
Expressiveness and complexity of

generic graph machines�

Marc Gemis

Peter Peelman

Jan Paredaens

Jan Van den Busschey

University of Antwerpz

Abstract

The Generic Graph Machine �GGM� model is a Turing machine�

like model for expressing generic computations working directly on

graph structures� In this paper� we present a number of observations

concerning the expressiveness and complexity of GGMs� Our results

comprise the following� �i� an intrinsic characterization of the pairs

of graphs that are an input�output pair of some GGM� �ii� a com�

parison between GGM complexity and TM complexity� and �iii� a

detailed discussion on the connections between the GGM model and

other generic computation models considered in the literature� in par�

ticular the generic complexity classes of Abiteboul and Vianu� and the

Database Method Schemes of Denningho� and Vianu�

� Introduction

Traditional models of computation� like the Turing Machine �TM� or the
Random Access Machine �RAM�� express computable functions mapping

�Work partially supported by the Belgian DPWB� program IT�IF����
yCurrent address� University of Limburg �LUC�� Department WNI� B��	
� Diepen�

beek� Belgium� E�mail� vdbuss�luc�ac�be�
zUIA� Informatica� Universiteitsplein �� B�
��� Antwerp� Belgium� E�mail�

pareda�uia�ua�ac�be�

�



strings to strings or numbers to numbers� Sometimes� however� one is in�
terested in computations that occur at a higher level of abstraction� For
example� many information structures can be naturally represented as a la�
beled graph� and one is then interested in computable functions mapping
graphs to graphs�

Of course� computations from graphs to graphs can be modeled on a TM�
by encoding graphs as strings over some �nite alphabet� or on a RAM� by en�
coding graphs as certain arrays of natural numbers� A fundamental problem
with this approach� however� is that the encoding of a graph contains much
more information than the graph itself� For example� in the TM encoding
of a graph one can identify the node v� of the graph that comes �rst in the
linear listing of all the nodes on the input tape� in the RAM encoding of a
graph one can identify the node vmax that is maximal among all nodes� con�
sidering that the nodes are given as natural numbers� Nodes like v� or vmax

thus have a special status in the encoding of a graph� while they may have
no such status in the graph itself� �As an extreme example� in completely
symmetric graphs like cliques or discrete graphs� no node is distinguishable
from another node��

Hence� when using conventional computation models like TMs or RAMs
for expressing computations on graphs� one might want to restrict the com�
putations to those that are �admissible	� i�e�� that do not depend on the
extra information which is only there as an artifact of the encoding of the
input� For example� a TM deleting the node v� �mentioned in the previous
paragraph� from its input graph is not admissible� More precisely� a TM
is admissible if the partial recursive function from strings to strings it com�
putes� when decoded into a function from graphs to graphs� does not depend
on the particular encoding of nodes as strings that is used� and neither on
the particular ordering in which the nodes and edges are listed in the input
string� �One can de�ne a similar admissibility criterion for RAMs��

The output graph of a graph function computed by an admissible com�
putation device thus depends only on the input graph itself� This statement
becomes even more clear if we consider the following intrinsic characteriza�
tion of the admissible TMs
 a graph function is computable by an admissible
TM if and only if it preserves graph isomorphisms� �This characterization is
not di�cult to prove�� The formal property of preservation of isomorphisms�
which is known as genericity ��
�� indeed captures nicely the informal prop�
erty of depending only on the logical structure of the input graph�






A serious drawback of putting a genericity criterion on TMs however� is
that genericity is not a syntactic notion �i�e�� not recursively enumerable��
What is therefore needed are computation models speci�cally tuned for ex�
pressing graph functions� working directly on the logical structure of the
graphs so that genericity is guaranteed� One such generic computation model
is the Generic Graph Machine �GGM�� introduced by us in ����� A con�gu�
ration of a GGM consists of an underlying graph and a number of machine
instances� each have a local state and pointing to two nodes of this graph�
During the execution of a step� the machine instances perform in parallel a
local transformation on the graph and are each replaced by number of other
machine instances� Since the parallelism involved respects the symmetries of
the graph� genericity is ensured�

The purpose of the present paper is to further our understanding of
generic computation models by presenting a number of additional obser�
vations concerning the expressiveness and complexity of GGMs�

Many of our results relate the GGM model with data manipulation lan�
guages for object�oriented databases� Indeed� generic computation mod�
els have received considerable attention in database theory� in the form of
database query and update languages� Genericity is particularly important
in that context� since it captures the principle of physical data independence
��� �� �
�� Initially� database languages� being used in the context of relational
database systems� were designed for the computation of domain�preserving
functions from relational structures to relations� But later� the focus shifted
to the computation of graph functions� in the new context of object�oriented
databases� Indeed� various manipulations of object databases can be modeled
as graph manipulations ��� ���

Concretely� we will analyze the relationship between the GGM model and
the two object database graph languages GOOD ���� and DMS ���� GOOD
is a graph transformation language based on pattern matching� while DMS
is an object�oriented language based on the parallel invokation of methods�
We prove that DMS� a restricted version of GOOD� and a similarly restricted
version of GGM� are equivalent to each other up to constant factors in time
and space complexity� and equivalent to Turing machines up to polynomial
factors� The interest in this result is that GOOD and DMS are not just
aritrarily chosen languages� Indeed� GOOD is a yardstick for the compu�
tational completeness of formalisms for computing generic graph functions

GOOD programs are known to be able to compute precisely all �construc�

�



tive	 generic graph functions ����� Moreover� DMS is a yardstick for the
complexity of such generic computations
 it was designed to capture pre�
cisely the generic complexity classes introduced by Abiteboul and Vianu ����

