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Abstract

Object-oriented applications of database systems require database transfor-
mations involving non-standard functionalities such as set manipulation and
object creation, i.e., the introduction of new domain elements. To deal with
these functionalities, Abiteboul and Kanellakis introduced the “determinate”
transformations as a generalization of the standard domain-preserving trans-
formations. The obvious extensions of complete standard database program-
ming languages, however, are not complete for the determinate transfor-
mations. To remedy this mismatch, the “constructive” transformations are
proposed. It is shown that the constructive transformations are precisely the
transformations that can be expressed in said extensions of complete stan-
dard languages. Thereto, a close correspondence between object creation
and the construction of hereditarily finite sets is established.

A restricted version of the main completeness result for the case where
only list manipulations are involved is also presented.



1 Introduction

The present paper is concerned with the expressive power of object-creating
database transformation languages, as they occur in object-oriented systems.
To enable the reader to put our results in the right perspective, we start with
a brief historical overview of the research on the expressive power of database
transformation languages.

The study of the expressive power of query languages was initiated by
Codd, who in a series of seminal papers [13, 14, 15] laid down the founda-
tions of modern database theory. Some of his major contributions were the
suggestions (i) to view a database as a relational structure; (i) to view the
answer of a query to a relational database as another relation; and (iii) to use
first-order logic as a query language, which he called the relational calculus.
Codd qualified a query language as complete if its expressive power is at least
that of relational calculus or the equivalent relational algebra.

In an attempt to formulate a language-independent justification for
Codd’s intuitive completeness notion, Bancilhon [9] and, independently,
Paredaens [28] showed the following: a relation R is the result of a rela-
tional calculus query applied to a database I if and only if (i) the active
domain of R is included in the domain of I; and (ii) every automorphism of
I is also an automorphism of R.

Unfortunately, the characterization of Bancilhon and Paredaens only
deals with individual input-output pairs, and does not say anything about
queries as a whole. For instance, it is a consequence of the result of Bancilhon
and Paredaens that for each binary relation there exists a calculus expression
computing its transitive closure. However, there is no single calculus expres-
sion computing the transitive closure for all binary relations [7, 22, 19].

To remedy this deficiency, Chandra and Harel [12] lifted the conditions
of Bancilhon and Paredaens from individual input-output pairs to the more
global level of queries as partial functions from databases to relations. The
consistency criterion that resulted from this approach is that a query must be
invariant under every permutation of the universe of possible domain values.
In other words, the query must preserve general database isomorphisms as
opposed to merely automorphisms.

Earlier, Aho and Ullman [7] argued that this consistency criterion
clearly captures the nature of computations typical to database applications:
database queries, while operating on the physical level of the database, must



be definable at the logical level. The condition of Chandra and Harel became
known eventually as genericity [24].!

Chandra and Harel qualified a query language as complete if that language
expresses exactly all computable, generic, queries. Since they cannot express
transitive closure of a binary relation, the relational calculus and algebra are
not complete in the sense of Chandra and Harel.

A first step towards a complete language is adding an iterative construct
to the relational calculus or algebra. As this alone is not sufficient to get
beyond PSPACE, one additional mechanism is needed to achieve complete-
ness. Chandra and Harel themselves used unranked relation variables for
that purpose [12].

Later, Abiteboul and Vianu [5, 6] extended the framework of Chandra and
Harel to general deterministic database transformations, encompassing both
queries and updates. They showed that completeness can also be achieved
through the mechanism of object creation, i.e., the introduction of new do-
main elements. In the deterministic languages of Abiteboul and Vianu, these
new objects can only appear in intermediate results of the computation and
not in the final result, as only domain-preserving transformations were under
consideration.

Recently, however, the explicit appearance of new objects in query and
update results, in conjunction with a more effective representation and ma-
nipulation of set values, turned out to be important to support object-
oriented applications of database systems [11].

To deal with this new feature, a number of new data models and query
languages were proposed. Particularly influential was the work of Abiteboul
and Kanellakis [4]. They proposed the language IQL, which provides the
necessary mechanisms for object creation and the representation of set values.

In order to assess the expressiveness of IQL, Abiteboul and Kanellakis first
had to extend the notions of genericity and completeness to database trans-
formations allowing new domain elements in the result. This task proved
to be delicate, because the creation of new objects introduces a degree of
non-determinism into the formalism. Abiteboul and Kanellakis proposed the
notion of determinate transformation: a generic, non-deterministic transfor-
mation for which the various possible results of the transformation applied

!Interestingly, genericity is precisely the condition a query must satisfy to be “logical”
in the sense of Tarski [30].



to a given input database are equal up to renaming of new domain elements.

Since IQL is a natural extension of the earlier languages of Abiteboul and
Vianu [5, 6], complete in the sense of Chandra and Harel, it was expected
at first that [QL would be complete for the determinate transformations.
Surprisingly, this is not the case; in a sense that can be made precise, IQL
lacks the ability to eliminate copies.

One could view this deficiency as a weakness which should be remedied.
In this vein, Abiteboul and Kanellakis proposed to extend IQL with an ex-
tra construct for copy elimination. (Recently, Denninghoff and Vianu [18]
proposed an alternative extension with a more efficient construct.)

Most, if not all, transformations of practical interest can effectively be
expressed in [QL, however, and hence do not require copy elimination. This
empirical observation, in our opinion, justifies the search for a subclass of
the determinate queries for which object-creating languages, such as IQL,
are complete without having to consider copy elimination, and this is the
subject of the present paper.

At this point, it must be emphasized that our results are general and can
also be applied to a broad class of other object-creating database languages
that have been investigated (e.g., [20, 25, 26, 27]). This generality stems from
the computational equivalence of these languages to FO + new + while, a
minimal language defined in this paper as the closure of first-order logic under
unbounded looping and associating new domain elements to tuples and sets
of values, and it is for this language that we prove our results. It goes without
saying, however, that FO 4+ new + while does not capture all aspects of the
object-oriented database systems referred to above. We are, for instance,
not concerned with typing and inheritance, two essential features of object-
orientation. Rather, we see FO 4+ new + while as a common abstraction
of the concrete languages considered only for the aspect of object-oriented
languages under consideration in this paper, that is the impact of object
creation on the expressiveness of a language. In an Appendix, we make this
claim precise, by concretely showing that IQL and FO + new + while have
the same expressive power.

A precursor to the present study is the work by Andries and Paredaens [8]
in the context of another object-creating database transformation language,
called GOOD [20]. Andries and Paredaens showed that a database .J is the
output of a GOOD program applied to a database I if and only if there
exists an extension homomorphism from the group of automorphisms of I to



the group of automorphisms of J. They argued that this condition could be
seen as the generalization of the criterion of Bancilhon and Paredaens to the
context of object creation. In the above-mentioned Appendix, we show that
also GOOD and FO + new + while have the same expressive power, and,
as a consequence, that the result of Andries and Paredaens is in fact a result
about FO + new + while.

In the present paper, we show the unexpected result that simply re-
quiring determinate transformations to satisfy the condition of Andries and
Paredaens—although a “local” condition defined on individual pairs of input
and output databases—yields the desired characterization of the transforma-
tions expressible in FO + new + while. We furthermore show that, in our
characterization, we can replace the requirement of Andries and Paredaens
by another condition, relating object creation to the construction of hered-
itarily finite sets? over the original domain elements. With this alternative
condition, our characterization can be thought of as a completeness crite-
rion for constructive transformations, thus establishing its naturalness and
robustness. Finally, we present a restricted version of the main completeness
result for the case where only list manipulations are involved. This result
can be thought of as a completeness criterion for list-constructive transfor-
mations. It establishes a link between “pure” object-creation approaches and
approaches to treating new objects as lists built over the input objects, as
used in logic and functional programming (e.g., [1, 25, 26]).

This paper is further organized as follows. In Section 2, we introduce some
notation and terminology, give the necessary mathematical background to
capture definitions and results, review determinate object-creating database
transformations, and introduce the language FO+new-+while. In Section 3,
we introduce and motivate the constructive transformations. In Section 4,
we do the same for the list-constructive transformations. In Sections 5 and
6, we prove our completeness results. In Section 7, we present a summary
and concluding remarks.

2Hereditarily finite sets in the context of databases have already been studied by
Dahlhaus and Makowsky [17] and Hull and Su [23].
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Figure 1: The database instance of Example 2.1.

2 Preliminaries

2.1 The data model

We first describe the data model that we use throughout the paper.

It is assumed that an infinite collection R of relation names is given. To
each relation name R a natural number a(R) is associated, called the arity
of R, such that each number is the arity of infinitely many relation names.
A database scheme is a finite set of relation names.

It is furthermore assumed that a countably infinite universe U of abstract
atomic values, called objects, is given.

An instance I of a database scheme S is a finite relational structure
of type S, consisting of a finite subset |I| of U, called the domain, and a
mapping on S, assigning to each relation name R of S a relation denoted R!
on |I| of rank a(R) (i.e., a subset of the Cartesian product |[I|*(%)), called the
content of R. The set of all database instances of the scheme S is denoted
by inst(S).

Example 2.1 Consider the database scheme & = {R, S} with «(R) = 3
and «(S) = 2. The structure I with |I| = {a,b,c,d,e} mapping R to the
ternary relation R and S to the binary relation S, both shown in Figure 1,
is an instance over S.

2.2 Mathematical notions

In this paragraph, we review some key mathematical notions essential for a
good understanding of the remainder of this paper.
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Figure 2: The database instance I’ of Example 2.2.

Consider a function mapping objects to objects. Over these objects,
structures such as sets, tuples, relations, and instances can be built. It is
common mathematical practice to extend functions defined on objects to
functions defined on structures built over these objects, by extending them
element- or component-wise, as is illustrated in Example 2.2.

Example 2.2 Let a, b, ¢, d, e, and h be objects of U and let f; be the
function from {a,b,c,d, e} to {b,c,d,e, h} mapping a to d, b to b, ¢ to h,
d to e, and e to c. The function f; can be element-wise extended to sets;
e.g., fil{a,b,c}) = {d,b,e}. The function f; can be extended to tuples
component-wise; e.g., fi((a,c,e)) = (d,h,c¢). The function f; can further
be extended to relations and database instances; e.g., if [ is the database
instance over § = {R, S} in Example 2.1, then I" = f([) is also an instance
over S, for which |I'| = f1(|I|) = {d,b, h,e,c} = {b,c,d,e,h} and R" and
ST are as shown in Figure 2.

As a second example, let f, be the function from {a,b,c,d, e} to itself
mapping a to b, b to ¢, ¢ to a, d to e, and e to d. Applying the same principle
as above, one can readily verify that fo(I) =1

Each time we use the principle explained above to lift a function defined
on objects to the level of structures, we say that we extend that function in
the standard way.

When we compare the instance I of Example 2.1 with the instance I’ =
f1(I) of Example 2.2, we see that, because the function f; is a bijection, they
are identical upon “renaming” of objects. Two such instances are called
isomorphic, and the mapping between objects establishing this relationship
is called an isomorphism. We define these notions formally, as well as some
specializations needed further on in this paper:



Definition 2.3 Let J; and Jy be two instances of the same scheme S. A
bigection f 1 |Ji| — |J2| is called an isomorphism from Jy to Jy if f(J1) = Ja,
where f is extended to instances in the standard way.

For an arbitrary set of objects V' C |.J1|, a V-isomorphism is an isomor-
phism from Jy to Jo that is the identity on V. For an arbitrary instance I,
an |I|-isomorphism is also called an I-isomorphism.

So, instance I of Example 2.1 and instance I' of Example 2.2 are iso-
morphic, and f; is an isomorphism from I to I’. In particular, it is a {b}-
isomorphism.

From Definition 2.3, it follows that each instance is isomorphic to itself,
because the identity is an isomorphism from an instance to itself. However,
there may also be non-identical isomorphisms from an instance to itself. In
Example 2.2, we established that the bijection f5 is an isomorphism from I
to itself. Such isomorphisms are called automorphisms:

Definition 2.4 Let J be an instance. A bijection f : |J| — |J|, i.e., a
permutation of |J|, is called an automorphism of J if f is an isomorphism

from J to J.

So, the function f5 of Example 2.2 is an automorphism of the instance 1
of Example 2.1.

Knowledge of the automorphisms of an instance is important, because this
provides information on the degree of symmetry present in that instance. The
set of all automorphisms of a given instance yields a mathematical structure,
which is called a group:

Definition 2.5 Let G be set, let x be a total, binary operation on G, and let
n be in G. The structure (G, x,n) is a group if the following three properties
are satisfied:

1. the operation % is associative, i.e., for all x, y, and z in G, (xxy)xz =
xx(y*2z);

2. n s a neutral element with respect to %, i.e., for all x in G, xxn==x
and n*x = x; and

3. each element of G has an inverse with respect to n and %, i.e., for all
x in G, there exists x~ ' in G such that v xx ' =n and v ' xz = n.

7



The traditional example of a group is (Z,+,0), with Z the set of all
integers and + integer addition. Addition is a total binary operation on the
integers, is associative, and has 0 as a neutral element; finally each integer x
has —x for its inverse.

Given an instance I, let Aut(I) denote the set of all automorphisms of /.
We observe the following important property of this set:

Proposition 2.6 Let I be an instance, and let id|;; denote the identity map-
ping on |I|. Let o denote composition of mappings. Then (Aut([),o,idy) is
a group.

