating timestamps by data elements

For clarity, we have separated the data elements in a temporal database from
the natural numbers used to number its states. If, however, one allows these
natural numbers to be stored in the database instances, interesting cases can
be indicated in which the differences between implicit and explicit access to
time disappear.

A class of situations in which TS-FO is no longer more powerful than TL
is given by the following general definition. Let ¢(Z) be an arbitrary fixed
TL-formula. For each state j of a temporal database I, ¢ defines a relation
¢(1;) on the j-th instance I;. If ¢(I;) and ¢(I;) are non-empty and disjoint
for any two different states j and ¢, I is called ¢-diverse. We observe:

Proposition 7.1 Let ¢ be a TL-formula. On ¢-diverse databases, TL 1is
equivalent to TS-FO.

Proof. We show inductively how a Ts-FO-formula can be translated into
an equivalent TL-formula +'. For simplicity we assume the schema consists
of a single relation S. We will use the abbreviation < ¢ for true until .

e To each time-variable ¢ of TS-FO we associate distinct variables 2%, ...,

2! where m is the number of free variables of ¢. We denote the tuple
242k by z.

»~m

An atomic formula S(7,t) is translated into O (S(z) A ¢(z;)).

An atomic formula ¢ < ¢ is translated into <(¢(2;) A next O ¢(zy)).

v A1 and —p are translated into ¢’ A ¢’ and —¢', respectively.

Finally, (3t)¢ is translated into (3%;)¢'.]

31

Two examples of ¢-diverse databases are the following:

e Assume the database schema contains a unary relation Time, and as-
sume the contents of that relation at the i-th state is the singleton
{i}. Temporal databases of this kind are said to have local time. Since
local-time databases are ¢-diverse, with ¢ simply being Time(z), the
above proposition yields that TL is equivalent to TS-FO on local-time
databases. The local time assumption is quite realistic in practice, and
has been made, e.g., by Gabbay and McBrien [8]. It also seems to
be implicitly made by Tuzhilin and Clifford [18]. Proposition 7.1 thus
provides an a posteriori justification of the, at first sight erroneous,
expressive completeness claims on TL made in [8, 18].

e Insert-only databases are databases where for each j, the instance at
state j + 1 is obtained from the instance at state j by inserting a non-
zero number of tuples in some of the relations. Insert-only databases are
p-disjoint with ¢ being \/(R(z)A— previous R(Z)) (where the disjunction
is over all relations R in the schema).

By an analogous proof to that of Proposition 7.1 we also readily see that
on ¢-diverse databases, T-FIXPOINT is equivalent to TS-FIXPOINT and that
T-WHILE is equivalent to TS-WHILE. Moreover, in these query languages,
¢-diversity can sometimes be simulated, as shown in the following:

Proposition 7.2 Let p be a natural number. On ordered temporal databases
of length at most dP, where d is the size of the active domain, T-WHILE 1S
equivalent to TS-WHILE and T-FIXPOINT s equivalent to TS-FIXPOINT.

Proof. We can turn a database satisfying the property expressed in the
proposition into an A(Z)-diverse database, where A is a p-ary auxiliary state
relation, defined using a T-FIXPOINT-program which generates the p-tuples
of data elements one after the other in lexicographical order while moving
over the temporal database from left to right and assigning them to the state
relations A. [|

We conclude this brief section by noting that a result more general than
Proposition 7.2 can be proven. Indeed, the proposition remains true without
the assumption that the database is ordered, if we replace d by i, where ¢
is the number of k-types in the database for some k. (For the definition of

32

k-types we refer to [1, 3].) This is because the collection of k-types, with an
order on them, can be computed in T-FIXPOINT, in much the same way this
can be done in FIXPOINT on non-temporal databases.

8 Concluding remarks

The main technical problem left open by our work is to determine whether
or not the converse to Proposition 6.6 holds. One way to approach this
problem is by trying to adapt the known proof [3] that PTIME = PSPACE
implies FIXPOINT = WHILE (on non-temporal databases) to the temporal
setting.

Another natural open research issue is to further relate the FIXPOINT-
and WHILE-based temporal query languages proposed in this paper to other
temporal query languages with iteration or recursion capabilities considered
in the literature. The prime example of such a languge is (the first-order
version of) fixpoint temporal logic (denoted pTL and proposed by Vardi [19]).
This language is clearly subsumed by TS-FIXPOINT, but its exact relation-
ship to TS-FIXPOINT as well as to T-FIXPOINT remains open. Other interest-
ing languages are Templog, a logic-programming language based on TL, and
Datalog, ¢, which extends Datalog with the successor function on timestamps.
A comprehensive presentation of these two languages was given by Baudinet,
Chomicki, and Wolper [4], who also showed that they are equivalent to each
other, and that in the propositional case, they are equivalent to the positive
fragment of pTL. An important feature of Datalog,q is that programs can
use the successor function on timestamps in an unbounded way; it is not
only given on the set {1,...,n} of states of the input temporal database,
but on the whole of the natural numbers. The infinite timestamped relations
that can result from this can always be finitely represented, as shown by
Chomicki and Imielinski [6]. It is not difficult to simulate a bounded version
of Datalog,q, where the successor function is only defined on the finite set of
states of the input, in T-FIXPOINT.