Our second main result is a direct proof of the �BP�completeness	 of the
GGM model� BP�completeness is an �intrinsic	 property of the power of
generic computation models� originally introduced in the context of query
languages for relational databases by Chandra and Harel ����� In the context
of the GGM model it means that a pair �G�G�� of graphs is an input�output
pair of some GGM if and only if the group of automorphisms of G can be
homomorphically embedded in the group of automorphisms of G�� i�e�� if
the symmetries in G are preserved in G�� Andries and Paredaens ��� al�
ready proved the BP�completeness of GOOD� hence� the BP�completeness
of the GGM model follows indirectly from the equivalence between GOOD
and GGM mentioned above� The direct proof we will give is an �intrinsic	
argument providing additional insight in GGM computations� We actually
consider our argument to be clearer than the proof of BP�completeness of
GOOD presented in ����

This paper is further organized as follows� In Section 
� we recall the
de�nition of the GGM model as introduced in ����� In Section �� we compare
GGM complexity with TM complexity� In Section �� we relate GGM com�
plexity to generic complexity by giving mutual simulations between GGM�
GOOD and DMS� Finally� in Section �� we prove the BP�completeness of the
GGM model�

� Generic graph machines

A GGM� as illustrated in Figure �� consists of a �nite state control� a �nite
number of machine instances �MIs� and works on a labeled graph� Each MI
is in some local state� and has a head and a pointer� both of which point
to a node of the graph� Initially� the underlying graph is an arbitrary given
input graph� and there is only one MI in a �xed starting state with head and
pointer pointing to a particular �xed node� In Figure �� the graph is enclosed
in a rectangle� each MI is depicted as a gray circle labeled by its state� and
the head and pointer of each MI are indicated by a dotted line�

�The BP is merely an abbreviation of Bancilhon�Paredaens ��� ��� and has nothing to
do with NP or other complexity classes�

�



A

B

C D

B

b

a

a c

h ph p

h p
q1

q1q2

Figure �
 A GGM working on a graph� The MIs are depicted as circles�

In one transition of the GGM� each MI can�depending on its state�do
the following


�� Change state� or die�


� Perform a simple action on the graph� such as the addition or deletion
of a node or edge�

�� Move its head and pointer to other nodes� possibly splitting up into
several new MIs�

The actions of the di�erent MIs are performed in parallel�
To de�ne the type of graph structures we will be working with� assume

the existence of pairwise disjoint� in�nitely enumerable sets N of nodes� NL
of node labels� and EL of edge labels� We will generally denote node labels
by capital letters and edge labels by lowercase letters�

Let NL and EL be �nite subsets of NL and EL� respectively� A graph
over �NL�EL� is a triple G � �N�E� ��� where

� N is a �nite subset of N�

� E is a subset of N � EL�N � and

� � is a total function from N to NL�

�



For a node n � N � ��n� is called the label of n� An element �n� a�m� of E is
called an edge from n to m with label a� We will extend � to E by putting
��n� a�m� 
� a�

A GGM working on graphs over �NL�EL� now consists of

� a �nite set of states� among which an initial state is designated�

� �nite alphabets NL� and EL� of node and edge labels� respectively�
containing NL and EL� respectively� nodes and edges created during
an execution of the GGM will be labeled with elements from these
alphabets� an initial node label in NL� �NL is designated�

� a transition function from the set of states to a �nite set of operations�
to be speci�ed shortly�

A con�guration of a GGM as above is a pair �G� S�� where G is a graph
over �NL�� EL��� and S is a set of triples of the form �q� head � pointer�� with
q � Q and head � pointer nodes in G� Each such triple is called a machine�
instance �MI�� consisting of a state q� a head placed on a node head � and a
pointer placed on a node pointer �

We will de�ne the transitions between con�gurations of a GGM in two
steps� First� we de�ne �elementary	 transitions from con�gurations consist�
ing of a single machine instance� Transitions from arbitrary con�gurations
will then be parallel compositions of elementary ones�

Elementary transitions� Consider a con�guration C of a GGM M con�
sisting of one single MI only� This MI will transform C into another con�
�guration C �� denoted by C ��M C �� according to the operation associated
by M �s transition function to the state the MI is in� The di�erent possible
operations are the following


�� Die
 the MI vanishes from the con�guration�


� Do nothing�

�� Test head and pointer for equality� changing to two di�erent states
depending on the outcome�

�� Move pointer to head�

�



�� Add an edge� with a speci�ed label� from head to pointer� or from
pointer to head�

�� Remove� if existing� the edge with a speci�ed label from head to pointer�
or from pointer to head�

�� Add a node� together with an edge to it from the head� with speci�ed
labels� and move head to the new node� A variant of this operation
adds the edge in the reverse direction� i�e�� from the new node to the
head�

�� Delete the node under pointer� moving pointer to head� if head equals
pointer die�

�� Look for nodes in the graph with some speci�ed label� split into many
MIs� one for each such node� with the head placed on that node� This is
some kind of �global search	� Alternatively� perform a �local search	�
looking for edges with some speci�ed label going from the head to nodes
with some speci�ed label� In both cases� if no nodes are found� change
to a di�erent state�

In all situations listed above� the MI can� in addition to performing the op�
eration� change to a new state� Note that global search is the only operation
that is not �local	� in the sense that it causes nodes of the graph to be visited
that are not directly linked to the head or pointer of the MI� If global search
were not allowed� an MI would never be able to leave a connected compo�
nent� this would drastically diminish the computational power of GGMs �for
example� it would no longer be possible to test whether there exist two nodes
not linked by any edge��

General transitions� Now let C � �G� S� be a general con�guration of
the GGM M � with G � �N�E� ��� and let I�� � � � � I� be the MIs in S� For
each j � �� � � � � �� let Cj be the con�guration �G� fIjg�� With C � � �G�� S ��
another con�guration ofM � we say thatM transforms C into C � in one step�
denoted C ��M C �� if the following conditions are satis�ed