Proof. The composition of mappings is associative and has the identity
mapping as a neutral element. For a bijection, one can consider the inverse
mapping, and this is an inverse for the original mapping with respect to
identity and composition. To see that (Aut(/),o,id;) is a group, it now
suffices to observe that (i) the composition of two automorphisms of I is
again an automorphism of I; (i) an automorphism is a bijection; and (i)
the inverse mapping of an automorphism of [ is again an automorphism of
I. [ |

Example 2.7 The automorphism group (Aut([),o,id;;) of the instance I
in Example 2.1 consists of the following 6 permutations on |I| = {a, b, ¢, d, e}:
the identity mapping id;|; the automorphism f, of Example 2.2; the automor-
phism f3 mapping a to b, b to ¢, ¢ to a, d to d, and e to e; the automorphism
f4 mapping a to ¢, b to a, c to b, d to ¢, and e to d; the automorphism f;
mapping a to ¢, b to a, ¢ to b, d to d and e to e; and the automorphism fg
mapping a to a, b to b, c to ¢, d tot e, and e to d. Notice that the composition
of two automorphisms of Aut(/) is again an automorphism of Aut([), e.g.,
f3 o fo = f4, and that the inverse of each automorphism of Aut(/) is again
an automorphism of Aut(I), e.g., fo ' = fu.

Database transformations typically preserve symmetries present in the
input instance in a sense to be made precise later. Since the symmetries of
an instance are formally described by its automorphism group, we need a
tool to compare automorphism groups of different instance. Such a tool can
be found in the general notion of group homomorphism:



Definition 2.8 Let (G,x,n) and (H,o,m) be two groups. A total function
Y : G — H is a group homomorphism from (G, *,n) to (H,o,m) if for all x
and y in G, (x*y) = (x) o (y).3

Intuitively, a group homomorphism is a mapping between the sets on
which the groups are built that is “compatible” with the group structure.

Example 2.9 Let I be the instance of Example 2.1. Then Aut(I) =
{idjz), fo, f3, fa, f5, f6} as in Example 2.7. Let I' be the instance of Exam-
ple 2.2. It is readily seen that Aut(I') = {id|p, 92, g3, 94, 95, g6} Where g,
maps d to b, b to h, h to d, e to ¢, and ¢ to e; g3 maps d to b, b to h, h to d,
e to e, and ¢ to ¢; g4 maps d to h, b to d, h to b, e to ¢, and ¢ to e; g5 maps
d to h, btod, htob,etoe, and ¢ to ¢; and gg maps d to d, b to b, h to h,
e to ¢, and ¢ to e. The function ¢ : Aut(/) — Aut(I’) mapping id; to idz,
fa to g, f3 to g3, fi to g4, f5 to g5, and fg to g is a group homomorphism
from (Aut([),o,id|z) to (Aut(I'),o,idy).

Notice that the group homomorphism v in Example 2.9 is a bijection; in
general, however, group homomorphisms need not be bijective.

We close this paragraph with a notational issue. Whenever in a group
(G,*,n) the operation * and the neutral element n are implicit from the
context, we denote that group simply as G. Thus, we speak about the
automorphism group Aut(7) of an instance /.

2.3 Database transformations

Next, we turn to database transformations. On the most general level,
database transformations were defined by Abiteboul and Vianu [5] as fol-
lows:

Definition 2.10 Let S, and S,y be two database schemes. A transforma-
tion from Si, to Soue s a recursively enumerable input-output relationship
Q C inst(Sin) X inst(Seut) which is invariant under every permutation of U.

3From this condition, it can be inferred that 1 (n) = m.



The requirement of invariance under permutations is called genericity. It can
be visualized by the following commuting diagram:

I %
b
r %o

The above diagram should be read as follows. The relationship () is a trans-
formation from a scheme S;, to a scheme S, I and I’ are instances of S,
and J and J' are instances of Syy¢. If (7, .J) is an input-output pair in (), and
if there exists a permutation f on U such that (for its standard extension)
f(I) = I'" and f(J) = J', then (I',J’) is also an input-output pair in Q.
Thus, generic transformations treat isomorphic instances uniformly; if, e.g.,
in the above diagram, all instances involve a binary relation symbol R, and
R’ happens to be the transitive closure of R, then necessarily R’ is the
transitive closure of R

In general, database transformations as defined in Definition 2.10 are
relationships. Database transformations that are functions, i.e., relationships
such that to each input instance I there corresponds at most one output
instance, are called deterministic, and these are the transformations that are
encountered in traditional database applications. In this paper, however, we
consider transformations involving object creation, i.e., the introduction of
new elements in the domain, and these are necessarily non-deterministic, by
the genericity requirement.

Indeed, assume () is a transformation containing an input-output pair
(I,J) such that |.J| contains an object o not in |I|. Let o' be another object
not in |I] nor in |J|, and consider the transposition f = (o o') as a per-
mutation of U. After extending f in the standard way, let I' = f(I) and
J' = f(J). Notice that I' = I (neither o nor o’ occurs in I) and J' # J (o
occurs in J but not in J' and o' occurs in J' but not in .J). By the genericity
requirement, (I',.J") = (I,J’) must be an input-output pair in (). Hence,
Q@ can yield at least the two different outputs J and J' on input I, and is
therefore non-deterministic.

Nonetheless, the transformation () can still have a “deterministic effect”
if the particular choice of a new object is the only degree of non-determinism
that is allowed. A comparable situation arises in programming languages
allowing dynamic allocation of memory cells: although the computation is
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Figure 3: Application of transformation )1 of Example 2.11.

essentially deterministic, the programmer does not know in advance which
cells will be allocated as they are chosen by the system.

The desire to study database transformations involving object creation,
but having a “deterministic effect,” have led Abiteboul and Kanellakis [4] to
introduce the term determinate transformation for a database transformation
in which any non-determinism solely stems from the particular choice of new
domain elements.

Example 2.11 Let G be a binary relation name. An instance I of {G}
can be interpreted as a directed graph with set of nodes |I| and set of
edges G'. Consider the transformation @, from {G} to {G} defined as
follows: @4 (I, J) if J is obtained from I by adding for each node z a new
node z' with an edge from z to 2. Formally, if |I| = {zi,...,2,}, then
|J| = {z1,...,2p, 24, ...,z } and G = GT U {(2;,2) | i = 1,...,n}. Fig-
ure 3 shows three instances I, .J; and .J; such that .J; and .J, are two possible
results of @)y applied to I (i.e., @Q1(I,J;) and Q1(I,J;)). Transformation Q;
is determinate: for example, J; can be obtained from .J; by renaming the
newly added nodes.

Now consider the non-deterministic transformation @)y from {G} to {G}
defined as follows: Qy(I,.J) if |J| = |I| and G can be obtained from G by
deleting an arbitrary edge out of every node that has outgoing edges. Figure 4
shows an instance I' and two possible results J3 and .J; of (); applied to I'.
Transformation (> is not determinate.

We now formally define determinate transformations:

Definition 2.12 A transformation @) is determinate if the following condi-
tions hold:

11
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1. if QU J), then |I| C |J];

2.4f Q(I,J1) and Q(I,Js), then Jy and Jy are I-isomorphic (Defini-
tion 2.3).

The second requirement of the above definition captures the intuition
illustrated in Example 2.11: the /-isomorphism that exists from .J; to .J; can
be interpreted as a “renaming” of the new domain elements introduced in
J1. Hence, in practice, for a determinate transformation, it suffices to specify
only one result which is then representative for all possible results.

Also notice:

Proposition 2.13 If () is a determinate transformation such that for each
pair of instances (I, J) with Q(I,J) we have |I| = |J|, then Q is determinis-
tic.

Proof. If Q(I,J;) and Q(I, J;) then J; and J, are I-isomorphic. But |I| =
|.Ji| = |J2| and thus the only I-isomorphism from .J; to Jo is the identity.
Hence, J; = Js. [ |

The first requirement of Definition 2.12 is of a purely technical nature. Al-
though it does not impose any restriction on deletion of tuples from relations,
it does not allow the removal of elements from the domain of an instance,
even if these elements no longer occur in the content of any relation name in
the output scheme. This technical restriction guarantees determinate trans-
formations to be closed under composition and allows simple definitions of a
number of important notions later on in this paper.

A transformation @) satisfying the second requirement of Definition 2.12
but not the first can be “completed” to a determinate transformation as
follows: for each input-output pair (I,.J), augment |.J| with the elements of
|I| not yet occurring in |J|. In the sequel, for simplicity of presentation, we

12



will sometimes leave this completion implicit and treat such transformations
as if they were formally determinate.

2.4 The programming language FO + new + while

We next introduce a simple and general programming language for express-
ing determinate transformations, which we denote by FO + new + while.
The language is an extension of first-order logic with object creation, set rep-
resentation, and iteration, and will serve as an abstract formulation of the
languages IQL and GOOD mentioned in the Introduction and the various
other object-oriented database languages which are at most as expressive. A
formal proof that IQL, GOOD, and FO + new + while all have the same
expressive power is given in the Appendix.

Programs in our language are built from three types of statements and
while-loops, defined below.

A key construct in all three types of statements is the FO expression.
A k-ary FO expression ® over a scheme S is an expression of the form
{(x1,...,2) | ¢} with ¢ a first-order logic formula over S whose free vari-
ables are among x,...,x;. Given an instance I of &, ® defines a k-ary
relation ®(I) on |I|, as in the relational calculus.

Syntactically, an FO statement over a scheme S is an expression of the
form R := ®, with R a k-ary relation name and ® a k-ary FO expression
over §. Semantically, this statement defines the determinate transformation
Q from S to SU{R} given by Q(I,J) if and only if R7 = &(I), S’ = 57 for
each S # R in S, and |J| = |I].

Notice that the above definition—as well as similar subsequent
definitions—covers both the case where R is in S as the case where R is
not in S.

Syntactically, a tuple-new statement over a scheme S is an expression of
the form R := tuple-new &, with R a k + 1-ary relation name and ® a k-
ary FO expression over §. Semantically, this statement defines a determinate
transformation @ from S to S U {R} as follows. Let I be an instance of S,
and let ®() = {t1,...,t,}. Then Q(I,J) if and only if

o R7=({ti} x{o})U---U({t,} x{on}), where oy, ..., 0, are n different
objects not in |I;

e S/ = ST for each S # R in S; and

13
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Figure 5: Illustration to Examples 2.14 and 2.15.

o |J|=|I|U{oy,...,0,}.

Tuple-new statements add new domain elements to an instance by a mecha-
nism similar to that employed by Abiteboul and Vianu in the language detDL

[6].

Example 2.14 Consider Figure 5. Let I be the instance of { R} shown with
|I| = {a,b,c,d}.
The instance of {R, S} shown is the output of the statement

S := tuple-new {(z,y) | R(z,y) A (32)(R(z,2) Az # y)}
applied to I.

Syntactically, a set-new statement over a scheme & is an expression of
the form R := set-new ®, with R a binary relation name and ® a binary
FO expression over §. Semantically, this statement defines a determinate
transformation @ from S to S U {R} as follows. Let I be an instance of S,
and let ®(1) = {(z1,v1),-- -, (Tn,yn)}. Then Q(I,J) if and only if

o R7 = {(z1,01),...,(xy,0,)}, where oy,...,0, are objects not in |I|
satisfying o; = o; if and only if {y | (z;,y) € ®(I)} = {y | (z,y) €

o(1)};
e S/ = ST for each S # R in S; and
o |J|=|I|U{o1,...,0,}.

14



Set-new statements associate new domain values to sets of existing values
in a unique way. (Tuple-new statements are not sufficient for this purpose

[31].)

Example 2.15 Consider Figure 5 and the instance I of {R} shown with
|I| ={a,b,c,d}.
The instance of {R, T} shown is the output of the statement

T := set-new R

applied to I. In the content of T', the object ‘5’ represents the set {b, c} and
the object ‘6’ the set {d}.

Programs can now be built inductively from statements using composi-
tion (;) and while-loops of the form while ¢ do P od, with ¢ a first-order
sentence and P a program. Programs express database transformations in
the obvious manner. When interpreting programs as database transforma-
tions, we allow that relations used only for storing intermediate results of
the computation (as well as input relations that are no longer needed) are
ignored in the final result. Also, objects occurring only in such intermediate
relations may be ignored in the domain of the final result. To syntactically
ensure that programs express transformations in a unique way, one can addi-
tionally specify the output scheme, and a superset of the output scheme with
the names of the relations whose objects constitute the domain of the final
result. By structural induction, it is readily verified that transformations
expressed by programs are generic, i.e., invariant under permutations of U,
and determinate. In the sequel we will not distinguish between a program
and the transformation it expresses.

The definition of the programming language FO + new + while is now
complete. We conclude this section with a few examples of concrete pro-
grams.

Example 2.16 Transformation ); of Example 2.11 can be expressed in
FO + new + while as follows:

G' := tuple-new {(z) | true};
G:=GUCG.

15



In the above program, G’ is an auxiliary relation name which is ignored in
the final result.

Example 2.17 Consider the if-then construct if ¢ then P fi, with ¢ a first-
order sentence and P a program, with the standard semantics. Assuming H
is a relation name not occurring in P, this transformation can be expressed
as follows:

H:=A{() | ¢}
while H # () do

H :=0;
P
od.