We conclude this paper with a discussion on our proof of the separation
of TS-FO from TL and ETL, presented in Section 3. An alternative approach
to establish this result would be to prove that Ts-Fo3, the 3 time-variable
fragment of TS-FO, is strictly less expressive than full TS-FO. Indeed, it is
known and not difficult to verify that every TL query is already expressible
by a formula in TS-FO using at most 3 distinct time-variables. Note that our

33

proof of Theorem 3.8 implies that TL is strictly contained in TS-FO?; actually,
the proof shows that even some TS-FO? queries are not expressible in TL.

More generally, one might conjecture that there is a strict hierarchy in
expressive power among the fragments Ts-FO* for each k. (It is known that
TS-FO' C TS-FO? C TS-FO*.) A closely related question from the field of
finite model theory is whether there is a strict FO*-hierarchy on the class of
ordered finite graphs. Here, FO* denotes the k variable fragment of standard
first-order logic on ordered graphs.

One might also try to separate TL and TS-FO with a proof based on
Ehrenfeucht-Fraissé style games. Segoufin [16] designed a very elegant exten-
sion of Ehrenfeucht-Fraissé games capturing precisely the expressive power
of TL. In our experience, however, it is quite hard to explicitly construct
families of pairs of temporal databases that are indistinguishable in TL. Our
approach based on communication complexity turned out to be more suc-
cessful. Our proof is robust under built-in relations on data elements, such
as total order, and at the same time separates the more powerful ETL from
TS-FO.

Acknowledgment

We thank Victor Vianu and Luc Segoufin for helpful discussions and encour-
agements during the course of this work. The third author also thanks Frank
Neven for proofreading a draft of this paper.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.
Addison-Wesley, 1995.

2] S. Abiteboul and E. Simon. Fundamental properties of deterministic and
nondeterministic extensions of Datalog. Theoretical Computer Science,
78:137-158, 1991.

(3] S. Abiteboul and V. Vianu. Computing with first-order logic. Journal
of Computer and System Sciences, 50(2):309-335, 1995.

34

4]

(6]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

M. Baudinet, J. Chomicki, and P. Wolper. Temporal deductive data-
bases. In A. Tansel et al., editors, Temporal Databases: Theory, Design,
and Implementation. Benjamin/Cummings, 1993.

J. Chomicki. Temporal query languages: a survey. In D.M. Gabbay and
H.J. Ohlbach, editors, Temporal Logic: ICTL’9/, volume 827 of Lecture
Notes in Computer Science, pages 506—534. Springer-Verlag, 1994.

J. Chomicki and T. Imieliniski. Finite representation of infinite query
answers. ACM Transactions on Database Systems, 18(2):181-223, June
1993.

E.A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B. Elsevier, 1990.

D. Gabbay and P. McBrien. Temporal logic and historical databases.
In Proceedings 17th International Conference on Very Large Databases,
pages 423-430, 1991.

D.M. Gabbay, I. Hodkinson, and M. Reynolds. Temporal Logic, Math-
ematical Foundations and Computational Aspects, volume 1 of Ozxford
Logic Guides. Oxford University Press, 1994.

D. Gabby, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis
of fairness. In Conference Record 7th ACM Symposium on Principles of
Programming Languages, pages 163-173, 1980.

J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, 1979.

H. Kamp. Formal properties of ‘now’. Theoria, 37:227-273, 1971.

J.AW. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis,
University of California, Los Angeles, 1968.

C.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

D. Perrin. Finite automata. In Handbook of Theoretical Computer Sci-
ence, volume B. Elsevier, 1990.

L. Segoufin. Temporal logic and games. INRIA, VERSO, 1995.

35

[17]

[18]

[19]

[20]

[21]

D. Toman and D. Niwinski. First-order queries over temporal data-
bases inexpressible in temporal logic. In P.M.G. Apers, M. Bouzeghoub,
and G. Gardarin, editors, Advances in Database Technology—EDBT’ 96,
volume 1057 of Lecture Notes in Computer Science, pages 307-324.
Springer, 1996.

A. Tuzhilin and J. Clifford. A temporal relational algebra as a basis for
temporal relational completeness. In D. McLeod, R. Sacks-Davis, and
H. Schek, editors, Proceedings of the 16th International Conference on
Very Large Data Bases, pages 13-23. Morgan Kaufmann, 1990.

M.Y. Vardi. A temporal fixpoint calculus. In Proceedings 15th ACM
Symposium on Principles of Programming Languages, pages 250-259,
1988.

P. Wolper. Temporal logic can be more expressive. Information and
Control, 56:72-93, 1983.

A. C.-C. Yao. Some complexity questions related to distributive comput-
ing. In Proceedings 11th ACM Symposium on the Theory of Computing,
pages 294-300, 1979.

36