�� There exist con�gurations C �
�� � � � � C

�
� such that for each j � �� � � � � ��

Cj ��M C �
j� Let C �

j � �G�
j� S

�
j�� with G�

j � �N �
j� E

�
j� �

�
j�� For any two

�



di�erent j and k� �N �
j�N� and �N �

k�N� must be disjoint� so the nodes
added by the di�erent MIs are di�erent�


� Writing G� � �N �� E �� ���� we have


� N � �
T�
j��N

�
j �

S�
j���N

�
j �N��

� E � � f�n� a�m� � �
T�
j��E

�
j �

S�
j���E

�
j n E�� j n�m � N �g� and

� �� �
S�
j�� �

�
j�

�� S � � f�q� head � pointer� �
S�
j�� S

�
j j head � pointer � N �g�

The union de�ning �� yields a well�de�ned function� since the di�erent ��j
agree on the intersections of their domains �these intersections will always
consist of nodes in N��

It may be instructive to describe the formal de�nition of ��M intuitively
as follows� In each step of the GGM� all MIs perform their operation on the
graph in parallel� After each step� MIs whose head and pointer no longer
belong to the graph are killed� and identical MIs merge into a single one�
A GGM thus resembles a systolic automaton �see ���� for de�nition�� ex�
cept that the MIs are not �xed and permanent like individual systolic nodes�
Various other computational models� which can be viewed as lying between
GGMs and systolic automata� have been proposed in the literature� A selec�
tion of these has been reviewed in �����

Duplicate Elimination� For the sake of clarity� in the preceding discus�
sion we have left out one operation in the GGM model� which we now present
separately� The duplicate elimination operation is not performed by individ�
ual MIs� but by the GGM as a whole� Informally� this operation replaces
each equivalence class of �duplicate	 nodes by a single new node serving as
a unique representative for the class� To this end� we specify a number of
states which we call �red	� Each time some MI is in a red state� duplicate
elimination if performed on the current con�guration before moving to the
next con�guration�

Formally� let C � �G� S� be a GGM con�guration� and let n�� n� be two
nodes in G� We say that n� and n� are duplicates with respect to C if the
transposition of n� and n�� which can be applied to G and S in the canonical

�



way� leaves G and C invariant� Hence� n� and n� are logically interchangeable
within the con�guration�

The duplicate elimination now transforms con�guration C into a new one
C � � �G�� S �� as follows� Call a node in G red if it is under the head of an
MI in a red state� Let Z be the partition of the nodes in equivalence classes
according to the following equivalence relation


� If n�� n� are red� then n� and n� are equivalent i� n� and n� are dupli�
cates�

� If n is not red� then n is only equivalent to itself�

For each non�singleton equivalence class Z� we take a new representative node
nZ � U n N � We extend this to singleton equivalence classes Z � fng by
putting nZ � n� Now in the new con�guration� each representative replaces
its equivalence class� Formally� we have


�� G� � �N �� E �� ���� with

� N � �
S
Z�ZfnZg�

� ���nZ� � ��n� for n � Z� and

� E � �
S
Z�Z��Zf�nZ � a� nZ�� j ��n� a�m� in G� n � Z� m � Z �g�


� S � � f�q� nZ� nZ�� j ��q� n�m� � S� n � Z� m � Z �g�

Computing graph functions� Now let C and C � be con�gurations of the
GGM M � and let ��M be the transition relation between con�gurations of
M as de�ned above� We say M transforms C into C �� denoted C ���

M C ��
if there exist con�gurations C�� � � � � Cn such that

C ��M C� ��M � � � ��M Cn ��M C ��

and such that a node deleted in one of the transitions is not re�inserted in a
later transition�

A graph function is a function mapping graphs to graphs� A GGM M

computes a graph function as follows� Let A� be the initial node label of M �
and let q� be the initial state� For a graph G� denote by �G the graph obtained
from G by adding a new node with label A�� This new node is denoted by
n �G� We de�ne


�



De�nition ��� M computes the graph function F if for each graph G on
which F is de�ned�

� �G� f�q�� n �G� n �G�g� ��
�

M �F�G�� ���

So� when M is started on G with one single MI� in the initial state� and with
head and pointer placed on an extra starting node� the �nal result graph
when all MIs have died yields F�G�� The extra starting node is necessary to
deal with the case G � �� at the same time� it provides a simple and uniform
way to start up the computation� We will say in this case that M transforms
G into F�G��

Example� We conclude this section by showing how a GGM can test
whether a tree is unbalanced� i�e�� whether there are two paths from the
root to a leaf with di�erent length� We start with an MI having head and
pointer on the root� This MI initiates a traversal of the tree� following every
path by splitting in each internal node� Each MI that arrives in a leaf creates
a node with some special �xed label not occurring in the tree� say B� Thus� if
a MI arrives in a leaf and there is already a B�node� the tree is non�balanced�
and the MI enters a special state to signal this�

� Complexity

One can naturally de�ne the time complexity of a GGM M as the maximum
number of steps performed by any computation ofM on a graph with n nodes�
and the space complexity as the maximal number of nodes in any intermediate
con�guration of any computation of M on a graph with n nodes�

Since many di�erent MIs work in parallel in one global GGM step� the
time complexity of a GGM M alone does not say much about the classical
Turing machine �TM� complexity of a graph function computed by M � This
point is illustrated by the following example�

Example ��� The powerset of the set of nodes of a graph �an inherently
exponential graph function� can be computed by a GGM with logarithmic
time complexity as follows� We will create nodes labeled S� each linked by
edges to the nodes of some subset of nodes of the input graph� We start by
creating nodes for the empty set and the singleton sets� We then enter a

��



loop at each iteration of which we create for every pair of S�nodes a new one
linked to the union of their associated sets� This is repeated as long as an
S�node linked to all nodes is not yet created� Since after i iterations all sets
containing at most 
i elements are represented� the time complexity of the
computation is O�logn��

We can nevertheless give a �rough� upper bound on the number of nodes
which can be created by a GGM in a polynomial number of steps� as follows