Example 2.18 Let R and S be binary relation names. The transformation
from {R} to {S} computing transitive closure can be expressed as follows:

Old := 0,
S =R,
while S # Old do
Old := S,
S:=SU{(z,y) | B2)(R(z,2) A S(z,y))}
od.

Example 2.19 Zero-ary FO expressions as used in Example 2.17 can also be
used to introduce new objects “from scratch.” Indeed, the one-line program

R := tuple-new {() | true}
yields a unary relation, containing one new object.

Example 2.20 For a symmetric, anti-reflexive binary relation G, i.e., an
undirected graph without self-loops, the following program computes the
dual graph G* whose nodes are the edges of G and whose edges indicate
incidence in G:

if (Vz)-G(z,z) A (V2)(Vy)(G(z,y) = G(y,z)) then
E, := tuple-new G;
Ey :={(z,2) | Qu)(Ei(z,w,z) V Ey(w,z,2))};

16



Reach := tuple-new {(z) | true};
Head := {(l,z) | Reach(z,l)};
Tail := tuple-new {(l) | (3z)Head(l,x)};
Member := Head,
Neaxt := tuple-new {(I,t,y) | Tail(l,t) A (Fz)(Head(l,z) NG(z,y) Ny # x)};
while Next # () do

Head := Head U {(l1,y) | (31)(3l2) Next(l,11,y,1)};

Tail := Tail U {(l1,1s) | (31)(Jy) Next(l,11,y,12)};

Member := Member U {(l,y) | (311)(3la)Next(l,11,y,l2)};

Nezt := tuple-new {(l, [, 2) | (311)(Jy)(Next(l,l1,y,l2)

A G(y, z) N =Member(l, z))}

od.

Figure 6: Program of Example 2.21.

E;3 := set-new FEjy;
Ey = {(e,2) | (32)(Es(z,¢) A Bay(z,2))};
LG =) | GaEde,) A BAL)]

Note the use of set-new to create a unique object for each undirected edge.

Example 2.21 Let GG be a binary relation, viewed as a directed graph, in
which every node has out-degree at most one. We wish to compute the
function Reach that associates to each node z the list of nodes reachable
from z in the order they appear on the path leaving x.

Lists are represented in the well-known way [1] as objects on which Head
and Tail functions are defined. (Empty lists have no head or tail.) The
functions Reach, Head, and Tail are stored in the form of binary relations.

The above-described transformation from {G} to { Reach, Head, Tail} can
be expressed by the program shown in Figure 6. In Figure 7, the instance
of {Reach, Head, Tail} shown is the result of applying this program to the
instance I of {G} shown with |I| = {a,b,c,d,e}.

17



G Reach Tail Head
a cC a o a1 o o a
b ¢ b (i ay Q3 oy C
c d c M Qa3 Qu a3 d
d b d s Qs s b

€ €1 B B Bi b
B2 B3 By c

B3 B f3 d

T2 Y1oc

Y2 3 Y2 d

Y3 Y4 73 b

(51 d

(52 b

(53 C

g1 €

Figure 7: Application of the program in Figure 6.

3 Constructive transformations

Although all deterministic transformations are expressible in FO + new +
while [5, 6], there are determinate transformations (involving object cre-
ation) not expressible in FO 4+ new + while, due to the absence of a mecha-
nism to eliminate copies (see the Introduction). All non-expressible transfor-
mations known are somewhat artificial, however. We will argue in this paper
that all non-expressible transformations are indeed “non-constructive,” in a
sense which we will make precise in this section.

Our departure point is a result by Bancilhon [9] and, independently,
Paredaens [28], giving a necessary and sufficient condition for an instance
J to be computable from an instance I by a sequence of FO statements.
This condition is stated in terms of the automorphisms of I and .J and their
relationships.

Proposition 3.1 [9, 28] Let I and J be instances with |I| = |J|. There
erists a sequence P of FO statements such that P(I,J), if and only if
Aut(l) C Aut(J).
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R! S7

a b a b
b ¢ b ¢
c b c b
d e a ¢
d g b b
g d c c
d e
e g
g e
d g
e e
g g
Figure 8: Illustration to Example 3.2.

Proposition 3.1 is known as the BP-completeness of FO [12].

Example 3.2 Let R and S be binary relation names. Let I be the instance
of {R} and let J be the instance of {S} for which |I| = |J| = {a,b,c,d, e, h}
and R! and S7 are as shown in Figure 8. Then Aut(I) = {idj;, fo} with f,
swapping a and d, b and e, and ¢ and g, and Aut(J) = {idy, fo, f3, fa, f5, f6}
with f3 fixing a and d and swapping b and ¢ and e and g; f; fixing a, b, c,
and d and swapping e and g¢; f5 fixing a, d, e, and ¢ and swapping b and c;
and f¢ swapping a and d, b and ¢, and ¢ and e. Thus, Aut(I) C Aut(J),
and by Proposition 3.1, there is a sequence P of FO statements such that
P(I,J). One such sequence consists of the single statement

S={(z,y) | R(xz,y) v (32)(R(z, 2) A R(z,y))}.

Andries and Paredaens [8] recently generalized the BP-completeness to
the context of object creation, where input-output pairs of instances (I, .J)
with || C |J| are considered. Thereto, they defined the following:

Definition 3.3 An extension mapping from [ to J is a mapping ¢ :
Aut(I) — Aut(J) such that for each f € Aut(l), (f) is an extension of f.
An extension homomorphism s an extension mapping that is also a group
homomorphism.
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Observe that an extension mapping is injective. Hence, an extension homo-
morphism from I to J faithfully embeds Aut(I) in Aut(J) and is therefore the
natural generalization of the inclusion Aut(I) C Aut(J) to the case where
|.J| contains, but is not necessarily equal to, |I|. Using the formalism of
the GOOD transformation language, Andries and Paredaens obtained the
following generalization of Proposition 3.1:

Proposition 3.4 [8] Let I and J be instances with |I| C |.J|. There ezists
an FO+new +while program P such that P(I,.J), if and only if there exists
an extension homomorphism from I to J.

(In the Appendix, it is shown formally that GOOD and FO + new + while
have the same expressive power.)

Example 3.5 Consider the transformation (); of Example 2.11 and its
input-output pair (7, .J;) shown in Figure 3. In Example 2.16, we showed
that (; can be expressed in FO + new + while. Thus, by Proposition 3.4,
there must exist an extension homomorphism from Aut(7) to Aut(.J;), which
we are going to show explicitly.

It is readily verfied that Aut(/) = {id|;|, f2, f3}, with f; the automorphism
of I mapping a to b, b to ¢, and ¢ to a, and f3 the automorphism of I mapping
a to ¢, b to a, and ¢ to b. Similarly, Aut(J;) = {id|s,|, g2, g3}, with g, the
automorphism of .J; mapping a to b, b to ¢, ¢ to a, 1 to 2, 2 to 3, and 3
to 1, and g3 the automorphism of .J; mapping a to ¢, b to a, ¢ to b, 1 to
3, 2 to 1, and 3 to 2. The restrictions of idj,|, g2, and g3 to |I| are idy,
f2, and f3, respectively. Therefore, id;,|, g2, and g3 are extensions of idy,
fo2, and f3, respectively. Thus, the function ¢ : Aut(l) — Aut(J;) mapping
id;| to id|z,|, f2 to g2, and f3 to g3 is an extension mapping. It remains to
show that v is a group homomorphism. To do this we must show that
is “compatible” with composition of automorphisms. The only non-trivial
compositions of automorphisms of I to be considered are f3 o f, and f5 0 fs3.

We have ¥(fz 0 fo) = 9(id;)) =idjs,| = g3 0 92 = ¥(f3) 0 ¥(f>), and the same
with the indices 2 and 3 reversed. Thus v is a group homomorphism.

In order for the reader to gain a better understanding of Proposition 3.4,
we need to point out that an input-output pair of a determinate transforma-
tion always admits an extension mapping. To see this, let () be a determinate
transformation, and assume Q(I,.J). We can define an extension mapping v
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R S T

ay ai b bi by
) az by by b3
a; bz by by
as by by b

Figure 9: An input-output pair of the transformation () of Example 3.6.

from I to J as follows. Let f € Aut(I). We can extend f to a permutation
of the whole of U by making it the identity outside |I|. By the genericity of
Q, Q(f(I), f(J)). By the determinacy of @, there exists an [-isomorphism
g from f(J) to J. Then ¢(f) := go f € Aut(J) is an extension of f.

The difficult part of the proof of Proposition 3.4 (and, for that matter,
also of Proposition 3.1) is the if-part. The only-if part is straightforward to
prove, and can be used to show that not all determinate transformations are
expressible by FO + new + while programs. Indeed, while all determinate
transformations admit an extension mapping for every input-output pair,
they do not necessarily admit an extension homomorphism, as is shown by
the following adaptation of an example by Abiteboul [2]:

Example 3.6 Let R be a unary relation name and S and T be binary rela-
tion names. We define a determinate transformation @) from {R} to {S, T}
as follows. Consider Figure 9. Let I be the instance of {R} with R’ as
shown. Then Q(I,.J) if and only if S’ and T are as shown with by, bs, b3,
and by four new objects not in |I|, and |J| = |[I| U {by, bo, b3, bs}. All other
input-output pairs of @ are of the form (f(7), f(J)) with f a permutation
of U.

There exist several extension mappings from I to .JJ. Each such extension
mapping, however, extends the transposition of a; and ay (of order 2) to a
cyclic permutation of {b;,...,bs} (of order 4).* Hence, since homomorphisms
cannot increase the order, there is no extension homomorphism from I to J
and, as a consequence, () cannot be expressed by an FO 4+ new + while
program.

“The order of an element x in a finite group (G,*,n) is the least non-zero natural
number p such that z x--- x z (p times) equals the neutral element n.
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The example of a determinate transformation not expressible in FO +
new-+while given in Example 3.6 is very artificial. This raises the question of
understanding the class of transformations expressible in FO + new + while.
Any reasonable class of transformations will certainly have to include all
conventional deterministic transformations. As observed in Proposition 2.13,
these are precisely the determinate transformations that do not create new
objects. Hence, we must find a natural restriction on object creation, i.e.,
impose conditions on the new domain elements occurring in the output of a
determinate transformation.

To find such a condition, we have followed Dahlhaus and Makowsky,
who studied the semantics of high-level programming languages based on
“hereditarily finite sets” [16, 17]. In [17, page 5], they argued convincingly
as follows:

As much as set theory is rich enough to model virtually all objects
encountered in mathematics, the cumulative hierarchy of heredi-
tarily finite sets is rich enough to model all finite objects one may
encounter in computer science. [...] the foundational question
of what it means to compute new objects from a given finite set
of objects can be adequately settled in this model.

Hereditarily finite sets with “ur-elements” are well-known (e.g., [10]). We
incorporate them in our framework as follows:

Definition 3.7 Let D be a subset of U. The set HF (D) of hereditarily
finite sets with ur-elements in D is the smallest set such that (i) D C HF (D);
and (i) each finite subset of HF (D) is also an element of HF (D).

For example, if D = {a,b,c}, then a, {a}, {a,b,c}, 0, {0}, and
{a,b,{b,c},{a,{c}}} are all in the infinite set HF (D).

The main thesis put forward in this paper is that the “natural” deter-
minate transformations are precisely those for which the new domain ele-
ments in the output can alternatively be viewed as hereditarily finite sets
constructed over the domain elements of the input. We will call such trans-
formations constructive. To define constructive transformations formally, we
first need to define HF-instances and HF-transformations.

An HF-instance I is defined as an ordinary instance in Section 2, the
only difference being that the domain |I| is a subset of HF(U) instead of
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1] R!

a a {b{c}}
{a} {o} {a,b,c}
{o}
{0, {c}}
{a,b,c}

Figure 10: Example of an HF-instance.

U. Relations and tuples on HF(U) are called HF-relations and HF-tuples,
respectively. In contrast, ordinary instances, relations, and tuples will some-
times be called flat. The set of all HF-instances of a scheme & is denoted by
HF-inst(S). A simple example of an HF-instance I of the scheme {R}, with
R binary, is shown in Figure 10, where a, b, and ¢ are elements of U.

Definition 3.8 Let S, and Sout be two schemes. An HF-transformation
from Si, to Sout s a partial-recursive function @ : inst(Sy,) — HF-inst(Sou)
which (1) (viewed as a binary relationship) is invariant under every permu-
tation of U (genericity) and (i) satisfies |Q(I)| C HF(|I|) whenever @ is
defined on 1.

We also need the important notion of “isomorphic representation”:

Definition 3.9 Let Q be a transformation from Sy, to Sous, and let Q' be
a HF-transformation from Sy, to Sout, such that for each pair of instances
(I,J), Q(1,J) if and only if (i) Q'(I) is defined; and (ii) J is I-isomorphic
to Q'(I).> Then Q is called an isomorphic representation of @'.

If ) is an isomorphic representation of )', we also say for any output pair
(I,.J) of @ that .J is an isomorphic representation of Q'([).
The proof of the following proposition is trivial:

Proposition 3.10 For each HF-transformation Q' there is a unique trans-
formation Q that isomorphically represents @Q'.

5Isomorphisms from ordinary instances to HF-instances are defined in the same way as
isomorphisms from ordinary instances to ordinary instances.
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Hence, we can speak about the isomorphic representation of an HEF-
transformation.
We now define the constructive transformations formally as follows:

Definition 3.11 A transformation is called constructive if it is the isomor-
phic representation of some HF-transformation.

The following property of constructive transformations, guaranteeing that
constructivity implies both determinacy and the condition of Andries and
Paredaens, is a first indication of the soundness of the above definition:

Proposition 3.12 Let QQ be a constructive transformation. Then (i) Q is
determinate; and (ii) for each pair of instances (I,J) with Q(I,J), there
exists an extension homomorphism from I to .J.

Proof. Let Q' be an HF-transformation of which @ is the isomorphic rep-
resentation. We first show that @ is determinate. Thereto, assume Q(I, .J;)
and Q(I,.Js). Since J; and .J; are isomorphic representations of Q)'(I), there
are [-isomorphisms f; and f, from J; and J; to Q'(I), respectively. Hence
fy ' o fi is an I-isomorphism from J; to J, as required.

To show that () admits an extension homomorphism for every input-
output pair, assume Q(I,.J). Since J is an isomorphic representation of
Q'(I), there exists an [-isomorphism ¢ from J to Q'(I). Now define ¢ :
Aut(I) — Aut(J) : f— g~ ' o fog, where f is extended to HF(|I]) in the
standard way. To see that 1) is well-defined, let f € Aut(I). Then

V(f)J) =g tofog(J) = ¢ '(f(QI))  (definition of g)
= g NQ'(f(I)))  (genericity of Q')
g HQ'(I)) (f € Aut(T))

= J

whence ¢(f) € Aut(.J). Since g is the identity on |I|, v is also an extension
mapping. Finally, it is readily verified that ¢ is a group homomorphism:

U(foh) = glofohoy
= g 'ofogogtohog
= ¥(f)ov(h).

Hence, v is an extension homomorphism, as required. [ |
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The transformation () not expressible in FO 4+ new + while shown in
Example 3.6 does not satisfy the Andries-Paredaens condition and thus is
not constructive.

We will next show that satisfaction of the Andries-Paredaens condition
for each input-output pair is not only necessary, but also sufficient for deter-
minate transformations to be constructive.

Theorem 3.13 Let Q be a transformation. Then Q) is constructive if and
only if (i) Q is determinate; and (ii) for each pair of instances (I,.J) with
Q(I,J), there exists an extension homomorphism from I to J.

Proof. Since the only-if implication is given by Proposition 3.12, it suffices
to show the if-implication.

For each pair of instances (I,.J) with Q(I,.J) there exists a program P
in FO + new + while with P(1,J) (Proposition 3.4). Let Pr; be the first
such program in some standard recursive enumeration of all programs. By
the genericity of FO + new + while programs, we have

Pry = Pray,pn for each permutation f of U. (%)

The execution of Pr; on I traces a finite sequence of FO statements,
tuple-new statements and set-new statements. Let ¢; ; be the length of that
sequence. For an integer k, 0 < k < /{; ;, let I}, be the intermediate result of
the program P; ; applied on I after execution of the k-th statement in the
sequence. Notice that Iy =1, I, , = J, and |I| = |I)| C |[,| C --- C |I,, ,| =
|.J|. We construct an injective mapping fr.s : |J| — HF(|I|) recursively as
follows.

Let o € |J|. If o € |Iy| = |I], we define f; ;(0) := o. Now assume that
for some k, 0 < k < ¢;;, fr,; has been defined on all objects in |I;_4|. If
o € |I| — |Ix_1], there are two possibilities:

1. The instance I results from [I,_; by a tuple-new statement of the form
R := tuple-new ®. Thus o appears in R* as a new object associated
to a tuple t in ®(I; ;). We define

f1,7(0) := pair (tuple(fLJ(t)), number(k)) )

In the right-hand side formula,
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e pair is the well-known Kuratowski encoding of ordered pairs as
hereditarily finite sets defined by pair(z,y) := {{z}, {z,y}};

e tuple is the well-known encoding of finite sequences (i.e., tuples)
as hereditarily finite sets defined by

tuple() = 0;
tuple(s) = {x};
tuple(zy,...,x,) = pair(zy, tuple(zs, ..., z,))), for n > 2;

e number is the encoding of natural numbers as hereditarily finite
sets in HF (()) defined by number(0) = () and number(n + 1) =
{number(n)}.

2. The instance Ij results from [I;_; by a set-new statement of the form
R := set-new ®. Thus ®(I;_;) is a binary relation, which can be
viewed as the set-valued function

s:x—={y| (z,y) € (I 1)}

There is an z such that the pair (z,0) is in R™*. We define

f1,1(0) := pair (fr.s(s(x)), number(k)) .

By the very definition of the set-new statement, the set s(x) is inde-
pendent of the particular choice of . Hence, fr (o) is well-defined.

Notice that f; s is the identity on |I].

We now define the HF-transformation '. Let I be an instance. If there
is an instance J such that Q(I,J), then we define Q'(I) := f; ;(J). By the
determinacy of ) and Property (x), the HF-instance f; ;(.J) does not depend
on the particular choice of .J. If there is no instance .J such that Q(1, .J), then
@' is undefined on I. By Property (x), @' is invariant under permutations
of U. Moreover, Q' is partial-recursive. To see this, let I be an instance.
Since () is recursively enumerable, it is possible to find an instance J with
Q(I,J) if such an instance exists. Next, all FO + new + while programs
are applied to I in a dove-tailed fashion until one stops and yields J;% by

6Since in practice only one, representative, instance is computed, it must be verified
that the result found is I-isomorphic to J.
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definition, this program is Py ;. Since Py ; can be effectively computed, f7 ;
is recursive. Consequently, Q)'(I) = fr,;(J) can be computed. Thus )’ is an
HF-transformation.

Obviously, @ is the isomorphic representation of ()'. Therefore, @ is
constructive. [

Theorem 3.13 thus gives an intrinsic characterization of the class of con-
structive transformations. As announced in the Introduction, we will show
later that the transformations expressible in FO + new + while are precisely
the constructive transformations. Theorem 3.13 therefore also shows that
the characterization for the existence of a constructive transformation on the
local level of individual input-output pairs, given by the existence of an ex-
tension homomorphism (Proposition 3.4), can be “lifted” to the global level
of transformations.

4 List-constructive transformations

In the previous section, we proposed a general notion of constructive object
creation in terms of hereditarily finite sets. In practice however, data struc-
tures are often implemented using lists rather than sets. This is for example
the case in functional programming [1], as well as in logic programming [29]
where first-order term structures are used for this purpose. Approaches to
object creation as first-order term construction have been considered in the
literature [25, 26].

In order to characterize the expressive power of languages that base object
creation on lists rather than sets, we propose the notion of list-constructive
transformation in this section. The development of this notion is analogous
to the development of constructive transformation in the previous section. As
we will see, list-constructive transformations are a special case of constructive
transformations.

We first define hereditarily finite lists:

Definition 4.1 Let D be a subset of U. The set HFI(D) of hereditarily finite
lists with ur-elements in D is the smallest set such that (i) D C HFI(D);
and (ii) each finite list (A1, ..., \,) of elements of HFI(D) is also an element
of HFI(D).
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Lists, viewed as tuples of the appropriate rank, can be interpreted as hered-
itarily finite sets, by the Kuratowski encoding used in the proof of Theo-
rem 3.13. Therefore hereditarily finite lists are a special case of hereditarily
finite sets.

We denote by FO + tuple-new + while the sublanguage of FO 4+ new +
while consisting of those programs that do not use set-new statements.
Andries and Paredaens proved the following analog of Proposition 3.4 for
FO + tuple-new + while:

Proposition 4.2 [8] Let I and J be instances with |I| C |.J|. There ezists
an FO + tuple-new + while program P with P(I,.J), if and only if there
erists (a) an extension homomorphism ¢ from I to J and (b) an injective
mapping g : |J| — HFI(|I|) which is the identity on |I| satisfying

9((f)(0)) = f(g(0))

for each f in Aut(I) and each o in |J|, where f is extended to HFI(|I]) in
the standard way.

In Example 3.6, Proposition 3.4 was used to show that there are deter-
minate transformations not expressible in FO 4+ new + while. Similarly,
Proposition 4.2 can be used to show that there are transformations express-
ible in FO + new + while not expressible in FO + tuple-new + while:

Example 4.3 Let R be a binary relation name, and consider the transfor-
mation @) from the empty database scheme () to { R} defined as follows. Let
I be an instance of () (whence the only informative component of I is its
domain |I|). Associate to each set p of two elements of |I| a unique new
object 0, not in |I|. Let P be the set of all these new objects. Then Q(I, J)
if [J] =|I]UP and R’ = {(z,0,) | z € p and p € P}. A concrete pair (I, J)
satisfying Q(I,J) is shown in Figure 11. There exists a unique extension
homomorphism ¢ from I to J; however, there is no injective mapping ¢ from
|.J| into HFI(|I]) satisfying Proposition 4.2 (for a proof see [31]). Hence, @
is not expressible in FO + tuple-new + while. Note that () is expressible
in FO + new + while by the following program:

Ry := tuple-new {(z,y) | z # y};

Ry :={(z,7) | () (Ri(z,y,2) V Ri(y,z,2))};

R3 := set-new {(z,z) | Ra(z,7)};

R :={(x,0) | (32)(Ra2(z,2) A R3(z,0))}. |
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Figure 11: Example of the unordered pair transformation of Example 4.3.
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Figure 12: Example of an HFl-instance.

The above example also shows that the set-new operator is a primitive
construct in the language FO + new + while and cannot be simulated using
the other constructs, as already mentioned in Section 2. For a detailed study
of the expressive power of set-new we refer to [31].

In analogy with the previous section, we will define list-constructive trans-
formations as transformations for which the new domain elements in the
output can be viewed as hereditarily finite lists constructed over the domain
elements of the input. Thereto, we need to define HFl-instances and HFI-
transformations first.

An HFl-instance I is defined as an HF-instance, the only difference being
that the domain |I] is a subset of HFI(U) instead of HF'(U). Relations and
tuples on HF[(U) are called HFl-relations and HFl-tuples, respectively. The
set of all HFl-instances of a scheme S is denoted by HFl-inst(S). A simple
example of an HFl-instance I of the scheme {R;, Ry}, with R; and R binary,
is shown in Figure 12, where a, b, and ¢ are elements of U. Note that RI
and RE are different.
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Definition 4.4 Let S;, and S,y be two schemes. An HFIl-transformation
from S, to Sout is a partial recursive function @ : inst(S;,) — HFl-inst(Soy)
which (1) (viewed as a binary relationship) is invariant under every permu-
tation of U and (i) satisfies |Q(I)] € HFI(|I|) whenever Q is defined on
I.

We can now define list-constructive transformations formally as follows:

Definition 4.5 A transformation @ from &y, to Sou i called list-
constructive if there exists an HFI-transformation Q' from Sy to Souy such
that, for each pair of instances (I,J), Q(I,J) if and only if (i) Q'(I) is
defined; and (ii) J is I-isomorphic to Q'(I).

As with constructive transformations, we will call () the isomorphic represen-
tation of @Q)', and for any input-output pair (I, .J) of @), we will call instance
J an isomorphic representation of HFl-instance Q'(I).

List-constructive transformations are a special case of constructive trans-
formations. In analogy with Theorem 3.13, we have the following intrinsic
characterization of list-constructive transformations:

Theorem 4.6 Let (Q be a transformation. Then @) is list-constructive if and
only if (i) Q is determinate; and (ii) for each pair of instances (I,.J) with
Q(I,J) there exists (a) an extension homomorphism ¢ from I to J and (b)
an injective mapping g : |J| — HFI(|I|) which is the identity on |I| satisfying

for each f in Aut(I) and each o in |J|, where f is extended to HFI(|I]) in
the standard way.

Proof. Only if. Since @) is list-constructive and therefore constructive, it
follows from Proposition 3.12 that () is determinate. Let @' be an HFI-
transformation isomorphically represented by (). Assume Q(/,.J). Since J is
an isomorphic representation of Q'(I), there exists an /-isomorphism ¢ from
J to Q'(I). Since |Q'(I)| C HFI(]I]), g is an injective mapping from |J| into
HFI(|I]). As in the proof of Proposition 3.12, ¢ : Aut(I) — Aut(J) : f —
g o fog can be shown to be an extension homomorphism from I to J. By
construction, g(¢(f)(0)) = f(g(0)) for each f € Aut(I) and each o € |J|.
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If. 'The proof of this implication is analogous to the proof of the if-
implication of Theorem 3.13. For each pair of instances (I,.J) with Q(I,J)
there exists a program P in FO + tuple-new + while with P(/,.J) (Propo-
sition 4.2). Let Pr; be the first such program in some standard recursive
enumeration of all programs. By the genericity of FO + tuple-new + while
programs, we have

Pr ;= Py, pn,s for each permutation f of U. (%)

The execution of Pr ; on I traces a finite sequence of FO statements and
tuple-new statements. Let ¢; ; be the length of that sequence. For an integer
k, 0 <k </, let I; be the intermediate result of the program P; ; applied
on I after the execution of the k-the statement in the sequence. Notice that
Iy=1,1;,=J,and |I| = |l | C |I,| € --- C |I;, ,| = |J|. We construct an
injective mapping fr s : |J| — HFI(|I|) recursively as follows.

Let o € |J|. If o € |Iy| = |I|, we define fr;(0) := 0. Now assume that
for some k, 0 < k < ¢; 5, fr,; has been defined on all objects in |I;_4|. If
o € |Iy| — |Ix-1|, then Ij results from I;_; by a tuple-new statement of the
form R := tuple-new ®. Thus o appears in R’* as a new object associated
to a tuple t in ®(I; ;). We define

fr.a(o0) :== (fI,J(t),number(k)) ,

where number is the encoding of natural numbers as hereditarily finite lists
in HFI(0) defined by number(0) = () and number(n 4+ 1) = (number(n)).

Notice that f; ; is the identity on |I].

We now define the HFI-transformation @'. Let I be an instance. If
there is an instance J such that Q(I, J), then we define Q'(I) := fr,(J). If
there is no instance .J such that Q(I,.J), then @' is undefined on /. By an
argumentation analogous to the one used in the proof of Theorem 3.13, we
can show that @' is a well-defined HFI-transformation that is isomorphically
represented by (), whence () is list-constructive. [ |

Since we will show in the next section that the transformations expressible
in FO + tuple-new + while are precisely the list-constructive transforma-
tions, the above theorem shows that Proposition 4.2 can be “lifted” from the
local level of individual input-output pairs to the global level of transforma-
tions.
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5 Completeness results for list-constructive
transformations

In this section, we prove that the language FO + tuple-new + while
expresses precisely the list-constructive transformations. This result, al-
ready important in its own right, will enable us to prove that the language
FO + new + while expresses precisely the constructive transformations.

To simplify the presentation of rather complicated programs that will
be discussed in this section, we will occasionally decompose programs in
subprograms (procedures) with the usual Pascal-like sytax and semantics.

We prove the completeness of FO + tuple-new + while for the list-
constructive transformations by a reduction to the seminal completeness re-
sult of Chandra and Harel [12]. Chandra and Harel studied the computation
of unranked databases.

An unranked instance I of a database scheme S is defined as an ordinary
instance, the only difference being that the arities (R) of the relation names
R in S are ignored. So, for each R, R’ is a relation on |I| not necessarily of
rank «(R); the rank of the content of R can vary from instance to instance.
The set of all unranked instances of a scheme S is denoted by UnR-inst(S).

The computation of unranked databases from ordinary ones is formalized
by the notion of unranked transformation:

Definition 5.1 Let S;, and S,y be two schemes. An unranked transfor-
mation from Sy to Sous IS a partial-recursive function @ : inst(Sp) —
UnR-inst(Sout) which (i) (viewed as a binary relationship) is invariant under
every permutation of U and (ii) satisfies |Q(I)| = |I| whenever Q is defined
on I.

Example 5.2 For arbitrary relation names R and T, consider the function
@ :inst({R}) — UnR-inst({T'}) defined by

TQ(I) :RIX XRI,
N—_——— — — —
(n times)

where n is the cardinality of R!. The function @ is an unranked transfor-
mation from {R} to {T'}. The rank of the content of 7" in Q)(I) depends on
I.
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Chandra and Harel also introduced a powerful language for expressing
unranked transformations, called QL, and described below.”

Let S be a scheme. A QL program over S is built from statements over
S using composition and while-loops. A statement over S is of the form
X =7, with X a variable and 7 a term over §. Terms over § are defined
as follows: (1) D is a term; (2) E is a term; (3) a relation name of S is a
term; and (4) if Y and Z are variables, then Y, [(Y), 1(Y), ~(Y), (Y U Z),
and (Y — Z) are terms. While-loops, finally, are of the form while X = () do
P od with X a variable and P a program.

Semantically, a statement X := 7 assigns to the variable X the relation

that is the interpretation of the term 7. More precisely, given an instance I
of S,

1) the term D is interpreted as |I| viewed as a unary relation;

)
2) the term E is interpreted as the binary equality relation on |];
3) a relation name R is interpreted as R!; and

)

(
(
(
(

4) if relations r and s are assigned to variables Y and Z, respectively, then

e Y is interpreted as r;

o [(YV)as [(r) :={(x2,...,x%) | 21 € [I]: (x1,22,...,2) ET};
1Y) as 1) =7 x |1];

“(Y)as(r) ={(z1,..., 2k 2, Tk, Tp_1) | (T1,...,2x) ET};

e (YUZ)asrUs;and

o (Y —Z)asr—s.

Note that variables are untyped in that they can take relations of any rank
as values. The semantics of a QL program over § is now obvious. The pro-
gram expresses an unranked transformation from S to some output scheme
Sout by designating for each relation name R in S,,; an associated output
variable Xg.

Chandra and Harel proved the following seminal completeness result:

"For technical convenience, we replaced the complement operator by the difference
operator, which does not alter the expressiveness of the language.
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Lemma 5.3 [12] QL expresses precisely the unranked transformations.

In order to be able to use the above lemma to prove that FO 4+ tuple-
new-+while expresses precisely all list-constructive transformations, we must
establish a link between the setting of Chandra and Harel and ours. Thereto,
we make three basic observations:

1. A relation is a set of tuples of equal length.
2. A tuple can alternatively be seen as a list.

3. Let J be an instance of a scheme containing the binary relation names
Head and Tail. For any unary relation name V also in the scheme,
we can interpret the set V7 as a collection of lists, using the binary
relations Head” and Tail” as in Example 2.21.

These observations lead us to define:

Definition 5.4 Let S be a scheme and let I be an unranked instance of S.
Let J be an ordinary instance of the scheme list(S) := {Head, Tail} U {R |

R € S}, witha(R) =1 for all R € S. We call J a list representation of I if
|J| D |I] and for each R € S, the lists of R’ are precisely the tuples of R'.

Definition 5.5 Let (Q be an unranked transformation from Sy, to Sous. An
ordinary transformation Q' from Sy, to list(Syy) s called a list representation

of Q if, for each instance I of S, Q(I) is defined if and only if Q'(I,J) for
some J, and in that case J is a list representation of Q(I).

We now prove that FO+tuple-new+while can simulate QL. More precisely:

Lemma 5.6 Fvery unranked transformation can be list-represented by a pro-
gram in FO 4 tuple-new + while.

Proof. Assume an unranked transformation expressed by some QL program
P is given. We shall explain by an inductive argument how P is translated
into an FO + tuple-new + while program P’ which list-represents P. The
first two lines of P’ are

D :={(z) | true};
E:={(z,y) |z =y}
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Given an input instance I, P’ will compute in D! and E' the interpretation
of the QL-terms D and F, respectively.

For each variable X in P, P' will introduce a unary relation name X.
During the execution of P’, the value of X will be a collection of lists repre-
senting the corresponding value of X during the execution of P. To represent
these lists, P also introduces the binary relation names Head and Tail which
are initialized by

Head := (;
Tail := ().

For convencience, P’ also introduces binary relation names Equallist and
Tail*. When invoked, the procedure Comp-Equallist shown in Figure 13
computes in relation Fquallist all pairs of list objects introduced thus far
representing equal lists. Similarly, the procedure Comp-Tail* shown in Fig-
ure 14 computes in relation Tail* the reflexive-transitive closure of the current
value of the Tuil relation. Finally, if R and S are unary relation names and
the content of R can be interpreted as a collection of lists, then the procedure
Copy(R; var S) shown in Figure 15 computes in relation S a copy of R using
a set of new list objects.

Now consider a QL statement of the form X := D or X := FE with
X a variable. Due to the first two lines of P’, the QL terms D and E can
alternatively be interpreted as relation names. Thus consider a QL statement
of the form X := R with X a variable and R a relation name (which is either
D, E, or an element of the input scheme §). The following FO + tuple-
new + while statements simulate X := R in the case that R is binary; from
this, the general case immediately follows.

Ry := tuple-new R;

Ry := tuple-new Rj;

Head := Head U {(l1,x) | (3y)(3l2)Ra(z,y,11,12)};
Tail :== Tail U{(l1,12) | (3x)(3y)Ra(x,y,l1,12)};
Head := Head U {(l2,y) | (32)(3l1)Ra(z,y,l1,12) };

X = {(L) | (32)3y) Bo)Sa(,y, 11, 12) }.

To simulate QL statements of the form X :=Y, X := [(YV), X :=1(Y),
X:="), X:=(YUZ),and X := (Y — Z), with X, Y, and Z variables,
we first observe that we can assume without loss of generality that X, YV,
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Equallist := {(l1, 1) | true};
Next := {(l1, 11,12, 13) | Equallist(ly,13)};
while Next # () do
Equallist := Equallist — {(l1,12) | (317)(3)(3h1)(3ha) (Next (11,1}, 1o, 1))
A Head(l}, hy) A Head(l,, ho) A hy # ho)};
Equallist := Equallist — {(l1, 1) | (317)(3) (Next (11,1}, s, 15)
A (3t) Tail (1, t) A —(3t) Tail (1}, 1)) };
Equallist := Equallist — {(l1,1s) | (317) () (Next (11,1}, 15, 15)
A (3t) Tail (L, t) A =(3t) Tail (1}, 1)) };
Next := {(ly, 1,12, t2) | Equallist(ly,ls) A (317) () (Next(ly, 1}, 1o, 1) A
Tail(l7,t1) A Tail(ly,t2))}
od.

Figure 13: Procedure Comp-FEquallist. Computes in Equallist all pairs of list
objects representing equal lists.

Prev = ();
Tail* = {(1, 1) | | = I'};
while Tail* — Prev # () do

Prev := Tail";
Tail*™ := Tail* U{(l,t) | (3)(Tail*(1,I") A Tail(l',t))}
od.

Figure 14: Procedure Comp-Tail*. Computes in Tail* the reflexive-transitive
closure of Tail.
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Comp-Tail*;
R' := tuple-new {(I') | (3 )lg (1) A Tadl*(1, )3}

Head = Head U {(I', h) | (30)(Head (I, h) A R'(L, 1)}
Tail = Tail U {(I,#') | (31)(3t)(Tail(l,£) A R/, 1) A R'(t, #)}:
Se={) | G)(RI) AR(1,1))}.

Figure 15: Procedure Copy(R;var S). Computes in S a copy of R using a
set, of new list objects.

and Z are all different. (By introducing auxiliary variables, the program P
can indeed be rewritten to meet this condition.)

The statement X := Y is simulated by Copy(Y, X).

The statement X := |(Y") is simulated by

Copy(Y, X);
X = {(t) | @)X (1) A Tail(l,1))}.

In case the current value of Y contains different tuples with the same first

component, the above simulation gives rise to duplicates in the collection of

lists X, i.e., to different objects in X representing the same list. The possible

presence of duplicates is harmless and is not prohibited by Definition 5.4.
The statement X := 1(Y") is simulated by

Comp-Tail*;
Y = {() | GOV (1) A Tail* (1, 1)) };
Newlists := tuple-new {(l,z) | Y'(I) AN D(x)};
X=A{(l") | @) (3z)(Newlists (I, x, ') Y(0));
Head := Head U {(I',h) | (31)(3x) Newlists(l, z,1')};
Tail := Tail U
{(',¢") | (3)(3t)(Fzx)(Newlists(l, z,1") A Newlists(t,z,t") A Tail(l,t))};
FEnds := tuple-new {(I') | (3 )(EIx)Newlzsts(l,x,l) (EIh)Head(l’ h)};
Head := Head U {(I',z) | (3l)Newlists(l,z,I') A (") Ends(l',1")};
Tail := Tail U Ends.

The statement X :=7(Y") is simulated by
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Copy (Y, X); )
Length—? = {(ll, l2, l3) | X(ll) A Tail(ll, lg) A Tail(lg, 13) A\ ﬁ(ah)He(ld(lg, h)},
if Length-2 # () then
X == {(ly) | (3)(3ls) Length-2(11, 12, 13) };
Tail := {(I,t) | Tail(l,t) A
=(30)(3l2) (3lz) (Length-2(11, 12, 13) A (L =1 VI =12))};
Tail := Tail U {(l, t) | (3[1)(312)(Ellg)(Length—Q(ll, lg, 13) VAN
: ((1,8) = (I, h) v (1,1) = (b, )}
Comp-Tail”*;
S’LU(lp = {(ll, lg, l3, l4) | (Ell) (X(l) A Tazl*(l, ll) A Tail(ll, l2) A Ta’il(lg, 13) A
Tail(l3,14) AN —(3h)Head(l4, h))};
Tail := {(1,t) | Tail(l,t) A —(311)(3ls)(As) (3la) (Swap(ly, Iy, 3, L) A
Tail := Tail U {(l, t) | (3[1)(312)(313)(314)(Swap(ll, l2, l3, l4) VAN
. ((1,1) = (I, 1) vV (1, 1) = (I3, 12) V (1, 1) = (I, 14))) }

In the above program, the relation Length-2 is used to test for the special case
when the rank of the current value of X is two. The if-then-else construct if
Length-2 # () then P, else P, can be simulated by the two if-then constructs
if Length-2 # () then P, and if Length-2 = () then P,, which were shown
to be expressible in FO + tuple-new + while in Example 2.17.

The statement X := (Y U Z) is simulated by

Union :=Y U Z;
Copy(Union, X).

The statement X := (Y — 7) is simulated by

Comp-FEquallist;
Diff = {(ZI)J Y () A =(3l)(Z(12) A Equallist(ly,1s))};
Copy(Diff , X).

Finally, a QL while-loop while X = () do P, od with P, a QL program
over S is simulated by the FO + tuple-new + while while-loop while X = ()
do P| od with P| the simulation of P;. [
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Note that inst(S) C UnR-inst(S): ordinary instances are special un-
ranked instances in which the ranks of the relations do conform to the ari-
ties of the relation names. Hence, ordinary transformations (Definition 2.10)
which are deterministic (i.e., functions) are special unranked transformations
which always yield ordinary instances as output. With this remark in mind
we can prove the following useful corollary of Lemma 5.6.

Corollary 5.7 Each deterministic transformation is expressible in FO +
tuple-new + while.

Proof. By Lemma 5.3, each deterministic transformation is expressible in
QL. Lemma 5.6 thus yields that each deterministic transformation can be
list-represented in FO + tuple-new + while.

It therefore suffices to show that there exists a program in FO + tuple-
new + while which, given a list representation of an instance I of some fixed
scheme S as input, produces [ itself as output. This program consists of one
statement for each R € S. The following statement is for the case a(R) = 2;
the other arities are treated analogously.

R:={(z,y) | 3)3t)(R(I) A Head(l, ) A Tail(l,t) A Head(t,y))}.
|

The completeness of QL for the unranked transformations, and the abil-
ity of FO + tuple-new + while to simulate QL, can be exploited to prove
the completeness of FO + tuple-new + while for the list-constructive trans-
formations. Since list-constructive transformations are defined in terms of
HFIl-transformations, we thereto need an encoding of HFl-instances as un-
ranked instances, which we first describe.

Let K be an HFl-instance of some scheme S. Denote the set of atomic
objects (elements of U) appearing in |K| by Ug. Let ‘[’ (left bracket), ‘1’
(right bracket) and ‘_’ (blank) be three symbols in U not in Ug. With
each HFl-tuple ¢ on |K| we can associate a flat tuple [t] on Ux U {[,1} by
using the bracket symbols to mark begin and end of subtuples. For example,
if ¢ is the ternary HFl-tuple (a, (b, ¢, (a)),b), then [t] is the 9-ary flat tuple
(a, [,b,¢,[,a,1,1,0).

Now consider a relation name R € S and the HFl-relation R¥X. Let n be
the maximal arity of a tuple in {[{] | ¢ € RE}. We can encode RE as an n-ary
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a _ _ _ _ _ a [ b [ c 11 _
L a a1 _ _ L b1 [a b cl
L o1 - _ _
L b [ c 11
L a b c 1 _

Figure 16: Flat encoding of the HFl-instance in Figure 12.

flat relation [REX] on Ux U {[,],_} by padding [t] to the right with blanks
if needed to bring the arity to n, for each t € RX. In the same way, we can
also encode the domain |K| of K as a flat relation [|K|] by interpreting |K|
as a unary HFl-relation.

We can thus define the notion of flat encoding of an HFl-instance:

Definition 5.8 Let K be an HFl-instance of some scheme S, and let J be
an unranked instance of the scheme

flat(S) := { Leftbracket, Rightbracket, Blank} U {D} U S.
We call J a flat encoding of K if the following conditions are satisfied:

o [J|=|K[U{L],_};

o Leftbracket” = {([)}, Rightbracket” = {(1)}, and Blank” = {(_)};
o D7 =[K[];

e For each R € S, R’ = [RX].

Example 5.9 Recall the HFl-instance I shown in Figure 12. Figure 16
shows relations D and R, of a flat encoding of I.

A flat encoding J of an HFl-instance K of a scheme & is an unranked
instance (of the scheme flat(S)). According to Definition 5.4, J can be list-
represented by an ordinary instance J' of the scheme list(flat(S)). We will
call J' a flat-list representation of K.

We now have two ways of representing an HFl-instance by an ordinary
instance: the “flat-list representation” just defined, and the original “isomor-
phic representation” of Definition 4.5. The following technical lemma says
that we can go from the former to the latter in FO 4 tuple-new + while.
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Lemma 5.10 Let S be a scheme. There exists a program P in FO + tuple-
new +while ezpressing a transformation from list(flat(S)) to S which, given
as input a flat-list representation of some HFl-instance K of S, produces as
output an instance which is U g-isomorphic to K.

Proof. Consider the following algorithm:

Input: a flat-list representation J of an HFl-instance K of S.

Output: an instance L containing a list representation of an instance M of
such that M is U g-isomorphic to K.

Method:

1.

Select all sublists occurring in the current instance which begin with the
left bracket, end with the right bracket, and do not contain a bracket
symbol in between. Let n be the maximal length of these sublists.

Generate a collection of all lists over the current domain of length at
most n. No duplicates may be generated, i.e., each list generated must
be represented by a unique object in the collection.

Replace each sublist selected in step 1 by its unique representative
object generated in step 2.

Repeat the above steps until no sublist is any longer selected in step 1.

Truncate all lists appearing in the current instance having a tail con-
sisting exclusively of blanks.

We first show how this algorithm can be implemented in FO + tuple-new +
while.

1.

We will reuse procedure Comp-Tail* of Figure 14 and its associated
binary relation Tail*, already used in the proof of Lemma 5.6. Note
that after invoking this procedure, each pair (I,{") in Tail* identifies
the begin and end of a sublist occurring in the current instance. So, we
can formulate step 1 as a deterministic transformation, with a binary
output relation named Select in which the sublists of Tail* with the
desired properties are collected. By Corollary 5.7, this step is then
expressible in FO + tuple-new + while.

41



By identifying a natural number n with a relation containing a single n-
ary tuple of, say, blanks, we can formulate the computation of the max-
imal length n of the sublists in Select as an unranked transformation.
By Lemma 5.6, this unranked transformation can be list-represented in
FO + tuple-new + while. We can thus obtain a unary relation named
Length holding a list of length n.

2. The collection Collect of all lists up to length n is now generated as
follows. We use procedure Copy(R;var S) of Figure 15.

Dom := {(z) | true};
Empty-list :== tuple-new {() | true};
Collect == Empty-list,
Count = {(2') | (3z)(Length(z) A\ Tail(z,2"))};
while Count := () do
Copy(Collect, Collect');
Next := tuple-new {(I',x) | Collect'(I') A Dom(zx)};
Tail := Tail U {(l,t) | (3z)Next(l,t,x)};
Head := Head U {(l,z) | (31 )Nea:t(l ' z)};
Collect :== Collect U {(l) | (31 )(Hx)NeIt(l,l’, x)};
Count == {(2') | (32)(Count(z) A Tail(z,2"))};
od.

3. Step 3 is then programmed as follows. We use procedure
Comp-Equallist of Figure 13 and its associated binary relation
Equallist.

Keep-tails := {(s2,1) |
Tail := Tail — {(s2,1)
U {(s2,€)
Comp-FEquallist,
Head := Head — {(s1,
r) |

(Jsy)Select(sy, s2) A Tail(sz,t)};

| (3s1)Select(sy, s2)}

| (3s1)Select(sq, s2) A Empty-list(e) };
(Jsq)Select (s, s9) }

h) |
sq)Select(sy, s2) A Collect(r) A Equallist(sy,r)};

U {(817 (El
Tail :== Tail — {(s1,t) | (Is2)Select(sy, s2)}
U {(s1,t) | (3s2)(Select(s1, s2) A Keep-tails(sa, t))}.

4. Tterating the above steps as specified in the algorithm yields:
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Step 1;

while Select # () do
Step 2;
Step 3;
Step 1

od.

5. Finally, finding the lists to be truncated can be formulated as a de-
terministic transformation. By Corollary 5.7 this transformation is
expressible in FO + tuple-new + while, so that we can obtain a unary
relation 7Trunc holding these lists. The actual truncation is easy to
perform:

Tail := Tail — {({,t) | Trunc(l)}
U{(l,e) | Trunc(l) A Empty-list(e)}.

Denote the complete program implementing the algorithm by P.
Assume now that P is applied to an input instance J which is a flat-list
representation of an HFl-instance K of §. Let L be the output instance.
Fix an arbitrary R € §. We first verify that all lists in R have length
a(R). Thereto, we establish the following loop invariant of the while-loop
specified in item 4 above:

Each list | in R can be written as a concatenation ly...lyrt,
where t is a (possibly empty) tail consisting exclusively of blanks,
and each l;, 1 <i < a(R), is either:

(a) a singleton sublist (0) with o € Ug; or

(b) a singleton sublist (p) with p a list object generated in step 2
of the algorithm; or

(¢) a sublist beginning with the left bracket and ending with the
right bracket.

Upon entry of the while-loop, the invariant clearly holds since the input
instance J is a flat-list representation of an HFl-instance of S. In this case,
sublists of type (b) do not yet occur. After each iteration of the while-loop,
the invariant also holds since the only thing that can happen is that sublists
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of type (c) are replaced by sublists of type (b). Hence, the invariant also
holds upon exit of the while-loop. In this case, sublists of type (¢) do no
longer occur since the iteration condition of the while-loop is no longer true.
In step 5 of the algorithm, the tail ¢ is removed, so that in the output L,
each list in R, being a concatenation of a(R) length-one sublists, indeed has
length a(R).

By the same reasoning, we can show that all lists in D¥ have length one.

Fix again an arbitrary R € §. We next verify that for each list [ in RL,
every element of [ is the element of some (singleton) list in D™, Thereto, we
establish the following loop invariant of the while-loop in item 4:

For each list | =1y ... lor)t in R, and for eachi=1,..., a(R),
there is a list I' = I;t' in D, where t' is a (possibly empty) tail
consisting exclusively of blanks.

That the above property is indeed an invariant can be proven by a similar
reasoning as for the previous invariant. The invariant holds upon exit of the
while-loop, after which step 5 of the algorithm removes the blank tails. Since
we already know that at this point each [; is a singleton, every element of [
thus is indeed the element of some singleton list in DF.

The above allows us to define the following instance M of S: |M| is the
set (unary relation) list-represented by DY, and for each R € S, RM is the
relation list-represented by RY. The output instance L of P thus contains a
list representation of M, but not M itself. However, we can complete P with
a final step which produces M from its list representation. How this can be
done was already shown in the proof of Corollary 5.7.

Hence, in order to conclude the proof of the lemma it is sufficient to prove
that M and K are Ug-isomorphic. Thereto, we inductively assign to each
hereditarily finite list A appearing in |K| an identifying object id(\) € |L|
as follows. As basis, we put id(o) := o for each 0 € Ug. Now let A =
(A, ..., Am) be a hereditarily finite list appearing in |K|. By induction, we
may assume that id(}\;) is already known for i = 1,..., m. Consider the list

= (Lid(A\),...,id(An),]).
At some point during the execution of P, [ will be replaced by a single

representative object p in step 3 of the algorithm. Then define id()) := p.
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The mapping id just defined is clearly injective. Furthermore, id(|K|) =
|M|. Indeed, \is in | K| iff its flat encoding [\] is in D7 (represented as a list).
In D", this list will be replaced by id(\). Similarly, we have id(R¥) = RM
for each R € §. Finally, the mapping id was defined to be the identity on
Ugk. Hence, id is an Ug-isomorphism from K to M. [ |

We now have all the necessary ingredients together to prove our first
completeness result:

Theorem 5.11 FEvery list-constructive transformation is expressible in FO+
tuple-new + while.

Proof. Let () be a list-constructive transformation from S;, to Syu. We
must establish the existence of an FO + tuple-new + while program P
expressing ).

First, consider the following three-line program:

Leftbracket := tuple-new {() | true};
Rightbracket := tuple-new {() | true};
Blank := tuple-new {() | true}.

Applied to an instance I of S, this program yields an instance It of the
scheme S U {Leftbracket, Rightbracket, Blank} which can be interpreted as
the augmentation of I with three new unary relations, each consisting of a
single object. These three objects are different, and are interpreted as the
left bracket, right bracket, and blank symbol, respectively.

Next, we define an unranked transformation Q""" from &;, U
{ Leftbracket, Rightbracket, Blank} to flat(Sey;). Thereto, let Q' be an HFI-
transformation isomorphically represented by @ in the sense of Definition 4.5.
For an instance I of S, define Q"™ (1) as the flat encoding of Q'(I) in which
the left bracket, right bracket, and blank are those of I™. By Lemma 5.6,
Q""" can be list-represented by an FO 4 tuple-new + while program. When
applied to I, this program yields a flat-list representation of @Q'(I).

Finally, by Lemma 5.10, there exists an FO+tuple-new+while program
transforming a flat-list representation of an HFl-instance K into an Ug-
isomorphic representation of that instance. Applying this program to the
flat-list representation of (/) thus yields an instance .J which is Ugi(y)-
isomorphic to @'(1). But Ug/(;) = |I], so that .J is I-isomorphic to Q'(I).
Since @ is the isomorphic representation of @', J satisfies Q(I, J).
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Hence, the composition of the above programs yields the desired FO +
tuple-new + while program. [ |

6 Completeness results for constructive
transformations

In this section, we prove that the language FO + new + while expresses
precisely the constructive transformations.

We will exploit the completeness of FO + tuple-new + while for the list-
constructive transformations, established in the previous section, to establish
the completeness of FO + new + while for the constructive transformations.
Since list-constructive transformations are defined in terms of hereditarily fi-
nite lists, while constructive transformations are defined in terms of hereditar-
ily finite sets, we thereto need an encoding of HF-instances as HFl-instances,
which we first describe.

Let X be a hereditarily finite set. We can associate to X a set A(X) of
hereditarily finite lists, in the following inductive manner:

e For each object 0 € U, A(o) := {o}.
e For each finite set V = {V},...,V,,} of hereditarily finite sets,

A(V) :=={(Asqi)s - -+ Ae(ny) | ™ a permutation of {1,...,n},
Ai € A(V;) for i = 1,...,n}.

With an HF-tuple t = (V3, ..., V), we then associate the set A(t) of all HF1-
tuples (A, ..., Ag) such that \; € A(X;) fori =1,..., k. Furthermore, with
an HF-relation r we associate the HFl-relation A(r) := U, A(t). Finally,
with an HF-instance K of some scheme S we associate the HFl-instance A(K)
of & with the same domain defined by R*%) := A(RK) for each R € S. As
for HFl-instances, Uk stands for the set of atomic objects appearing in |K].

The following technical lemma, which is the analogue of Lemma 5.10 for
HF-instances, informally says that we can go from A(K) to K in FO+new +
while:
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Lemma 6.1 Let S be a scheme. There exists a program P in FO 4+ new +
while ezpressing a transformation from list(flat(S)) to S which, given as in-
put a flat-list representation of A(K), for some HF-instance K of S, produces
as output an instance which is Ug-isomorphic to K.

Proof. By Lemma 5.10, there exists an FO 4 tuple-new + while program
which produces from a flat-list representation of an HFl-instance an isomor-
phic representation of that instance. Let Py be the particular such program
constructed in the proof of that lemma. When applied to a flat-list repre-
sentation J of A(K), for some HF-instance K of S, Py not only produces
an instance M of & which is Ug-isomorphic to A(K), but as a side effect
also Head and Tuail relations which describe the structure of the hereditarily
finite lists represented in M.

We can now continue with M and produce an instance U g-isomorphic to
K as follows. Each object appearing in |M| either is an element of Ug, or
identifies a hereditarily finite list (which can be accessed through Head and
Tail functions). Using a straightforward program, the subset UxN|M | can be
isolated in a unary relation variable which we give the same name Ug. Each
hereditarily finite list is accompanied by all its re-orderings, which together
stand for a hereditarily finite set. It thus suffices to generate a unique new
identifier for each equivalence class of orderings, using the set-new operator
in a bottom-up fashion. After each stage of this bottom-up process, the
identifiers of the considered lists are replaced by their new representative
which then serves as the object representing the corresponding hereditarily
finite set.

We now show how this can be formally accomplished in FO+new-+while.
For notational simplicity, the scheme & is assumed to consist of only one,
binary, relation name R.

To generate an identifier for the empty set we use the statement

Empty := tuple-new {() | true}.
To replace all empty lists by this identifier we use the statements

E_list := {(I) | "Ug () A =(3h)Head (I, h)};
Head :={(l,h) | Head(l,h) N —E _list(h)}

U{(l,e) | (3h)(Head(l, h) N E_list(h)) A Empty(e)};
Tail := {(l,t) | Tail(l,t) N —E _list(t)}

47



U{(l,e) | (3t)(Tail(l,t) A\ E_list(t)) N Empty(e)};
Ri={(,y) | (32)Gy)Ee) (R, ) A Brpty(c)
A —E _list(z) — x =z
A E_list(x) - 2" =e
A —E _list(y) — y’ =y
A E list(y) >y =e€)}.

The bottom-up replacement process is performed by a while-loop initiated
as follows:

Done := Ug U Empty:;
while =(Vz)(Vy)(R(z,y) — Done(z) A Done(y)) do

In each iteration, we first compute the members of each list using the state-
ments

Comp-Tail*; (Figure 14)
Contains := {(l,x) | ~Done(l) A (It)(Tail*(I,t) A Head(t,x))};
Contains := {(l,x) | Contains(l,z) A (Vy)(Contains(l,y) — Done(y))};

Then the equivalence classes are factored out using the statements

Equiv .= set-new Contains;
Done := Done U {(z) | (A1) Fquiv(l, 2)};

Finally, the identifiers are replaced using the statements

Head := {(I',') | (31)(3Rh)(Head(l, h)
A (32)Equiv(l, z) — Equiv(l,1")
A (3z) Equiv(h, z) = Equiv(h,h'))};
Tail == {(I',¢") | (31)(3t)( Tail(l,t)
A (3z)Equiv(l, z) — Equiv(l,1")
A (32)Equiv(t, z) — Equiv(t,t'))};
R:={(2",y") | (32)(Fy)(R

(z,y)
A (32) quw(x z) = Equiv(z,x")

A (32) Bquiv(y, z) — Equiv(y,y'))}.
This concludes the body of the while-loop:

od. [ ]
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We can now prove our main completeness result:

Theorem 6.2 FEvery constructive transformation is expressible in FO +
new + while.

Proof. Let (Q be a constructive transformation from S, to Syu. Let Q' be
an HF-transformation isomorphically represented by () according to Defini-
tion 3.11.

Define the HFI-transformation A(Q') from Si, to Sy by the equation

M@ = MQ'(1)).

In the same way as in the proof of Theorem 5.11, we can find a program
which produces from an input instance I of §;, a flat-list representation of
A(Q'(I)). By applying Lemma 6.1, we can then obtain an instance J which
is Ug/(py-isomorphic to Q'(I). But Ug/(;y = |I|, so that .J is I-isomorphic to
Q'(I). Since @ is the isomorphic representation of @', J satisfies Q(I, J).
Hence, the composition of the above programs yields an FO+new+while
program expressing ). [ |

The proofs of Theorem 6.2 and Lemma 6.1 show that, in order to express
an arbitrary constructive transformation in FO + new + while, the set-
new operation is only needed in a final “beautifying” stage. In this stage,
the set objects needed in the output are obtained from collections of their
orderings, represented as list objects, by making abstraction of the ordering
information present in these lists. It is precisely this “abstraction” power
that is provided by the set-new operation. All of the other computations
needed for the constructive transformation can be performed on the level of
lists rather than sets, and can be expressed in the sublanguage FO 4 tuple-
new + while of FO 4+ new + while without the set-new operation. The
reader interested in a proof that set-new cannot be simulated using tuple-
new is referred to [31].

7 Concluding remarks

Before we conclude with a few remarks on the ramifications of the results
obtained in this paper, let us summarize them as follows:
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1. Let @ be a transformation. The following are equivalent:

e () is constructive.

e () is determinate, and for each pair of instances (1, .J) with Q(I, .J)
there exists an extension homomorphism from I to J.

e () is expressible in FO 4+ new + while.
2. Let @ be a transformation. The following are equivalent:

e () is list-constructive.

e () is determinate, and for each pair of instances (I, J) with Q(I, J)
there exists (a) an extension homomorphism ¢ from I to J and
(b) an injective mapping ¢ : |J| — HFI(|I|) which is the identity
on |/| satisfying

9((f)(0)) = f(g(0))

for each f in Aut(I) and each o in |J|, where f is extended to
HFI(|I]) in the standard way.

e () is expressible in FO + tuple-new + while.

There are various possible approaches to the representation of hereditar-
ily finite set and list structures in database manipulation. One can support
these structures directly as built-in data types of the system. One can use
object creation to decompose the structures into atomic, interconnected units
and thus work with a sort of graph representation. One can also use object
creation in a different way by representing the hereditarily finite sets or lists
appearing in the output of the manipulation by new abstract objects and
thus obtaining a result formally isomorphic to the original one but ignoring
the internal structure of the hereditarily finite sets and lists. Yet another
approach is to encode the nested structures into flat lists which are un-
bounded in length (cf. the unranked relations of Chandra and Harel). In the
course of proving our completeness results, we have shown that these various
approaches are all interconnected and moreover possess precisely the same
expressive power, namely that of the constructive and the list-constructive
transformations.

The use of hereditarily finite sets in databases has been studied before by
Hull and Su [23], and by Dahlhaus and Makowsky [17].
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Hull and Su considered a language analogous to FO + new + while, but
used it only for expressing domain-preserving, deterministic transformations.
They showed that the construction of hereditarily finite sets in intermediate
stages of the computation, while disallowing them to appear in the end re-
sult, can be used to achieve completeness, much as Abiteboul and Vianu
did for object creation (see the Introduction). In this paper, we have shown
that these two “completeness tools,” hereditarily finite set construction and
object creation, are in a natural sense equivalent. Furthermore, we have
shown that Hull and Su’s completeness result can be extended from deter-
ministic transformations to HF-transformations in general. Interestingly, our
completeness proofs rely exclusively on the first known completeness tool as
originally proposed by Chandra and Harel, namely the unranked relations of
QL. This makes the circle complete, since one of the main goals of the work
of Abiteboul and Vianu was to propose object creation as an alternative for
the use of unranked relations.

Dahlhaus and Makowsky defined directory queries, a model of queries on
structures similar to HF-instances, as a generalization of the queries on flat
instances of Chandra and Harel. They proposed a language, called DL, which
they proved to be complete for the directory queries. Although Dahlhaus and
Makowsky did not explicitly consider object creation, directory queries fully
support the construction of hereditarily finite sets, to which they informally
referred as “the computation of new objects from given objects.” In this
paper, we have demonstrated that this identification was justified and can
be achieved in a very formal way.

A posteriori, it seems not unreasonable to argue in this respect that the
original notion of determinate transformation proposed by Abiteboul and
Kanellakis, although natural and obvious at first sight, does not adequately
formalize deterministic object creation. As mentioned in the Introduction,
making FO + new + while complete for the determinate transformations
requires the introduction of a copy elimination operation. Van den Bussche
and Van Gucht [32] obtained results indicating that the phenomenon of copy
elimination can be more naturally explained in a non-deterministic context.
Our results put this approach in perspective. Indeed, while in this paper we
have restricted the determinacy criterion of Abiteboul and Kanellakis with
an extension morphism condition, the authors of [32] proposed a relazation of
determinacy, called semi-determinism. From this perspective, determinacy
might be merely an intermediate between constructivity on the one hand and
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semi-determinism on the other hand.

But perhaps the main philosophical consequence of our results is a for-

mal reconciliation of the two main approaches to creating new objects that
have been considered in the literature on formal query languages for object-
oriented database systems. The first approach recognizes created objects as
new, atomic entities (e.g., [4, 20, 27]). We took this approach here. The
second approach treats new objects in the output as terms, constructed from
the objects in the input (e.g., [25, 26]). Since these terms can be interpreted
as hereditarily finite lists, the results in this paper highlight the close link
between both approaches.
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A Appendix

In this appendix we show that FO + new + while has the same expressive
power as the languages GOOD and IQL mentioned in the Introduction. We
do this by showing that GOOD can be simulated in FO + new + while
(Section A.1), that FO+new +while can be simulated in IQL (Section A.2),
and that IQL can be simulated in GOOD (Section A.3).

In the GOOD data model, a database scheme is a directed, edge-labeled
graph the nodes of which are class names and the edges of which repre-
sent relationships between classes. These relationships can be required to be
functional. A database instance then is a directed labeled graph the nodes of
which are objects, labeled by the name of their class, and the edges of which
are relationships among the objects, labeled in accordance with the scheme.
Programs in the GOOD language are sequences of graph transformation op-
erations. There are five basic kinds of such operations. GOOD programs can
also define and call procedures (called methods) which can be recursive.

The IQL data model is based on complex values built from atomic objects
using the tuple and set constructors. A database scheme is described by a set
of class names and a set of relation names. A complex value type is assigned
to each class name and relation name. An instance then populates each class
with a set of atomic objects, and each relation with a set of complex values
of the correct type. Each atomic object is also assigned a complex value of
the correct type. The language of IQL is rule-based.

A.1 From GOOD to FO + new + while

We assume the reader is familiar with GOOD as described in [20]; we will use
the terminology and notation of that paper. We note one exception however:
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we will ignore printable objects. The simulation of printable objects would
require the introduction of constant symbols in the formalism of FO +new +
while, which we have avoided for reasons of simplicity. It is well-known (e.g.,
[5]) how the use of constant symbols can be accounted for in the theory of
database transformations.

We begin by representing GOOD schemes and instances by the relational
schemes and instances of Section 2.

Let § be a GOOD scheme with set of object labels OL and set of pro-
ductions P. We define a relational scheme rel(S) representing S as follows.
For each K € OL we have a relation name K of arity 1. Furthermore, for
each p € P we have a relation name p of arity 2.

Now let I = (N, E) be an instance of the GOOD scheme S. We define
an instance of rel(S) representing I as follows. The domain equals N. For
each K € OL, the content of K equals {n € N | A(n) = K}. For each p =
(K,a, L) € P, the content of p equals {(n,a,m) € E | A(n) = K, A\(m) =
L}.

We next show how the set of matchings of a pattern in a GOOD in-
stance can be expressed in FO + new + while. Let J = (M,F) be a
pattern. We will use the elements of M as variables in first-order for-
mulas. With each edge f = (m,a,n) € F we associate the atomic
formula af(f) = (A(m),a, A(n))(m,n). For each list m,,...,my of ele-
ments of M we then define the first-order formula match(J;m;, ..., my)
as (Iny) ... (dny) Agep af(f), where {n;,... , n,} = N — {m,,..., my}.

We can now consider the five basic operations of GOOD and their simu-
lation in FO + new + while.

1. A node addition® NA[J, K, {(a1,m,), ..., (ck, my)}] is simulated as fol-
lows. We denote (K, a;, A(m;)) by p;.

NA := tuple-new {(my, ..., my;) | match(J;my, ..., mg) A
=(32) (K (x) A A pile, my)) 15
pri=pU{(z,21) | (Fza) ... Fzg)NA(xy, ..., zk, ) };

8The notation in [20] also includes parameters for the scheme and the instance on which
the node addition operates, but for simplicity we leave these parameters understood.
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pe = e U{(z,20) | (B21) .. G ) NA(1, - 20, 7))

. An edge addition EA[J, {(my, oy, m}), ..., (my, ag, m})}] is simulated
as follows. We denote (A\(m;), a;, A\(m Z)) by Di-

FA = {(mh e 7mk;m,17 Sy m;e) | matCh(J; mi,..., My, mlla ce 7m;c)};
=y U (1,34 | (B2)(303) . () Baf) EA ey 2.0, 2}
b= ok U (o) | Go0) 3. (G 1) (3o A, 2 00,2},

. An edge deletion ED[J, {(my, oy, m}), ..., (mg, ax, m})}] is simulated
in an analogous manner as the corresponding edge addition. It suffices
to replace each union in the simulation by a difference.

. A node deletion ND[.J, m] is simulated as follows:

ND := {m | match(J; m)};
A(m) := A(m) — ND;

followed by, for each production p = (A(m),a, L) € P:

p={(z,y) | p(z,y) A =ND(z)};

followed by, for each production p = (K, a, A(m)) € P:

p={(z,y) | p(z,y) A\=ND(y)}.

. An abstraction AB[J, n, K, «, ] is simulated as follows. We denote the
set of productions in P of the form (A(n), a, L) by Q, and we denote

(K, 3, A(n)) by p.

ABy = {(n,y) | match(J;n) A Veo q(n,y)};

Equiv := {(z,2") | M(n)(z) A An)(") A (Vy)(ABi(2,y) ¢ AB1(2',y))};
AB, := set-new {(z,y) | AB1(z,y) A

—(3 )(K(Z) Ap(z,3) A (V) (p(, ') Equiv(z,2'))) };
K :=KU{z| (3x)ABs(z,2)};

pi=pU{(z,2) | ABa(z,2)}.
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To complete the simulation of GOOD by FO + new + while it remains
to simulate the method construct. Methods in GOOD are procedures; it is
general knowledge in programming that non-recursive procedure calls do not
add expressive power and that recursive procedure calls can be simulated
using while loops. Van Rossum [33] has done this exercise in the context of
GOOD.

A.2 From FO + new + while to IQL

Relational database schemes and instances can be directly represented in the
IQL data model. The domain of the instance is kept in some fixed class Dom.
The type T(Dom) is not important and can be set to the empty tuple type.
Each relation R of arity « is directly represented as an IQL relation R of
type T(R) = [Dom, ..., Dom] (a times).

IQL is a rule-based language with inflationary semantics. The language
FO + new + while, in contrast, is based on first-order logic, composition,
and while-loops, and assignment to relation variables in its programs need
not be inflationary. It is known however [3, 4, 6] that all these features can be
simulated in a sufficiently powerful inflationary rule language such as IQL.

We can therefore concentrate on the operations tuple-new and set-new.
A tuple-new statement

R := tuple-new {(z1,..., ;) | ¢}

is simulated by a rule
R(x1,...,xp, 2) — ©.

A set-new statement
R :=set-new {(z,y) | ¢}
is simulated as

Proj, (z) «— ¢(z,y)

Auz(x, z) «— Proj(x)

2(y) «— Auzi(z,2), o(z,y)
Proj,(2) «— Auzq(z, 2)

Auzo(s,w) «— Proj,(s)

R(z,w) <— Auzy(z,2), Auzs(Z,w).
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A.3 From IQL to GOOD

We assume the reader is familiar with IQL as described in [4]; we will use
the terminology and notation of that paper.

Schemes and instances. We first need to represent IQL schemes and
instances by GOOD schemes and instances.

Let S = (P, R, T) be an IQL scheme. We define a GOOD scheme good(S)
representing S as follows. The set of object labels is {D,V} UP UR. The
set, of productions consists of the following:

1. For each attribute A occuring in S, the production (V, A, V), where A
is used as a functional edge label;

2. The production (V,3, V'), where ‘>’ is used as a multivalued edge label;
3. The production (V, v, V'), where ‘v’ is used as a multivalued edge label;
4. The production (D, >,V);

5. For each class name P € P, the production (P, 3, v);

6. For each relation name R € R, the production (R, >,V).

Let I = (p,m,v) be an instance of the IQL scheme S. We define an
instance of good(S) representing I as follows. The set of nodes consists of
the following:

e All o-values appearing in I, labeled by V;

e A node D, labeled D;

e For each class name P, a node P labeled P;

e For each relation name R, a node R labeled R.
The set of edges consists of the following:

1. For each tuple value v = [Aj:vy,..., Ag:vg], the edges (v, A;,v;) for
each i =1,...,k;

2. For each set value v, the edges (v, >,v") for each v' € v;
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For each oid o such that v(o) is defined, the edge (o, v, v(0));
For each constant d, the edge (D, >, d);
For each class name P, the edges (P, 3, 0) for each o € 7(P);

For each relation name R € R, the edges (R, >, v) for each v € p(R).

We note two useful facts about the above representation of schemes and
instances:

1.

The function T in the IQL schema, which assigns types to class and
relation names, is not represented in the corresponding GOOD schema.
However, given a type 7, there is a GOOD program FIND, that works
on the GOOD representation of any IQL instance, and marks all o-
values that are of type 7. More specifically, this program creates a
node 7 labeled 7 and adds edges (7,3,n) for each V-labeled node n
representing an o-value of type 7.

Note that when 7 is an “atomic type”, i.e., 7 = D or 7 = P with P
a class name, this information is already present in the instance. So
for atomic types 7 the program FIND, is trivial. The construction of
FIND, for more complex types 7 then is an obvious structural induc-
tion.

In the GOOD representation of an IQL instance, each o-value is repre-
sented by a unique node. However, in our simulation of IQL programs
by GOOD programs, it will be possible that intermediate results con-
tain different nodes representing the same o-value (this will not be the
case for atomic o-values, i.e., constants and oids). Such nodes will be
called value-equal.

More formally, let n and m be nodes representing o-values of type .
Value-equality with respect to 7 is defined inductively as follows:
(a) If 7is D or a class name, n and m are value-equal w.r.t. 7 if and
only if they are identical.

(b) If 7 is [Ay: 7y, ..., Ag: 7], n and m are value-equal w.r.t. 7 if for
each i = 1,...,k there are edges (n, A;,n;) and (m, A4;, m;) such
that n; and m; are value-equal w.r.t. 7;.
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(c) If 7 is {r'}, n and m are value-equal w.r.t. 7 if for each edge
(n,>,n') there is an edge (m, 5, m’) such that n" and m’ are value-
equal w.r.t. 7/, and vice versa, for each edge (m, >, m’) there is an
edge (n,>,n’') such that m’ and n' are value-equal w.r.t. 7.

(d) If 7 is 71 V 7, then n and m are value-equal w.r.t. 7 if for either
t=1or: =2, nand m are value-equal w.r.t. 7.

By structural induction, for every type 7 a GOOD program EQUAL_
can be constructed that adds edges labeled ‘equal’ between exactly
those pairs of nodes that are value-equal w.r.t. 7.

Valuation-domains. We now turn to the expression of the valuation-
domain of an IQL program in GOOD.

Since valuations are linked to rules, we represent each rule r as a node in
the instance by a sequence of node additions. The label of each r is r itself.

Valuations are represented as follows. Let r be a rule and let f be a
valuation of body(r). The pair (r, 0) is represented by a node n labeled ‘ Val’,
with for each variable z in body(r) an edge (n,z,f(x)), and with an edge
(n, rule, r). Here, each variable as well as ‘rule’ is used as a functional edge
label.

Let r be a rule, and let {xy,..., 2t} be the set of variables in body(r).
Let the declared type of z; be 7;, for each i = 1,..., k. The set of all pairs
(r,0) with 0 a valuation of {z1,...,x;} can be constructed as follows:

1. For each ¢ =1,...,k, apply FIND,;

2. Apply the node addition

rule
Val -
T L
v v
E E
m T

We have to delete those pairs (r, ) that are not in the valuation-domain.
For these pairs, # makes body(r) true, i.e., it makes each positive literal in
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body(r) true and makes each negated literal in body(r) false. Marking the
valuations that make a literal false amounts to marking all valuations and
then deleting those that make the literal true.

So let us see how to test whether a valuation # makes a literal of the form
t; = ty or t1(t2) true. This can be done by deriving representations n; and
n, of the o-values 0(¢;) and 6(t5), after which

e in the case t; = ty, we test whether n; and n, are value-equal w.r.t.
the appropriate type, and

e in the case t1(t3), we test whether there is a node n such that n is
value-equal to n, w.r.t. the type of £, and such that there is an edge
(ny, >, n).

These tests can be performed by an application of EQUAL_ for the appro-
priate types 7, followed by a simple pattern match.

The just-mentioned representation of §(¢) for some term ¢ can be derived
as follows. The representation will be a node, linked to (r,6) by an edge
labeled ¢. The derivation is by induction on ¢:

e [f ¢ is a variable z, the representation is already there.

e If # is a class name P, perform the node addition

P rule
\%4 > Val -

followed by the edge addition

P
v
‘9
=]
-V

e [f ¢t is a relation name R, do the same as in the previous item with R
substituted for P.

rule

o Val -

P
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e If ¢ is of the form Z, perform the node addition

v T - Val rule o

)

v

e If ¢ is of the form {t,...,%;}, derive the representations of #(¢;), ...

and 0(t;), and then perform the node addition

t, ...t
> {ta k) - Val rule o

followed by the edge additions

{ti,.... t} rule
1% > Val -
ti
>
v
foreach 1 =1,... k.
e If ¢ is of the form [A;:ty,..., Ag:ty], do the same as in the previous

item with [A;:ty,..., Ag:ty] substituted for {¢;,...,t} and, for each

t=1,...,k, A; substituted for >.

We can now assume that all pairs (r, §) for which 6 does not make body(r)

true have been deleted. To arrive at the valuation-domain, it remains to also
delete those pairs where f can be extended to the variables in head(r) so
as to make head(r) true. This can be achieved by the same techniques just

explained.
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Valuation-maps. We next turn to the computation in GOOD of a
valuation-map on the valuation-domain. This amounts to extending, for
each (r,0) in the valuation-domain, € to the variables in head(r) by creating
new oids.

By the previous paragraphs, we can assume that of all nodes (r,0) only
those in the valuation-domain remain. In addition to this, we also delete the
pairs (r, ) where head(r) is of the form Z = ¢, and v(6(x)) is already defined.
This can be tested by a simple pattern.

The above-mentioned extension of the valuations in the valuation-domain
is now done by the following node addition for each rule r and each variable
z in head(r) not in body(r):

rule
Val -

rule

v

The simulation. The application of a rule r, given that the valuation-
map has already been computed, can now be performed as follows. First,

as explained earlier, derive a representation of 6(t), where ¢ is the term in
head(r), for each (r,#). Then:

o If head(r) is of the form P(t) with P a class name, perform the edge
addition

v t - Val rule o

P

e If head(r) is of the form R(t) with R a relation name, do the same as
in the previous item with R substituted for P.

e If head(r) is of the form Z = ¢, perform the edge addition
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We are finally ready to describe the complete simulation of an IQL pro-
gram by a GOOD program:

compute the valuation-domain;

while valuation-domain not empty do
compute the valuation-map;
apply each rule;
undo ambiguous assignments;
delete auxiliary nodes and edges;
compute valuation-domain

od.

The clause ‘undo ambiguous assignments’ corresponds to a semantic check
that is built in in the inflationary fixpoint computation of IQL programs.
The check detects nodes having two or more outgoing edges labeled v and
deletes these edges. This can be easily programmed in GOOD.

Duplicate elimination. When applying the GOOD simulation P of an
IQL program I' on the GOOD representation of an IQL instance I, we obtain
a correct GOOD representation of I'(]), with the exception that value-equal
nodes will be present. It remains to perform a duplicate elimination, replac-
ing each equivalence class of value-equal nodes by a single representative.
This is accomplished by using the abstraction operation of GOOD (which
has not yet been used so far).

To perform duplicate elimination on all nodes representing o-values of
type 7, we execute the GOOD program DUPELIM, described in detail be-
low. The complete duplicate elimination process consists of an application
of DUPELIM, for each non-atomic type 7 occurring in the output schema of
the IQL program to be simulated, such that whenever some type 7" occurs
in another type 7, DUPELIM,. is performed before DUPELIM,.

The program DUPELIM;, first performs FIND,, then performs EQUAL_,
and then performs an abstraction, a series of edge additions, and a node
deletion in the order as shown in Figure 17.
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Figure 17: The final duplicate elimination step.
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This concludes the Appendix.
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