Proposition ��� No GGM can create more than O�f�n�� new nodes in a
polynomial number of steps� where

f�n� � 
�
�
n

� n�
�
n
��

�

Proof� The only operation which can create new nodes is the node addition
operation� The maximal number of new nodes that can be created in one
step equals the number of MIs in the con�guration of that step� Let N�i�
�M�i�� be the number of nodes �MIs� in the con�guration after i steps� Note
that N��� � n and M��� � �� We thus have

N�i � �� 	 N�i� �M�i��

Moreover� by de�nition of MI� we have

M�i � �� 	 q�N�i� �����

where q is the number of states of the GGM� Solving for these two inequalities
yields

N�i� 	 
�
i�� � q�

i���� � n�
i��

�

For su�ciently large n 	 q� and bounding the number of steps i from above
by 
n� we obtain the desired result�

The preceding discussion motivates us to look at the combined space�
time complexity of a GGM computation as a more appropriate measure of
its �cost	� Indeed� under this view we can show the following relationship
between GGM complexity and TM complexity


Proposition ��� A GGM with time complexity T �n� and space complexity
S�n� can be simulated by a TM with time complexity polynomial in T �n��S�n��

��



Proof� We will use a ��tape TM� Tape � is used for the generation of the new
node identi�ers� Its maximum length is O�log �S�n�T �n���� Tape 
 holds the
node identi�ers with their label� It contains a sequence of elements of the
form �i� A� t�� with i a node identi�er� A a label and t a tag that can have
a �nite number of possible values and that is used during the computation�
The maximum length of Tape 
 is O�S�n� log �S�n�T �n���� Tape � holds the
new node identi�ers created during the current step� It has the same form
and maximum length as Tape 
� Tape � holds the edges with their label�
It contains a sequence of elements of the form �i� a� j� t�� with i and j node
identi�ers� a an edge label and t a tag� The maximum length of Tape �
is O�S�n�� log �S�n�T �n���� Tape � holds the new edges created during the
current step� It has the same form and maximum length as Tape �� Tape �
holds the MIs� It contains a sequence of elements of the form �q� i� j� t�� with
i and j node identi�ers� q a state and t a tag� The maximum length of
Tape � is also O�S�n�� log �S�n�T �n���� Tape �� �nally� holds the MIs after
the current step and has the same form and maximal length as Tape ��

The Turing machine simulates each step of the GGM by �rst perform�
ing a duplicate elimination �if in a �red	 state� and then running through
Tape �� and simulating each MI� The latter part is done in O�S�n��F �n��
steps �F �n� will be explained later�� Afterwards Tapes 
 and � are adjusted
�taking O�S�n� log �S�n�T �n��� steps�� Tapes � and � are adjusted �taking
O�S�n�� log �S�n�T �n���� steps� and Tapes � and � are adjusted �also taking
O�S�n�� log �S�n�T �n���� steps��

A duplicate elimination takes O�S�n�� logS�n�T �n��� steps� For each pair
of nodes� one has to test whether they are duplicates� The number of steps
needed to �nd all pairs of nodes is O�S�n�� logS�n�T �n���� For each pair one
has to compare the set of outgoing edges� this takes O�S�n�� logS�n�T �n���
steps�

The value of F �n� depends on the kind of step performed� The local
search operation is the most time�consuming case to simulate� This operation
requires scanning Tape �� to �nd an edge starting in the given head and with
label a� and then scanning Tape 
 to check whether the end node has label
A� This takes O�S�n�� logS�n�T �n���� So� in total� the simulation of the
e�ect of the MIs takes O�S�n�� logS�n�T �n��� steps�

Of the three parts� the simulation of the duplicate elimination is the most
costly� So in general the time complexity is O�S�n��� logS�n��T �n����

�




A converse to the above simulation result is easily seen


Proposition ��� Each TM can be simulated in real time by a GGM�

Proof� We encode the tape of the TM by a linked list of cell nodes� The cells
are labeled by the tape symbol they contain� Initially� only the part of the
tape that contains the input �i�e�� the part that is non�blank� is represented�
If more of the tape is needed� new cell nodes are created dynamically� It is
now straightforward to simulate the con�guration transitions of the TM�

It may be interesting to note that in the above simulation� the global
search operation is not needed�

� Generic computation models

As already mentioned in the Introduction� one of the main goals of the GGM
model is its genericity� This means that the computation of a GGM working
on a graph happens completely on the logical level� In other words� the
computation depends exclusively on the logical structure of the graph� not
on the way the nodes and edges of a graph are �physically	 represented and
stored in the computer� Conventional computation models like the RAM or
the Turing machine are not generic �they were of course not meant to be��
For example� a computation of a RAM on a graph can exploit the fact that
the nodes of the graph are really natural numbers� For another example�
when providing a Turing machine with a graph as input� one actually gives
the graph plus an ordering of its nodes �induced by the ordering of the input
tape cells�� this ordering is strictly not part of the graph�s logical structure�

��� Generic completeness

A natural question to ask is whether the GGM model is computationally
complete in some natural sense� The notion of completeness with respect to
generic computations has been addressed extensively in the literature on the
theory of database queries �e�g�� �
� ���� Generic computations are partic�
ularly relevant to database applications� since genericity is intimately con�
nected to the fundamental notion of data independence ���� Traditionally� the

��



theory of database queries has focused on the computation of generic func�
tions on relational structures in general rather than graph structures in par�
ticular� Moreover� attention is traditionally restricted to domain�preserving
functions� as such� the theory is not fully applicable to the particular case of
graphs� as domain�preserving graph functions would not be able to add new
nodes to a graph�

However� motivated by recent applications of databases in object�oriented
environments� the theory of database queries has recently been extended
beyond domain�preserving functions� allowing for the introduction of new
domain elements in the result of a query ��� ���� This extended theory� needed
to account for the creation of new objects in an object�oriented database� is
fully applicable to the particular case of graphs� A powerful language for
expressing object�creating queries is the language provided by the GOOD
model� a graph�oriented model for object databases ����� It has been shown
that the GOOD language is computationally complete in that the language
can express precisely all constructive computable generic graph functions
���� ����

Hence� to assess the completeness of the GGMmodel� its expressive power
must be compared to that of the GOOD language� We have done this in a
previous paper ����� and were indeed able to prove that GGM is equivalent to
GOOD� thereby establishing its completeness� In order to recall this result
in the present paper� we �rst brie�y introduce the GOOD language itself� in
a simpli�ed form su�cient for our purposes�

GOOD is a procedural programming language for working with graphs�
It provides �ve types of basic statements and is closed under composition
and while�loops in the usual way� The �ve types of basic statements are the
following


�� Edge addition� Let G be a graph� P another� �xed� graph �called the
pattern�� let n�m be �not necessarily distinct� nodes in P � and let e be
an edge label� Applying the edge addition operation

EA�P� n�m� e�

to G yields a graph G�� obtained from G by adding� for each homomor�
phism f from P into G �called a matching of the pattern P in G�� the
edge �f�n�� e� f�m���

��



It is important to note that the pattern is a �xed part of the �syntax	
of the operation� di�erent patterns give rise to di�erent edge addition
operations� As a consequence� an edge addition is polynomial�time
computable� The same holds for the remaining four operations�


� Node addition� Let n�� � � � � nk be nodes in P � let e�� � � � � ek be edge
labels� and letK be a node label� Applying the node addition operation

NA�P� n�� � � � � nk� e�� � � � � ek� K�

to G yields a graph G�� obtained from G by adding� for each matching
f of P in G� a K�labeled new node with an ei�labeled edge to f�ni� for
each i � �� � � � � k� provided such a node does not already exist in G��

�� Edge deletion� Let �n� e�m� be an edge in P � Applying the edge deletion
operation

ED�P� n� e�m�

to G yields a graph G�� obtained from G by deleting� for each matching
f of P in G� the edge �f�n�� e� f�m���

�� Node deletion� Let n be a node in P � Applying the node deletion
operation

ND�P� n�

to G yields a graph G�� obtained from G by deleting� for each matching
f of P in G� the node f�n��

�� Abstraction� This operation is di�erent in spirit from the other four
and is used for duplicate elimination� Let n be a node in P � let e� e�

be edge labels� and let K be a node label� We can de�ne the following
equivalence relation among the nodes of G


m 
e m
� � fm�� j edge �m� e�m��� in Gg � fm�� j edge �m�� e�m��� in Gg�

We say in this case that m and m� are duplicates w�r�t� e� Denote the
restriction of 
e to those nodes that equal f�n� for some matching f
of P in G by 
e jP � Then applying the abstraction operation

AB�P� n� e� e�� K�

��



to G yields a graph G�� obtained fromG by adding� for each equivalence
class Z w�r�t� 
e jP � a K�labeled new node with an e��labeled edge to
each m � Z� provided such a node does not already exist in G��

GOOD programs can now be de�ned as follows� Each basic statement is
a program� If Q� and Q� are programs� then their composition Q��Q� is a
program� Finally� if Q is a program and K is a node label� then the while�
loop while K do Q od is a program� The semantics of basic statements was
de�ned above� The semantics of a composition Q��Q� is the obvious one

if G is a graph� G� is a graph obtained from applying Q� to G� and G�� is
a graph obtained from applying Q� to G

�� then applying Q��Q� to G yields
G��� on condition that a node which is deleted by a node deletion operation
in Q� is not added back by a node addition or abstraction operation in Q��
The semantics of a while�loop while K do Q od is �repeat Q as long as
there is a K�labeled node in the graph�	

��� Generic complexity

There is often a serious mismatch between the conventional Turing com�
plexity of a computational task and its complexity when performed in a
generic computation model� This phenomenon was studied in detail by Abite�
boul and Vianu ��� in the context of traditional domain�preserving relational
queries� They introduced generic� rather than classical Turing machine� com�
plexity classes� based on a generic computation model� called the generic
machine �GM�� The GM model is an adaptation of the basic Turing machine
model to compute generic functions on relational structures� A striking illus�
tration of the di�erence between classical and generic complexity classes is
provided by the problem of parity checking
 Abiteboul and Vianu proved that
the simple computational problem of determining whether the total number
of elements in a given structure is even� is not in generic PSPACE�

Although GMs and the GGMs of the present paper� both being geared
towards generic computation� are very similar in spirit� a combination of
formal di�erences makes it awkward to compare them directly� It would
therefore be useful if instead we could compare the GGM model with an
alternative model which yields essentially the same generic complexity classes
but is designed for computing object�creating graph functions� Fortunately�
such an alternative model already exists
 the database method scheme �DMS�

��



model proposed by Denningho� and Vianu ���� We will now brie�y introduce
this graph�based model� in a simpli�ed form su�cient for the purpose of the
present paper�

In DMS� a graph is viewed as an object�oriented database
 nodes are
viewed as database objects and edges between nodes are viewed as attribute
relationships between objects� Attention is restricted to graphs with single�
valued edge labels� with this we mean that for each edge label e� there are
never two di�erent edges labeled e leaving the same node� A DMS program
consists of a number of methods
 straight�line procedures which are run local
to some database object �called the receiver of the method and denoted by
the word self �� Throughout the computation� several method invocations
are active� and they run synchronously in parallel� A method body has a
number of variables x�� � � � � xk holding nodes as values� some of which can
be initialized as parameters� and consists of a sequence of statements� each
of one of the following types


�� A variable assignment of the form xi 
� r� where r is either �i� an edge
label e� �ii� self� or �iii� a variable� In case �i�� xi is assigned the target
node of the edge labeled e leaving self� if existing� cases �ii� and �iii�
have the obvious semantics�


� An edge addition of the form e 
� xi� where e is an edge label� An edge
labeled e is added between self and xi�

�� An edge deletion of the form delete e� The edge labeled e leaving self
is removed�

�� A node addition of the form xi 
� new 
 C�e� 
 y�� � � � � em 
 ym�� where
C is a node label� the ej are edge labels� and the yj are variables� A
new node n with label C is added and assigned to xi� and for every
j � �� � � � � m an edge labeled ej is added from n to yj� If several
method invocations execute a node addition in parallel� a distinct node
is created for each invocation�

There is also a variant of the node addition� denoted by newval� In
this variant� if several method invocations in parallel execute a node
addition with exactly the same parameters� at most one new node is
created� depending on whether or not there is already a node n with

��



label C and for each j ej�labeled edges to yj in the graph� In other
words� no �duplicate	 nodes are created�

�� A method invocation of the form send M 
 C�y�� � � � � yp�� where M is
the name of a method� C is a node label� and the yj are variables� For
each node n with label C� a new parallel process is started� executing
method M on receiver n with parameters y�� � � � � yp�

�� A node deletion
 delete self� This deletes the node self and the method
invocation executing this statement comes to an end�

�� Finally� a statement of the form if condition then statement� where
condition is a boolean combination of elementary conditions of the
form xi � xj or xi �� xj� and statement is not another if statement�
with the obvious semantics�

The DMS program is started by an external invocation send M 
 C for
some node label C and some method M without parameters� As already
mentioned� the methods run synchronously in parallel� at every global step
of the computation� every active method process executes one statement��

Whenever there are con�icting parallel statement executions �e�g�� an edge
addition and an edge deletion of the same edge� or two con�icting parallel
edge additions which would violate the single�valued edge label property
of the graph� the global result of the computation becomes unde�ned �the
computation �crashes	��

DMS programs compute graph functions in the obvious manner� and DMS
computations are also clearly generic� Our main interest for the DMS model
lies in the generic complexity classes that can be de�ned in the context of this
model ���� Let DMS�PSPACE be the family of graph functions computable
by a DMS program which� at each point in its computation on an input graph
G� uses a number of nodes and method processes that is at most polynomial
in the size of G� Let DMS�PTIME be the family of graph functions in DMS�
PSPACE computable by a DMS program whose computation on an input
graph G performs a number of global steps at most polynomial in the size
of G� Note that the requirement that DMS�PTIME functions must be in

�Statements of the form if condition then statement form the only exception� here�
condition is evaluated in one step and� depending on the result of this evaluation� either
the statement or the next statement in the sequence is executed in the following step�

��



DMS�PSPACE is necessary� since DMS programs can generate a result of
exponential size in a polynomial number of steps� just as is the case for
GGMs as we saw in Section ��

Denningho� and Vianu ��� argued convincingly that the DMS�complexity
classes are the natural extensions of the aforementioned generic complexity
classes of Abiteboul and Vianu� from the domain�preserving relational queries
to the object�creating generic graph functions�

��� The robustness of generic complexity for graph

functions

Note that we now have three formalisms for expressing graph functions

GGM� GOOD� and DMS� Analogously to the way DMS�PSPACE and DMS�
PTIME have just been de�ned� one can de�ne GGM�PSPACE and GGM�
PTIME� Namely� GGM�PSPACE is the family of graph functions computable
by a GGM which� at each point in its computation on an input graph G� has a
con�guration of size at most polynomial in the size of G� GGM�PTIME then
is the family of graph functions in GGM�PSPACE computable by a GGM
whose computation on an input graph G consists of a number of transitions
at most polynomial in the size of G� And we can also de�ne GOOD�PSPACE
as the family of graph functions computable by a GOOD program for which�
at each point in its computation on an input graph G� the intermediate result
graph has size at most polynomial in the size of G� GOOD�PTIME then is
the family of graph functions in GOOD�PSPACE computable by a GOOD
program whose computation on an input graph G executes a number of basic
statements at most polynomial in the size of G�

The basic DMS model as de�ned in ��� is restricted to single�valued edges
and has no duplicate elimination capability like that of GGMs� Correspond�
ingly� for the remainder of this section we restrict attention to GGMs without
duplication elimination� to GOOD programs without the abstraction opera�
tion� and to graphs with single�valued edge labels� Under this restriction we
are going to establish the following result� evidencing the naturalness and
robustness of the proposed generic complexity classes for graph functions


Theorem ��� GGM�PSPACE � GOOD�PSPACE � DMS�PSPACE� and
GGM�PTIME � GOOD�PTIME � DMS�PTIME�

��



Proof� One step of a GGM� a GOOD program� or a DMS program can
increase the size of the current con�guration by at most a polynomial� The
theorem is therefore proven if we can establish mutual simulations in �lock�
step	� meaning that for each machine or program Q in one model there exist
a machine or program Q� in the other models such that for some constant c�
every computation of Q consisting of n steps is simulated by Q� in c �n steps�

Lockstep simulations from GOOD to GGM and vice versa are already
known from our previous work ����� To prove the theorem� we furthermore
establish lockstep simulations from DMS to GOOD and from GGM to DMS�

GOOD can simulate DMS in lockstep� We describe for a given DMS
program Q a GOOD program Q� that simulates Q� It will be clear that the
simulation has only a constant step�overhead�

An active method process is simulated by a node labeled Method� with
an edge labeled self to the receiver node of the process� The process nodes
are tagged with a loop�edge labeled by the method name� The values of
the variables of a process are indicated by edges� labeled by variable names�
A process node is also tagged with a loop�edge labeled by the statement
number to be executed� Assuming the DMS program Q is started up with
the invocation send M 
 C� we thus have the following overall structure for
GOOD program Q�


NA�P� n� self �Method ��
�where P is the pattern with one node n labeled C�

EA�P� n� n�M ��
�where P is the pattern with one node n labeled Method�

EA�P� n� n� ���
�where P is as in the previous statement�

while Method do

Simulate a global step of Q�
od

The simulation of a global step of Q in the body of the above loop begins
by tagging each process node with a loop�edge labeled one�step �using an edge
addition operation�� Then follows� for each combination �M� i� where M is
a method name of Q and i is the sequence number of some statement in the
body ofM � a group of GOOD statements� These GOOD statements perform
three tasks� First comes the actual simulation of the parallel execution of the


�



i�th statement of M by all method processes which have name M and which
must indeed execute the i�th statement� Denote the set of these processes
by active�M� i�� Second� the active�M� i� nodes are un�tagged by deleting
the one�step loop�edges� Third� the process node is tagged with the next
statement number� if there is one� if not� the process node is deleted� We
will focus on the �rst task� the second and third tasks are straightforward
applications of edge deletion� edge addition and node deletion�

The process nodes of active�M� i� can be detected by using GOOD pat�
terns containing a node labeled Method which is tagged three loop�edges

one labeled M � the second labeled i� and the third labeled one�step� We now
consider the di�erent possibilities for the i�th statement� We will no longer
spell out the GOOD constructions in detail� the reader may wish to consult
���� for various examples on how to program in GOOD�

� The simulation of variable assignment� edge addition and edge deletion
statements in DMS amounts to straightforward applications of the edge
deletion and edge addition operations of GOOD�

� The simulation of a DMS node addition statement is performed by a
GOOD node addition operation� If the basic new is used� the node
addition operation must specify the created node to be connected to
the method process node� If the newval variant is used� this connection
is omitted�

� DMS�s method invocation is also simulated using a GOOD node addi�
tion operation which creates the new process nodes�

� DMS�s node deletion is simulated using two GOOD node deletions
 one
to delete the receiver node of the method� the other to terminate the
process�

� Finally� a DMS statement if condition then statement is simulated by
giving it two sequence numbers
 one for the condition� and the other
for the statement� The evaluation of the condition is possible in GOOD
�details omitted��

DMS can simulate GGM in lockstep� We only sketch the simulation�
GGM machine instances �MIs� are simulated using DMS method processes�


�



The head and pointer of an MI are simulated using local variables� The
simulation of the elementary actions performed by the MIs �head�pointer
assignments� edge additions and deletions� node creations� pointer deletions�
is straightforward� GGMs use �owchart�like program control �implicit in
the state�transition function ��� while the control �ow of DMS programs is
expressed using procedure calls� it is well�known how the former mechanism
can be simulated by the latter� A global search operation looking for A�
labeled nodes is simulated by a method invocation of the form send M 

A�self �� A local search operation looking for A�labeled nodes linked to the
head by an a�labeled edge is simulated similarly� but now M must check
whether the desired a�edge is present�

� BP�completeness

Up to now in this paper� we have investigated the expressiveness and com�
plexity of GGMs computing global graph functions� In this �nal section�
we characterize the expressiveness of the GGM model in terms of individual
transformations� i�e�� of pairs of input�output graphs� The same characteriza�
tion in the context of the GOOD model �introduced in the previous section�
is already known ���� Our contribution in what follows is to provide a direct
proof in terms of the GGM model� so as to further our understanding of
generic computation models�

We need the following notation and terminology� For a graph G� Aut�G�
denotes the set of automorphisms of G�� This set forms a group under
composition� For two graphs G and G�� an extension morphism from G to
G� is a group homomorphism h 
 Aut�G� 
 Aut�G�� such that for each
f � Aut�G�� f and h�f� coincide on G �G��

We have


Theorem ��� The following are equivalent�

�� There exists a GGM which transforms G into G�	


� There exists an extension morphism from G to G��

�An automorphism is a permutation of the set of nodes which leaves the graph invariant�
i�e�� preserves edges and labels�







Proof� For the implication from ��� to �
�� let G ���
M G� ��M G�� for a

GGM M � and assume as inductive hypothesis that an extension morphism
h� from G to G� exists� We must show that an extension morphism h�� exists
from G to G��� This is readily veri�ed by case analysis on the di�erent
operations that can be performed by MIs in the transition from G� to G���
adapting h� into the needed h��� For instance� if a new node n is created by
an MI �q� n�� n�� executing a node addition operation� then by symmetry� for
any f � Aut�G� the MI �q� h��f��n��� h

��f��n��� will also create a new node
m� and we de�ne h���f��n� 
� m�

The implication from �
� to ��� is the more di�cult one to prove� Assume
an extension morphism h exists from G to G�� We have to show that G can
be transformed into G� by some GGM� Actually� we will use an �extended
GGM	 as a technical convenience for this proof� In an extended GGM� the
MIs do not consist of just one head and one pointer� but instead they can
keep an unbounded array of nodes in their private memory� The extended
GGM operations are like the normal GGM operations� except that they are
indexed by array positions� indicating the nodes in the memory of an MI
executing an operation that will be involved in the operation� The reader is
invited to verify that extended GGMs are no more powerful than ordinary
GGMs
 the former can be simulated using the latter in lockstep �the array
of nodes is simulated by a linked list of auxiliary nodes serving as pointers
to the array elements��

The algorithm executed by the extended GGM is the following


�� Create an MI for every automorphism of G� First� we create one MI
for each permutation of the nodes of G that preserves node labels�
The permutations are stored in the arrays of the MIs as listings of the
nodes of G� Thereto� �x one arbitrary listing n�� n�� � � � of all nodes
in G� Assume Ai is the label of ni� Then for each i � �� 
� � � � in
succession we look for all nodes with label Ai� splitting each current
MI into one new MI for each node labeled Ai� which is appended to
the array� After these steps we select those MIs whose arrays contain
no duplicate elements� This yields the needed permutations� Finally�
to obtain the automorphisms of G� we select from these permutations
those for which there exists an a�labeled edge in the graph between the
i�th and j�th node in the array� whenever this is the case for ni and nj�


� At this point� the i�th node in the array of the MI representing the


�



automorphism f equals f�ni�� If ni is also in G� then we know that
f�ni� � h�f��ni��

�� Add all edges in G� not in G between nodes in the current con�guration�
�The �rst time this step is executed� the current con�guration consists
of G� but later new nodes will be added�� Whenever an edge exists in
G� between ni and nj� we let each MI add such an edge between the
i�th and j�th node in its array� Note that this will not only add the
edge between ni and nj� but also between h�f��ni� and h�f��nj� for
each automorphism f of G and some extension morphism h from G to
G�� But we know these edges are also present in G� since h�f� is an
automorphism of G��

�� Choose an arbitrary node n in G� not yet in the current con�guration�
add it together with certain other nodes� as well as all edges in G� link�
ing these added nodes to nodes in the current con�guration� Consider
the set O � fh�f��n� j f � Aut�G�g� If the nodes in the current con�
�guration are listed as n�� � � � � nk� list the nodes in O in some arbitrary
but �xed order as nk	�� � � � � nk	�� Note that not only n� but all nodes
in O are not in G� If the label of n �and all other nodes in O� is A� let
each MI add a new A�node �appending it to its array� � times� Next�
add the edges in G� between some node ni with � 	 i 	 k and some
node nj with k � � 	 j 	 k � � as in the previous Step �� by letting
each MI add an edge between the i�th and j�th node in its array� Fi�
nally� perform a duplicate elimination on the nodes occurring in array
positions k � �� � � � � k � � of the MIs�

The net e�ect of the above operations is that precisely the nodes in O

have been added to the current con�guration together with the edges
in G� linking them to nodes in the current con�guration� We can see
this formally by identifying the � nodes added by the MI representing
the identity automorphism with the nodes nk	�� � � � � nk	� of O� We
must then verify that the duplicate elimination has the desired e�ect�
i�e�� we must prove two things


�a� Each node added by some MI is a duplicate of some element of O�

�b� No two di�erent elements of O are duplicates�


�



The last item is clear� since the elements of O occur in some �xed order
and thus cannot be swapped� For the �rst item� assume m is added
as the j�th node added by the MI representing the automorphism f �
Then m is a duplicate of h�f��nk	j�� Indeed� an edge �x� e� h�f��nk	j��
is present if and only if the edge �h�f����x�� e� nk	j� is� and this edge
in turn is added by the MI representing the identity automorphism if
and only the edge �x� e�m� is added by the MI representing f �

�� At this point� the MI representing the identity has in its array
a partial listing n�� � � � � nk	� of the nodes of G�� Each other MI�
representing an automorphism f of G� has in its array the listing
h�f��n��� � � � � h�f��nk	��� We can now repeat the previous Steps � and
� until all nodes and edges of G� have been added�

�� Finally� we need to remove the nodes and edges in G not in G�� For
each such node ni we let each MI delete the i�th node in its array� and
for each such edge �ni� e� nj� we let each MI delete the e�edge between
the i�th node and the j�th node in its array� This will not only remove
the originally chosen nodes and edges but also their images under all
automorphisms of G� But we know that these images and edges are
not in G� either because there is an extension morphism from G to G��

References

��� S� Abiteboul and P� Kanellakis� Object identity as a query language
primitive� In J� Cli�ord� B� Lindsay� and D� Maier� editors� Proceedings
of the ���� ACM SIGMOD International Conference on the Manage�
ment of Data� volume ��

 of SIGMOD Record� pages �������� ACM
Press� �����

�
� S� Abiteboul and V� Vianu� Procedural languages for database queries
and updates� Journal of Computer and System Sciences� ���
�
����

��
�����

��� S� Abiteboul and V� Vianu� Generic computation and its complexity�
In Proceedings 

rd ACM Symposium on Theory of Computing� pages

���
��� �����


�



��� A�V� Aho and J�D� Ullman� Universality of data retrieval languages�
In Proceedings of the ACM Symposium on Principles of Programming
Languages� pages �����
�� �����

��� M� Andries� M� Gemis� J� Paredaens� I� Thyssens� and J� Van den Buss�
che� Concepts for graph�oriented object manipulation� In A� Pirotte�
C� Delobel� and G� Gottlob� editors� Advances in Database Technology�
EDBT��
� volume ��� of Lecture Notes in Computer Science� pages 
��
��� Springer�Verlag� ���
�

��� M� Andries and J� Paredaens� On instance�completeness of database
query languages involving object creation� Journal of Computer and
System Sciences� �
�
�
�������� �����

��� F� Bancilhon� On the completeness of query languages for relational data
bases� In Proceedings �th Symposium on Mathematical Foundations of
Computer Science� volume �� of Lecture Notes in Computer Science�
pages ��
��
�� Springer�Verlag� �����

��� A� Chandra and D� Harel� Computable queries for relational data bases�
Journal of Computer and System Sciences� 
��
�
�������� �����

��� K� Denningho� and V� Vianu� The power of methods with parallel
semantics� In Proceedings ��th International Conference on Very Large
Data Bases� pages 

��
�
� �����

���� M� Gemis� P� Peelman� J� Paredaens� and J� Van den Bussche� A com�
putational model for generic graph functions� In H�J� Schneider and
H� Ehrig� editors� Graph Transformations in Computer Science� volume
��� of Lecture Notes in Computer Science� pages �������� Springer�
Verlag� �����

���� M� Gyssens� J� Paredaens� J� Van den Bussche� and D� Van Gucht� A
graph�oriented object database model� IEEE Transactions on Knowl�
edge and Data Engineering� ����
��
����� August �����

��
� R� Hull and C�K� Yap� The format model� a theory of database organi�
zation� Journal of the ACM� �����
�������� �����

���� H�T� Kung� Why systolic architectures� Computer� �����
������ ���
�


�



���� J� Paredaens� On the expressive power of the relational algebra� Infor�
mation Processing Letters� ��
�
�������� �����

���� J� Van den Bussche� Formal aspects of object identity in database ma�
nipulation� Doctor�s thesis� University of Antwerp �UIA�� �����

���� J� Van den Bussche� D� Van Gucht� M� Andries� and M� Gyssens� On
the completeness of object�creating database transformation languages�
Journal of the ACM� ���
�

�
����� �����


�


