
On the Completeness of Object�Creating

Database Transformation Languages�

Jan Van den Bussche�

Dirk Van Gucht�

Marc Andries�

Marc Gyssens�

�A preliminary version of part of this paper was presented at the ��rd IEEE

Symposium on Foundations of Computer Science �Pittsburgh� October ������
�University of Limburg �LUC�� Department WNI� Universitaire Campus� B�

�	�
 Diepenbeek� Belgium� E�mail� vdbuss�luc�ac�be�
�Indiana University� Computer Science Department� Bloomington� IN 
�

	�


�
�� USA� E�mail� vgucht�cs�indiana�edu�
�University of Antwerp �UIA�� Department of Mathematics and Computer

Science�
�University of Limburg �LUC�� Department WNI� Universitaire Campus� B�

�	�
 Diepenbeek� Belgium� E�mail� gyssens�luc�ac�be�



Abstract

Object�oriented applications of database systems require database transfor�
mations involving non�standard functionalities such as set manipulation and
object creation� i�e�� the introduction of new domain elements� To deal with
these functionalities� Abiteboul and Kanellakis introduced the �determinate�
transformations as a generalization of the standard domain�preserving trans�
formations� The obvious extensions of complete standard database program�
ming languages� however� are not complete for the determinate transfor�
mations� To remedy this mismatch� the �constructive� transformations are
proposed� It is shown that the constructive transformations are precisely the
transformations that can be expressed in said extensions of complete stan�
dard languages� Thereto� a close correspondence between object creation
and the construction of hereditarily �nite sets is established�

A restricted version of the main completeness result for the case where
only list manipulations are involved is also presented�



� Introduction

The present paper is concerned with the expressive power of object�creating
database transformation languages� as they occur in object�oriented systems�
To enable the reader to put our results in the right perspective� we start with
a brief historical overview of the research on the expressive power of database
transformation languages�

The study of the expressive power of query languages was initiated by
Codd� who in a series of seminal papers ���� �	� �
� laid down the founda�
tions of modern database theory� Some of his major contributions were the
suggestions �i� to view a database as a relational structure� �ii� to view the
answer of a query to a relational database as another relation� and �iii� to use
�rst�order logic as a query language� which he called the relational calculus�
Codd quali�ed a query language as complete if its expressive power is at least
that of relational calculus or the equivalent relational algebra�

In an attempt to formulate a language�independent justi�cation for
Codd
s intuitive completeness notion� Bancilhon ��� and� independently�
Paredaens ���� showed the following� a relation R is the result of a rela�
tional calculus query applied to a database I if and only if �i� the active
domain of R is included in the domain of I� and �ii� every automorphism of
I is also an automorphism of R�

Unfortunately� the characterization of Bancilhon and Paredaens only
deals with individual input�output pairs� and does not say anything about
queries as a whole� For instance� it is a consequence of the result of Bancilhon
and Paredaens that for each binary relation there exists a calculus expression
computing its transitive closure� However� there is no single calculus expres�
sion computing the transitive closure for all binary relations ��� ��� ����

To remedy this de�ciency� Chandra and Harel ���� lifted the conditions
of Bancilhon and Paredaens from individual input�output pairs to the more
global level of queries as partial functions from databases to relations� The
consistency criterion that resulted from this approach is that a query must be
invariant under every permutation of the universe of possible domain values�
In other words� the query must preserve general database isomorphisms as
opposed to merely automorphisms�

Earlier� Aho and Ullman ��� argued that this consistency criterion
clearly captures the nature of computations typical to database applications�
database queries� while operating on the physical level of the database� must
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be de�nable at the logical level� The condition of Chandra and Harel became
known eventually as genericity ��	���

Chandra and Harel quali�ed a query language as complete if that language
expresses exactly all computable� generic� queries� Since they cannot express
transitive closure of a binary relation� the relational calculus and algebra are
not complete in the sense of Chandra and Harel�

A �rst step towards a complete language is adding an iterative construct
to the relational calculus or algebra� As this alone is not su�cient to get
beyond PSPACE� one additional mechanism is needed to achieve complete�
ness� Chandra and Harel themselves used unranked relation variables for
that purpose �����

Later� Abiteboul and Vianu �
� �� extended the framework of Chandra and
Harel to general deterministic database transformations� encompassing both
queries and updates� They showed that completeness can also be achieved
through the mechanism of object creation� i�e�� the introduction of new do�
main elements� In the deterministic languages of Abiteboul and Vianu� these
new objects can only appear in intermediate results of the computation and
not in the �nal result� as only domain�preserving transformations were under
consideration�

Recently� however� the explicit appearance of new objects in query and
update results� in conjunction with a more e�ective representation and ma�
nipulation of set values� turned out to be important to support object�
oriented applications of database systems �����

To deal with this new feature� a number of new data models and query
languages were proposed� Particularly in�uential was the work of Abiteboul
and Kanellakis �	�� They proposed the language IQL� which provides the
necessary mechanisms for object creation and the representation of set values�

In order to assess the expressiveness of IQL� Abiteboul and Kanellakis �rst
had to extend the notions of genericity and completeness to database trans�
formations allowing new domain elements in the result� This task proved
to be delicate� because the creation of new objects introduces a degree of
non�determinism into the formalism� Abiteboul and Kanellakis proposed the
notion of determinate transformation� a generic� non�deterministic transfor�
mation for which the various possible results of the transformation applied

�Interestingly� genericity is precisely the condition a query must satisfy to be �logical�
in the sense of Tarski ���	
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to a given input database are equal up to renaming of new domain elements�
Since IQL is a natural extension of the earlier languages of Abiteboul and

Vianu �
� ��� complete in the sense of Chandra and Harel� it was expected
at �rst that IQL would be complete for the determinate transformations�
Surprisingly� this is not the case� in a sense that can be made precise� IQL
lacks the ability to eliminate copies�

One could view this de�ciency as a weakness which should be remedied�
In this vein� Abiteboul and Kanellakis proposed to extend IQL with an ex�
tra construct for copy elimination� �Recently� Denningho� and Vianu ����
proposed an alternative extension with a more e�cient construct��

Most� if not all� transformations of practical interest can e�ectively be
expressed in IQL� however� and hence do not require copy elimination� This
empirical observation� in our opinion� justi�es the search for a subclass of
the determinate queries for which object�creating languages� such as IQL�
are complete without having to consider copy elimination� and this is the
subject of the present paper�

At this point� it must be emphasized that our results are general and can
also be applied to a broad class of other object�creating database languages
that have been investigated �e�g�� ���� �
� ��� ����� This generality stems from
the computational equivalence of these languages to FO � new �while� a
minimal language de�ned in this paper as the closure of �rst�order logic under
unbounded looping and associating new domain elements to tuples and sets
of values� and it is for this language that we prove our results� It goes without
saying� however� that FO� new�while does not capture all aspects of the
object�oriented database systems referred to above� We are� for instance�
not concerned with typing and inheritance� two essential features of object�
orientation� Rather� we see FO � new � while as a common abstraction
of the concrete languages considered only for the aspect of object�oriented
languages under consideration in this paper� that is the impact of object
creation on the expressiveness of a language� In an Appendix� we make this
claim precise� by concretely showing that IQL and FO � new �while have
the same expressive power�

A precursor to the present study is the work by Andries and Paredaens ���
in the context of another object�creating database transformation language�
called GOOD ����� Andries and Paredaens showed that a database J is the
output of a GOOD program applied to a database I if and only if there
exists an extension homomorphism from the group of automorphisms of I to
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the group of automorphisms of J � They argued that this condition could be
seen as the generalization of the criterion of Bancilhon and Paredaens to the
context of object creation� In the above�mentioned Appendix� we show that
also GOOD and FO � new � while have the same expressive power� and�
as a consequence� that the result of Andries and Paredaens is in fact a result
about FO � new �while�

In the present paper� we show the unexpected result that simply re�
quiring determinate transformations to satisfy the condition of Andries and
Paredaens�although a �local� condition de�ned on individual pairs of input
and output databases�yields the desired characterization of the transforma�
tions expressible in FO � new �while� We furthermore show that� in our
characterization� we can replace the requirement of Andries and Paredaens
by another condition� relating object creation to the construction of hered�
itarily �nite sets� over the original domain elements� With this alternative
condition� our characterization can be thought of as a completeness crite�
rion for constructive transformations� thus establishing its naturalness and
robustness� Finally� we present a restricted version of the main completeness
result for the case where only list manipulations are involved� This result
can be thought of as a completeness criterion for list�constructive transfor�
mations� It establishes a link between �pure� object�creation approaches and
approaches to treating new objects as lists built over the input objects� as
used in logic and functional programming �e�g�� ��� �
� �����

This paper is further organized as follows� In Section �� we introduce some
notation and terminology� give the necessary mathematical background to
capture de�nitions and results� review determinate object�creating database
transformations� and introduce the language FO�new�while� In Section ��
we introduce and motivate the constructive transformations� In Section 	�
we do the same for the list�constructive transformations� In Sections 
 and
�� we prove our completeness results� In Section �� we present a summary
and concluding remarks�

�Hereditarily �nite sets in the context of databases have already been studied by
Dahlhaus and Makowsky ��
	 and Hull and Su ���	
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Figure �� The database instance of Example ����

� Preliminaries

��� The data model

We �rst describe the data model that we use throughout the paper�
It is assumed that an in�nite collection R of relation names is given� To

each relation name R a natural number ��R� is associated� called the arity
of R� such that each number is the arity of in�nitely many relation names�
A database scheme is a �nite set of relation names�

It is furthermore assumed that a countably in�nite universe U of abstract
atomic values� called objects� is given�

An instance I of a database scheme S is a �nite relational structure
of type S� consisting of a �nite subset jIj of U� called the domain� and a
mapping on S� assigning to each relation name R of S a relation denoted RI

on jIj of rank ��R� �i�e�� a subset of the Cartesian product jIj��R��� called the
content of R� The set of all database instances of the scheme S is denoted
by inst�S��

Example ��� Consider the database scheme S � fR� Sg with ��R� � �
and ��S� � �� The structure I with jIj � fa� b� c� d� eg mapping R to the
ternary relation RI and S to the binary relation SI� both shown in Figure ��
is an instance over S�

��� Mathematical notions

In this paragraph� we review some key mathematical notions essential for a
good understanding of the remainder of this paper�
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Figure �� The database instance I � of Example ����

Consider a function mapping objects to objects� Over these objects�
structures such as sets� tuples� relations� and instances can be built� It is
common mathematical practice to extend functions de�ned on objects to
functions de�ned on structures built over these objects� by extending them
element� or component�wise� as is illustrated in Example ����

Example ��� Let a� b� c� d� e� and h be objects of U and let f� be the
function from fa� b� c� d� eg to fb� c� d� e� hg mapping a to d� b to b� c to h�
d to e� and e to c� The function f� can be element�wise extended to sets�
e�g�� f��fa� b� cg� � fd� b� eg� The function f� can be extended to tuples
component�wise� e�g�� f���a� c� e�� � �d� h� c�� The function f� can further
be extended to relations and database instances� e�g�� if I is the database
instance over S � fR� Sg in Example ���� then I � � f��I� is also an instance
over S� for which jI �j � f��jIj� � fd� b� h� e� cg � fb� c� d� e� hg and RI�

and
SI�

are as shown in Figure ��
As a second example� let f� be the function from fa� b� c� d� eg to itself

mapping a to b� b to c� c to a� d to e� and e to d� Applying the same principle
as above� one can readily verify that f��I� � I

Each time we use the principle explained above to lift a function de�ned
on objects to the level of structures� we say that we extend that function in
the standard way�

When we compare the instance I of Example ��� with the instance I � �
f��I� of Example ���� we see that� because the function f� is a bijection� they
are identical upon �renaming� of objects� Two such instances are called
isomorphic� and the mapping between objects establishing this relationship
is called an isomorphism� We de�ne these notions formally� as well as some
specializations needed further on in this paper�
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De�nition ��� Let J� and J� be two instances of the same scheme S� A
bijection f � jJ�j � jJ�j is called an isomorphism from J� to J� if f�J�� � J��
where f is extended to instances in the standard way�

For an arbitrary set of objects V � jJ�j� a V �isomorphism is an isomor�
phism from J� to J� that is the identity on V � For an arbitrary instance I�
an jIj�isomorphism is also called an I�isomorphism�

So� instance I of Example ��� and instance I � of Example ��� are iso�
morphic� and f� is an isomorphism from I to I �� In particular� it is a fbg�
isomorphism�

From De�nition ���� it follows that each instance is isomorphic to itself�
because the identity is an isomorphism from an instance to itself� However�
there may also be non�identical isomorphisms from an instance to itself� In
Example ���� we established that the bijection f� is an isomorphism from I

to itself� Such isomorphisms are called automorphisms�

De�nition ��� Let J be an instance� A bijection f � jJ j � jJ j� i�e�� a
permutation of jJ j� is called an automorphism of J if f is an isomorphism
from J to J�

So� the function f� of Example ��� is an automorphism of the instance I
of Example ����

Knowledge of the automorphisms of an instance is important� because this
provides information on the degree of symmetry present in that instance� The
set of all automorphisms of a given instance yields a mathematical structure�
which is called a group�

De�nition ��� Let G be set� let � be a total� binary operation on G� and let
n be in G� The structure �G� �� n� is a group if the following three properties
are satis�ed�

�� the operation � is associative� i�e�� for all x� y� and z in G� �x�y��z �
x � �y � z��

	� n is a neutral element with respect to �� i�e�� for all x in G� x � n � x

and n � x � x� and


� each element of G has an inverse with respect to n and �� i�e�� for all
x in G� there exists x�� in G such that x � x�� � n and x�� � x � n�
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The traditional example of a group is �Z��� ��� with Z the set of all
integers and � integer addition� Addition is a total binary operation on the
integers� is associative� and has � as a neutral element� �nally each integer x
has �x for its inverse�

Given an instance I� let Aut�I� denote the set of all automorphisms of I�
We observe the following important property of this set�

Proposition ��� Let I be an instance� and let idjIj denote the identity map�
ping on jIj� Let � denote composition of mappings� Then �Aut�I�� �� idjIj� is
a group�

Proof� The composition of mappings is associative and has the identity
mapping as a neutral element� For a bijection� one can consider the inverse
mapping� and this is an inverse for the original mapping with respect to
identity and composition� To see that �Aut�I�� �� idjIj� is a group� it now
su�ces to observe that �i� the composition of two automorphisms of I is
again an automorphism of I� �ii� an automorphism is a bijection� and �iii�
the inverse mapping of an automorphism of I is again an automorphism of
I�

Example ��� The automorphism group �Aut�I�� �� idjIj� of the instance I
in Example ��� consists of the following � permutations on jIj � fa� b� c� d� eg�
the identity mapping idjIj� the automorphism f� of Example ���� the automor�
phism f� mapping a to b� b to c� c to a� d to d� and e to e� the automorphism
f� mapping a to c� b to a� c to b� d to e� and e to d� the automorphism f�
mapping a to c� b to a� c to b� d to d and e to e� and the automorphism f�
mapping a to a� b to b� c to c� d tot e� and e to d� Notice that the composition
of two automorphisms of Aut�I� is again an automorphism of Aut�I�� e�g��
f� � f� � f�� and that the inverse of each automorphism of Aut�I� is again
an automorphism of Aut�I�� e�g�� f��

� � f��

Database transformations typically preserve symmetries present in the
input instance in a sense to be made precise later� Since the symmetries of
an instance are formally described by its automorphism group� we need a
tool to compare automorphism groups of di�erent instance� Such a tool can
be found in the general notion of group homomorphism�
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De�nition ��	 Let �G� �� n� and �H� �� m� be two groups� A total function
� � G� H is a group homomorphism from �G� �� n� to �H� �� m� if for all x
and y in G� ��x � y� � ��x� � ��y���

Intuitively� a group homomorphism is a mapping between the sets on
which the groups are built that is �compatible� with the group structure�

Example ��
 Let I be the instance of Example ���� Then Aut�I� �
fidjIj� f�� f�� f�� f�� f�g as in Example ���� Let I

� be the instance of Exam�
ple ���� It is readily seen that Aut�I �� � fidjI�j� g�� g�� g�� g�� g�g where g�
maps d to b� b to h� h to d� e to c� and c to e� g� maps d to b� b to h� h to d�
e to e� and c to c� g� maps d to h� b to d� h to b� e to c� and c to e� g� maps
d to h� b to d� h to b� e to e� and c to c� and g� maps d to d� b to b� h to h�
e to c� and c to e� The function � � Aut�I�� Aut�I �� mapping idjIj to idjI�j�
f� to g�� f� to g�� f� to g�� f� to g�� and f� to g� is a group homomorphism
from �Aut�I�� �� idjIj� to �Aut�I ��� �� idjI�j��

Notice that the group homomorphism � in Example ��� is a bijection� in
general� however� group homomorphisms need not be bijective�

We close this paragraph with a notational issue� Whenever in a group
�G� �� n� the operation � and the neutral element n are implicit from the
context� we denote that group simply as G� Thus� we speak about the
automorphism group Aut�I� of an instance I�

��� Database transformations

Next� we turn to database transformations� On the most general level�
database transformations were de�ned by Abiteboul and Vianu �
� as fol�
lows�

De�nition ���� Let Sin and Sout be two database schemes� A transforma�
tion from Sin to Sout is a recursively enumerable input�output relationship
Q � inst�Sin�� inst�Sout� which is invariant under every permutation of U�

�From this condition� it can be inferred that ��n� � m
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The requirement of invariance under permutations is called genericity� It can
be visualized by the following commuting diagram�

I
Q
�� J��yf ��yf

I �
Q
�� J �

The above diagram should be read as follows� The relationship Q is a trans�
formation from a scheme Sin to a scheme Sout� I and I � are instances of Sin�
and J and J � are instances of Sout� If �I� J� is an input�output pair in Q� and
if there exists a permutation f on U such that �for its standard extension�
f�I� � I � and f�J� � J �� then �I �� J �� is also an input�output pair in Q�
Thus� generic transformations treat isomorphic instances uniformly� if� e�g��
in the above diagram� all instances involve a binary relation symbol R� and
RJ happens to be the transitive closure of RI � then necessarily RJ �

is the
transitive closure of RI�

�
In general� database transformations as de�ned in De�nition ���� are

relationships� Database transformations that are functions� i�e�� relationships
such that to each input instance I there corresponds at most one output
instance� are called deterministic� and these are the transformations that are
encountered in traditional database applications� In this paper� however� we
consider transformations involving object creation� i�e�� the introduction of
new elements in the domain� and these are necessarily non�deterministic� by
the genericity requirement�

Indeed� assume Q is a transformation containing an input�output pair
�I� J� such that jJ j contains an object o not in jIj� Let o� be another object
not in jIj nor in jJ j� and consider the transposition f � �o o�� as a per�
mutation of U� After extending f in the standard way� let I � � f�I� and
J � � f�J�� Notice that I � � I �neither o nor o� occurs in I� and J � �� J �o
occurs in J but not in J � and o� occurs in J � but not in J�� By the genericity
requirement� �I �� J �� � �I� J �� must be an input�output pair in Q� Hence�
Q can yield at least the two di�erent outputs J and J � on input I� and is
therefore non�deterministic�

Nonetheless� the transformation Q can still have a �deterministic e�ect�
if the particular choice of a new object is the only degree of non�determinism
that is allowed� A comparable situation arises in programming languages
allowing dynamic allocation of memory cells� although the computation is
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Figure �� Application of transformation Q� of Example �����

essentially deterministic� the programmer does not know in advance which
cells will be allocated as they are chosen by the system�

The desire to study database transformations involving object creation�
but having a �deterministic e�ect�� have led Abiteboul and Kanellakis �	� to
introduce the term determinate transformation for a database transformation
in which any non�determinism solely stems from the particular choice of new
domain elements�

Example ���� Let G be a binary relation name� An instance I of fGg
can be interpreted as a directed graph with set of nodes jIj and set of
edges GI � Consider the transformation Q� from fGg to fGg de�ned as
follows� Q��I� J� if J is obtained from I by adding for each node x a new
node x� with an edge from x to x�� Formally� if jIj � fx�� � � � � xng� then
jJ j � fx�� � � � � xn� x��� � � � � x

�
ng and GJ � GI � f�xi� x�i� j i � �� � � � � ng� Fig�

ure � shows three instances I� J� and J� such that J� and J� are two possible
results of Q� applied to I �i�e�� Q��I� J�� and Q��I� J���� Transformation Q�

is determinate� for example� J� can be obtained from J� by renaming the
newly added nodes�

Now consider the non�deterministic transformation Q� from fGg to fGg
de�ned as follows� Q��I� J� if jJ j � jIj and GJ can be obtained from GI by
deleting an arbitrary edge out of every node that has outgoing edges� Figure 	
shows an instance I � and two possible results J� and J� of Q� applied to I

��
Transformation Q� is not determinate�

We now formally de�ne determinate transformations�

De�nition ���� A transformation Q is determinate if the following condi�
tions hold�

��
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�� if Q�I� J�� then jIj � jJ j�

	� if Q�I� J�� and Q�I� J��� then J� and J� are I�isomorphic �De�ni�
tion 	�
��

The second requirement of the above de�nition captures the intuition
illustrated in Example ����� the I�isomorphism that exists from J� to J� can
be interpreted as a �renaming� of the new domain elements introduced in
J�� Hence� in practice� for a determinate transformation� it su�ces to specify
only one result which is then representative for all possible results�

Also notice�

Proposition ���� If Q is a determinate transformation such that for each
pair of instances �I� J� with Q�I� J� we have jIj � jJ j� then Q is determinis�
tic�

Proof� If Q�I� J�� and Q�I� J�� then J� and J� are I�isomorphic� But jIj �
jJ�j � jJ�j and thus the only I�isomorphism from J� to J� is the identity�
Hence� J� � J��

The �rst requirement of De�nition ���� is of a purely technical nature� Al�
though it does not impose any restriction on deletion of tuples from relations�
it does not allow the removal of elements from the domain of an instance�
even if these elements no longer occur in the content of any relation name in
the output scheme� This technical restriction guarantees determinate trans�
formations to be closed under composition and allows simple de�nitions of a
number of important notions later on in this paper�

A transformation Q satisfying the second requirement of De�nition ����
but not the �rst can be �completed� to a determinate transformation as
follows� for each input�output pair �I� J�� augment jJ j with the elements of
jIj not yet occurring in jJ j� In the sequel� for simplicity of presentation� we
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will sometimes leave this completion implicit and treat such transformations
as if they were formally determinate�

��� The programming language FO � new �while

We next introduce a simple and general programming language for express�
ing determinate transformations� which we denote by FO � new � while�
The language is an extension of �rst�order logic with object creation� set rep�
resentation� and iteration� and will serve as an abstract formulation of the
languages IQL and GOOD mentioned in the Introduction and the various
other object�oriented database languages which are at most as expressive� A
formal proof that IQL� GOOD� and FO � new � while all have the same
expressive power is given in the Appendix�

Programs in our language are built from three types of statements and
while�loops� de�ned below�

A key construct in all three types of statements is the FO expression�
A k�ary FO expression � over a scheme S is an expression of the form
f�x�� � � � � xk� j �g with � a �rst�order logic formula over S whose free vari�
ables are among x�� � � � � xk� Given an instance I of S� � de�nes a k�ary
relation ��I� on jIj� as in the relational calculus�

Syntactically� an FO statement over a scheme S is an expression of the
form R �� �� with R a k�ary relation name and � a k�ary FO expression
over S� Semantically� this statement de�nes the determinate transformation
Q from S to S � fRg given by Q�I� J� if and only if RJ � ��I�� SJ � SI for
each S �� R in S� and jJ j � jIj�

Notice that the above de�nition�as well as similar subsequent
de�nitions�covers both the case where R is in S as the case where R is
not in S�

Syntactically� a tuple�new statement over a scheme S is an expression of
the form R �� tuple�new �� with R a k � ��ary relation name and � a k�
ary FO expression over S� Semantically� this statement de�nes a determinate
transformation Q from S to S � fRg as follows� Let I be an instance of S�
and let ��I� � ft�� � � � � tng� Then Q�I� J� if and only if

� RJ � �ft�g�fo�g��	 	 	� �ftng�fong�� where o�� � � � � on are n di�erent
objects not in jIj�

� SJ � SI for each S �� R in S� and
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� Illustration to Examples ���	 and ���
�

� jJ j � jIj � fo�� � � � � ong�

Tuple�new statements add new domain elements to an instance by a mecha�
nism similar to that employed by Abiteboul and Vianu in the language detDL
����

Example ���� Consider Figure 
� Let I be the instance of fRg shown with
jIj � fa� b� c� dg�

The instance of fR� Sg shown is the output of the statement

S �� tuple�new f�x� y� j R�x� y� 
 ��z��R�x� z� 
 z �� y�g

applied to I�

Syntactically� a set�new statement over a scheme S is an expression of
the form R �� set�new �� with R a binary relation name and � a binary
FO expression over S� Semantically� this statement de�nes a determinate
transformation Q from S to S � fRg as follows� Let I be an instance of S�
and let ��I� � f�x�� y��� � � � � �xn� yn�g� Then Q�I� J� if and only if

� RJ � f�x�� o��� � � � � �xn� on�g� where o�� � � � � on are objects not in jIj
satisfying oi � oj if and only if fy j �xi� y� � ��I�g � fy j �xj� y� �
��I�g�

� SJ � SI for each S �� R in S� and

� jJ j � jIj � fo�� � � � � ong�

�	



Set�new statements associate new domain values to sets of existing values
in a unique way� �Tuple�new statements are not su�cient for this purpose
������

Example ���� Consider Figure 
 and the instance I of fRg shown with
jIj � fa� b� c� dg�

The instance of fR� Tg shown is the output of the statement

T �� set�new R

applied to I� In the content of T � the object �

 represents the set fb� cg and
the object ��
 the set fdg�

Programs can now be built inductively from statements using composi�
tion ��� and while�loops of the form while � do P od� with � a �rst�order
sentence and P a program� Programs express database transformations in
the obvious manner� When interpreting programs as database transforma�
tions� we allow that relations used only for storing intermediate results of
the computation �as well as input relations that are no longer needed� are
ignored in the �nal result� Also� objects occurring only in such intermediate
relations may be ignored in the domain of the �nal result� To syntactically
ensure that programs express transformations in a unique way� one can addi�
tionally specify the output scheme� and a superset of the output scheme with
the names of the relations whose objects constitute the domain of the �nal
result� By structural induction� it is readily veri�ed that transformations
expressed by programs are generic� i�e�� invariant under permutations of U�
and determinate� In the sequel we will not distinguish between a program
and the transformation it expresses�

The de�nition of the programming language FO � new � while is now
complete� We conclude this section with a few examples of concrete pro�
grams�

Example ���� Transformation Q� of Example ���� can be expressed in
FO � new �while as follows�

G� �� tuple�new f�x� j trueg�
G �� G �G��

�




In the above program� G� is an auxiliary relation name which is ignored in
the �nal result�

Example ���� Consider the if�then construct if � then P �� with � a �rst�
order sentence and P a program� with the standard semantics� Assuming H
is a relation name not occurring in P � this transformation can be expressed
as follows�

H �� f� � j �g�
while H �� 
 do
H �� 
�
P

od�

Example ���	 Let R and S be binary relation names� The transformation
from fRg to fSg computing transitive closure can be expressed as follows�

Old �� 
�
S �� R�
while S �� Old do

Old �� S�
S �� S � f�x� y� j ��z��R�x� z� 
 S�z� y��g

od�

Example ���
 Zero�ary FO expressions as used in Example ���� can also be
used to introduce new objects �from scratch�� Indeed� the one�line program

R �� tuple�new f� � j trueg

yields a unary relation� containing one new object�

Example ���� For a symmetric� anti�re�exive binary relation G� i�e�� an
undirected graph without self�loops� the following program computes the
dual graph G� whose nodes are the edges of G and whose edges indicate
incidence in G�

if ��x��G�x� x� 
 ��x���y��G�x� y�� G�y� x�� then
E� �� tuple�new G�
E� �� f�z� x� j ��w��E��x� w� z� � E��w� x� z��g�

��



Reach �� tuple�new f�x� j trueg�
Head �� f�l� x� j Reach�x� l�g�
Tail �� tuple�new f�l� j ��x�Head�l� x�g�
Member �� Head �
Next �� tuple�new f�l� t� y� j Tail�l� t� 
 ��x��Head�l� x� 
G�x� y� 
 y �� x�g�
while Next �� 
 do
Head �� Head � f�l�� y� j ��l���l��Next�l� l�� y� l��g�
Tail �� Tail � f�l�� l�� j ��l���y�Next�l� l�� y� l��g�
Member �� Member � f�l� y� j ��l����l��Next�l� l�� y� l��g�
Next �� tuple�new f�l� l�� z� j ��l����y��Next�l� l�� y� l��


G�y� z� 
 �Member�l� z��g
od�

Figure �� Program of Example �����

E� �� set�new E��
E� �� f�e� x� j ��z��E��z� e� 
 E��z� x��g�
G� �� f�e� f� j ��x��E��e� x� 
 E��f� x��g

��

Note the use of set�new to create a unique object for each undirected edge�

Example ���� Let G be a binary relation� viewed as a directed graph� in
which every node has out�degree at most one� We wish to compute the
function Reach that associates to each node x the list of nodes reachable
from x in the order they appear on the path leaving x�

Lists are represented in the well�known way ��� as objects on which Head
and Tail functions are de�ned� �Empty lists have no head or tail�� The
functions Reach� Head � and Tail are stored in the form of binary relations�

The above�described transformation from fGg to fReach�Head �Tailg can
be expressed by the program shown in Figure �� In Figure �� the instance
of fReach�Head �Tailg shown is the result of applying this program to the
instance I of fGg shown with jIj � fa� b� c� d� eg�
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Figure �� Application of the program in Figure ��

� Constructive transformations

Although all deterministic transformations are expressible in FO � new �
while �
� ��� there are determinate transformations �involving object cre�
ation� not expressible in FO�new�while� due to the absence of a mecha�
nism to eliminate copies �see the Introduction�� All non�expressible transfor�
mations known are somewhat arti�cial� however� We will argue in this paper
that all non�expressible transformations are indeed �non�constructive�� in a
sense which we will make precise in this section�

Our departure point is a result by Bancilhon ��� and� independently�
Paredaens ����� giving a necessary and su�cient condition for an instance
J to be computable from an instance I by a sequence of FO statements�
This condition is stated in terms of the automorphisms of I and J and their
relationships�

Proposition ��� ��� ��� Let I and J be instances with jIj � jJ j� There
exists a sequence P of FO statements such that P �I� J�� if and only if
Aut�I� � Aut�J��
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Figure �� Illustration to Example ����

Proposition ��� is known as the BP�completeness of FO �����

Example ��� Let R and S be binary relation names� Let I be the instance
of fRg and let J be the instance of fSg for which jIj � jJ j � fa� b� c� d� e� hg
and RI and SJ are as shown in Figure �� Then Aut�I� � fidjIj� f�g with f�
swapping a and d� b and e� and c and g� and Aut�J� � fidjJj� f�� f�� f�� f�� f�g
with f� �xing a and d and swapping b and c and e and g� f� �xing a� b� c�
and d and swapping e and g� f� �xing a� d� e� and g and swapping b and c�
and f� swapping a and d� b and g� and c and e� Thus� Aut�I� � Aut�J��
and by Proposition ���� there is a sequence P of FO statements such that
P �I� J�� One such sequence consists of the single statement

S �� f�x� y� j R�x� y� � ��z��R�x� z� 
 R�z� y��g�

Andries and Paredaens ��� recently generalized the BP�completeness to
the context of object creation� where input�output pairs of instances �I� J�
with jIj � jJ j are considered� Thereto� they de�ned the following�

De�nition ��� An extension mapping from I to J is a mapping � �
Aut�I�� Aut�J� such that for each f � Aut�I�� ��f� is an extension of f �
An extension homomorphism is an extension mapping that is also a group
homomorphism�

��



Observe that an extension mapping is injective� Hence� an extension homo�
morphism from I to J faithfully embeds Aut�I� in Aut�J� and is therefore the
natural generalization of the inclusion Aut�I� � Aut�J� to the case where
jJ j contains� but is not necessarily equal to� jIj� Using the formalism of
the GOOD transformation language� Andries and Paredaens obtained the
following generalization of Proposition ����

Proposition ��� ��� Let I and J be instances with jIj � jJ j� There exists
an FO�new�while program P such that P �I� J�� if and only if there exists
an extension homomorphism from I to J�

�In the Appendix� it is shown formally that GOOD and FO� new �while

have the same expressive power��

Example ��� Consider the transformation Q� of Example ���� and its
input�output pair �I� J�� shown in Figure �� In Example ����� we showed
that Q� can be expressed in FO � new �while� Thus� by Proposition ��	�
there must exist an extension homomorphism from Aut�I� to Aut�J��� which
we are going to show explicitly�

It is readily ver�ed that Aut�I� � fidjIj� f�� f�g� with f� the automorphism
of I mapping a to b� b to c� and c to a� and f� the automorphism of I mapping
a to c� b to a� and c to b� Similarly� Aut�J�� � fidjJ�j� g�� g�g� with g� the
automorphism of J� mapping a to b� b to c� c to a� � to �� � to �� and �
to �� and g� the automorphism of J� mapping a to c� b to a� c to b� � to
�� � to �� and � to �� The restrictions of idjJ�j� g�� and g� to jIj are idjIj�
f�� and f�� respectively� Therefore� idjJ�j� g�� and g� are extensions of idjIj�
f�� and f�� respectively� Thus� the function � � Aut�I� � Aut�J�� mapping
idjIj to idjJ�j� f� to g�� and f� to g� is an extension mapping� It remains to
show that � is a group homomorphism� To do this we must show that �
is �compatible� with composition of automorphisms� The only non�trivial
compositions of automorphisms of I to be considered are f� � f� and f� � f��
We have ��f� � f�� � ��idjIj� � idjJ�j � g� � g� � ��f�� ���f��� and the same
with the indices � and � reversed� Thus � is a group homomorphism�

In order for the reader to gain a better understanding of Proposition ��	�
we need to point out that an input�output pair of a determinate transforma�
tion always admits an extension mapping� To see this� let Q be a determinate
transformation� and assume Q�I� J�� We can de�ne an extension mapping �
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Figure �� An input�output pair of the transformation Q of Example ����

from I to J as follows� Let f � Aut�I�� We can extend f to a permutation
of the whole of U by making it the identity outside jIj� By the genericity of
Q� Q�f�I�� f�J��� By the determinacy of Q� there exists an I�isomorphism
g from f�J� to J � Then ��f� �� g � f � Aut�J� is an extension of f �

The di�cult part of the proof of Proposition ��	 �and� for that matter�
also of Proposition ���� is the if�part� The only�if part is straightforward to
prove� and can be used to show that not all determinate transformations are
expressible by FO � new �while programs� Indeed� while all determinate
transformations admit an extension mapping for every input�output pair�
they do not necessarily admit an extension homomorphism� as is shown by
the following adaptation of an example by Abiteboul ����

Example ��� Let R be a unary relation name and S and T be binary rela�
tion names� We de�ne a determinate transformation Q from fRg to fS� Tg
as follows� Consider Figure �� Let I be the instance of fRg with RI as
shown� Then Q�I� J� if and only if SJ and T J are as shown with b�� b�� b��
and b� four new objects not in jIj� and jJ j � jIj � fb�� b�� b�� b�g� All other
input�output pairs of Q are of the form �f�I�� f�J�� with f a permutation
of U�

There exist several extension mappings from I to J � Each such extension
mapping� however� extends the transposition of a� and a� �of order �� to a
cyclic permutation of fb�� � � � � b�g �of order 	��� Hence� since homomorphisms
cannot increase the order� there is no extension homomorphism from I to J
and� as a consequence� Q cannot be expressed by an FO � new � while

program�

�The order of an element x in a �nite group �G� �� n� is the least non�zero natural
number p such that x � � � � � x �p times� equals the neutral element n
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The example of a determinate transformation not expressible in FO �
new�while given in Example ��� is very arti�cial� This raises the question of
understanding the class of transformations expressible in FO�new�while�
Any reasonable class of transformations will certainly have to include all
conventional deterministic transformations� As observed in Proposition �����
these are precisely the determinate transformations that do not create new
objects� Hence� we must �nd a natural restriction on object creation� i�e��
impose conditions on the new domain elements occurring in the output of a
determinate transformation�

To �nd such a condition� we have followed Dahlhaus and Makowsky�
who studied the semantics of high�level programming languages based on
�hereditarily �nite sets� ���� ���� In ���� page 
�� they argued convincingly
as follows�

As much as set theory is rich enough to model virtually all objects
encountered in mathematics� the cumulative hierarchy of heredi�
tarily �nite sets is rich enough to model all �nite objects one may
encounter in computer science� �� � � � the foundational question
of what it means to compute new objects from a given �nite set
of objects can be adequately settled in this model�

Hereditarily �nite sets with �ur�elements� are well�known �e�g�� ������ We
incorporate them in our framework as follows�

De�nition ��� Let D be a subset of U� The set HF �D� of hereditarily
�nite sets with ur�elements inD is the smallest set such that �i� D � HF �D��
and �ii� each �nite subset of HF �D� is also an element of HF �D��

For example� if D � fa� b� cg� then a� fag� fa� b� cg� 
� f
g� and
fa� b� fb� cg� fa� fcggg are all in the in�nite set HF �D��

The main thesis put forward in this paper is that the �natural� deter�
minate transformations are precisely those for which the new domain ele�
ments in the output can alternatively be viewed as hereditarily �nite sets
constructed over the domain elements of the input� We will call such trans�
formations constructive� To de�ne constructive transformations formally� we
�rst need to de�ne HF�instances and HF�transformations�

An HF�instance I is de�ned as an ordinary instance in Section �� the
only di�erence being that the domain jIj is a subset of HF �U� instead of
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Figure ��� Example of an HF�instance�

U� Relations and tuples on HF �U� are called HF�relations and HF�tuples�
respectively� In contrast� ordinary instances� relations� and tuples will some�
times be called �at� The set of all HF�instances of a scheme S is denoted by
HF�inst�S�� A simple example of an HF�instance I of the scheme fRg� with
R binary� is shown in Figure ��� where a� b� and c are elements of U�

De�nition ��	 Let Sin and Sout be two schemes� An HF�transformation
from Sin to Sout is a partial�recursive function Q � inst�Sin�� HF�inst�Sout�
which �i� �viewed as a binary relationship� is invariant under every permu�
tation of U �genericity� and �ii� satis�es jQ�I�j � HF �jIj� whenever Q is
de�ned on I�

We also need the important notion of �isomorphic representation��

De�nition ��
 Let Q be a transformation from Sin to Sout� and let Q� be
a HF�transformation from Sin to Sout� such that for each pair of instances
�I� J�� Q�I� J� if and only if �i� Q��I� is de�ned� and �ii� J is I�isomorphic
to Q��I��� Then Q is called an isomorphic representation of Q��

If Q is an isomorphic representation of Q�� we also say for any output pair
�I� J� of Q that J is an isomorphic representation of Q��I��

The proof of the following proposition is trivial�

Proposition ���� For each HF�transformation Q� there is a unique trans�
formation Q that isomorphically represents Q��

�Isomorphisms from ordinary instances to HF�instances are de�ned in the same way as
isomorphisms from ordinary instances to ordinary instances
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Hence� we can speak about the isomorphic representation of an HF�
transformation�

We now de�ne the constructive transformations formally as follows�

De�nition ���� A transformation is called constructive if it is the isomor�
phic representation of some HF�transformation�

The following property of constructive transformations� guaranteeing that
constructivity implies both determinacy and the condition of Andries and
Paredaens� is a �rst indication of the soundness of the above de�nition�

Proposition ���� Let Q be a constructive transformation� Then �i� Q is
determinate� and �ii� for each pair of instances �I� J� with Q�I� J�� there
exists an extension homomorphism from I to J�

Proof� Let Q� be an HF�transformation of which Q is the isomorphic rep�
resentation� We �rst show that Q is determinate� Thereto� assume Q�I� J��
and Q�I� J��� Since J� and J� are isomorphic representations of Q

��I�� there
are I�isomorphisms f� and f� from J� and J� to Q

��I�� respectively� Hence
f��
� � f� is an I�isomorphism from J� to J�� as required�
To show that Q admits an extension homomorphism for every input�

output pair� assume Q�I� J�� Since J is an isomorphic representation of
Q��I�� there exists an I�isomorphism g from J to Q��I�� Now de�ne � �
Aut�I� � Aut�J� � f �� g�� � f � g� where f is extended to HF �jIj� in the
standard way� To see that � is well�de�ned� let f � Aut�I�� Then

��f��J� � g�� � f � g�J� � g���f�Q��I��� �de�nition of g�
� g���Q��f�I��� �genericity of Q��
� g���Q��I�� �f � Aut�I��
� J�

whence ��f� � Aut�J�� Since g is the identity on jIj� � is also an extension
mapping� Finally� it is readily veri�ed that � is a group homomorphism�

��f � h� � g�� � f � h � g

� g�� � f � g � g�� � h � g

� ��f� � ��h��

Hence� � is an extension homomorphism� as required�
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The transformation Q not expressible in FO � new � while shown in
Example ��� does not satisfy the Andries�Paredaens condition and thus is
not constructive�

We will next show that satisfaction of the Andries�Paredaens condition
for each input�output pair is not only necessary� but also su�cient for deter�
minate transformations to be constructive�

Theorem ���� Let Q be a transformation� Then Q is constructive if and
only if �i� Q is determinate� and �ii� for each pair of instances �I� J� with
Q�I� J�� there exists an extension homomorphism from I to J�

Proof� Since the only�if implication is given by Proposition ����� it su�ces
to show the if�implication�

For each pair of instances �I� J� with Q�I� J� there exists a program P

in FO � new �while with P �I� J� �Proposition ��	�� Let PI�J be the �rst
such program in some standard recursive enumeration of all programs� By
the genericity of FO � new �while programs� we have

PI�J � Pf�I��f�J� for each permutation f of U� ���

The execution of PI�J on I traces a �nite sequence of FO statements�
tuple�new statements and set�new statements� Let 
I�J be the length of that
sequence� For an integer k� � � k � 
I�J � let Ik be the intermediate result of
the program PI�J applied on I after execution of the k�th statement in the
sequence� Notice that I� � I� I�I�J � J � and jIj � jI�j � jI�j � 	 	 	 � jI�I�J j �
jJ j� We construct an injective mapping fI�J � jJ j � HF �jIj� recursively as
follows�

Let o � jJ j� If o � jI�j � jIj� we de�ne fI�J�o� �� o� Now assume that
for some k� � � k � 
I�J � fI�J has been de�ned on all objects in jIk��j� If
o � jIkj � jIk��j� there are two possibilities�

�� The instance Ik results from Ik�� by a tuple�new statement of the form
R �� tuple�new �� Thus o appears in RIk as a new object associated
to a tuple t in ��Ik���� We de�ne

fI�J�o� �� pair
�
tuple�fI�J�t��� number�k�

�
�

In the right�hand side formula�

�




� pair is the well�known Kuratowski encoding of ordered pairs as
hereditarily �nite sets de�ned by pair�x� y� �� ffxg� fx� ygg�

� tuple is the well�known encoding of �nite sequences �i�e�� tuples�
as hereditarily �nite sets de�ned by

tuple� � � 
�
tuple�x� � fxg�

tuple�x�� � � � � xn� � pair�x�� tuple�x�� � � � � xn���� for n � ��

� number is the encoding of natural numbers as hereditarily �nite
sets in HF �
� de�ned by number��� � 
 and number�n � �� �
fnumber�n�g�

�� The instance Ik results from Ik�� by a set�new statement of the form
R �� set�new �� Thus ��Ik��� is a binary relation� which can be
viewed as the set�valued function

s � x �� fy j �x� y� � ��Ik���g�

There is an x such that the pair �x� o� is in RIk � We de�ne

fI�J�o� �� pair
�
fI�J�s�x��� number�k�

�
�

By the very de�nition of the set�new statement� the set s�x� is inde�
pendent of the particular choice of x� Hence� fI�J�o� is well�de�ned�

Notice that fI�J is the identity on jIj�
We now de�ne the HF�transformation Q�� Let I be an instance� If there

is an instance J such that Q�I� J�� then we de�ne Q��I� �� fI�J�J�� By the
determinacy of Q and Property ���� the HF�instance fI�J�J� does not depend
on the particular choice of J � If there is no instance J such that Q�I� J�� then
Q� is unde�ned on I� By Property ���� Q� is invariant under permutations
of U� Moreover� Q� is partial�recursive� To see this� let I be an instance�
Since Q is recursively enumerable� it is possible to �nd an instance J with
Q�I� J� if such an instance exists� Next� all FO � new � while programs
are applied to I in a dove�tailed fashion until one stops and yields J �� by

�Since in practice only one� representative� instance is computed� it must be veri�ed
that the result found is I�isomorphic to J 
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de�nition� this program is PI�J � Since PI�J can be e�ectively computed� fI�J
is recursive� Consequently� Q��I� � fI�J�J� can be computed� Thus Q

� is an
HF�transformation�

Obviously� Q is the isomorphic representation of Q�� Therefore� Q is
constructive�

Theorem ���� thus gives an intrinsic characterization of the class of con�
structive transformations� As announced in the Introduction� we will show
later that the transformations expressible in FO�new�while are precisely
the constructive transformations� Theorem ���� therefore also shows that
the characterization for the existence of a constructive transformation on the
local level of individual input�output pairs� given by the existence of an ex�
tension homomorphism �Proposition ��	�� can be �lifted� to the global level
of transformations�

� List�constructive transformations

In the previous section� we proposed a general notion of constructive object
creation in terms of hereditarily �nite sets� In practice however� data struc�
tures are often implemented using lists rather than sets� This is for example
the case in functional programming ���� as well as in logic programming ����
where �rst�order term structures are used for this purpose� Approaches to
object creation as �rst�order term construction have been considered in the
literature ��
� ����

In order to characterize the expressive power of languages that base object
creation on lists rather than sets� we propose the notion of list�constructive
transformation in this section� The development of this notion is analogous
to the development of constructive transformation in the previous section� As
we will see� list�constructive transformations are a special case of constructive
transformations�

We �rst de�ne hereditarily �nite lists�

De�nition ��� Let D be a subset ofU� The set HFl�D� of hereditarily �nite
lists with ur�elements in D is the smallest set such that �i� D � HFl�D��
and �ii� each �nite list ���� � � � � �n� of elements of HFl�D� is also an element
of HFl�D��
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Lists� viewed as tuples of the appropriate rank� can be interpreted as hered�
itarily �nite sets� by the Kuratowski encoding used in the proof of Theo�
rem ����� Therefore hereditarily �nite lists are a special case of hereditarily
�nite sets�

We denote by FO� tuple�new�while the sublanguage of FO�new�
while consisting of those programs that do not use set�new statements�
Andries and Paredaens proved the following analog of Proposition ��	 for
FO � tuple�new �while�

Proposition ��� ��� Let I and J be instances with jIj � jJ j� There exists
an FO � tuple�new � while program P with P �I� J�� if and only if there
exists �a� an extension homomorphism � from I to J and �b� an injective
mapping g � jJ j � HFl�jIj� which is the identity on jIj satisfying

g���f��o�� � f�g�o��

for each f in Aut�I� and each o in jJ j� where f is extended to HFl�jIj� in
the standard way�

In Example ���� Proposition ��	 was used to show that there are deter�
minate transformations not expressible in FO � new � while� Similarly�
Proposition 	�� can be used to show that there are transformations express�
ible in FO � new �while not expressible in FO � tuple�new �while�

Example ��� Let R be a binary relation name� and consider the transfor�
mation Q from the empty database scheme 
 to fRg de�ned as follows� Let
I be an instance of 
 �whence the only informative component of I is its
domain jIj�� Associate to each set p of two elements of jIj a unique new
object op not in jIj� Let P be the set of all these new objects� Then Q�I� J�
if jJ j � jIj � P and RJ � f�x� op� j x � p and p � Pg� A concrete pair �I� J�
satisfying Q�I� J� is shown in Figure ��� There exists a unique extension
homomorphism � from I to J � however� there is no injective mapping g from
jJ j into HFl�jIj� satisfying Proposition 	�� �for a proof see ������ Hence� Q
is not expressible in FO � tuple�new � while� Note that Q is expressible
in FO � new �while by the following program�

R� �� tuple�new f�x� y� j x �� yg�
R� �� f�z� x� j ��y��R��x� y� z� � R��y� x� z��g�
R� �� set�new f�z� x� j R��z� x�g�
R �� f�x� o� j ��z��R��z� x� 
R��z� o��g�
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Figure ��� Example of the unordered pair transformation of Example 	���

jIj
a

�a� a�
�b�

�b� �c��
�a� b� c�

RI
�

a �b� �c��
�b� �a� b� c�

RI
�

a �b� �c��
�b� �c� b� a�

Figure ��� Example of an HFl�instance�

The above example also shows that the set�new operator is a primitive
construct in the language FO�new�while and cannot be simulated using
the other constructs� as already mentioned in Section �� For a detailed study
of the expressive power of set�new we refer to �����

In analogy with the previous section� we will de�ne list�constructive trans�
formations as transformations for which the new domain elements in the
output can be viewed as hereditarily �nite lists constructed over the domain
elements of the input� Thereto� we need to de�ne HFl�instances and HFl�
transformations �rst�

An HFl�instance I is de�ned as an HF�instance� the only di�erence being
that the domain jIj is a subset of HFl�U� instead of HF �U�� Relations and
tuples on HFl�U� are called HFl�relations and HFl�tuples� respectively� The
set of all HFl�instances of a scheme S is denoted by HFl�inst�S�� A simple
example of an HFl�instance I of the scheme fR�� R�g� with R� and R� binary�
is shown in Figure ��� where a� b� and c are elements of U� Note that RI

�

and RI
� are di�erent�
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De�nition ��� Let Sin and Sout be two schemes� An HFl�transformation
from Sin to Sout is a partial recursive function Q � inst�Sin�� HFl�inst�Sout�
which �i� �viewed as a binary relationship� is invariant under every permu�
tation of U and �ii� satis�es jQ�I�j � HFl�jIj� whenever Q is de�ned on
I�

We can now de�ne list�constructive transformations formally as follows�

De�nition ��� A transformation Q from Sin to Sout is called list�
constructive if there exists an HFl�transformation Q� from Sin to Sout such
that� for each pair of instances �I� J�� Q�I� J� if and only if �i� Q��I� is
de�ned� and �ii� J is I�isomorphic to Q��I��

As with constructive transformations� we will callQ the isomorphic represen�
tation of Q�� and for any input�output pair �I� J� of Q� we will call instance
J an isomorphic representation of HFl�instance Q��I��

List�constructive transformations are a special case of constructive trans�
formations� In analogy with Theorem ����� we have the following intrinsic
characterization of list�constructive transformations�

Theorem ��� Let Q be a transformation� Then Q is list�constructive if and
only if �i� Q is determinate� and �ii� for each pair of instances �I� J� with
Q�I� J� there exists �a� an extension homomorphism � from I to J and �b�
an injective mapping g � jJ j � HFl�jIj� which is the identity on jIj satisfying

g���f��o�� � f�g�o��

for each f in Aut�I� and each o in jJ j� where f is extended to HFl�jIj� in
the standard way�

Proof� Only if� Since Q is list�constructive and therefore constructive� it
follows from Proposition ���� that Q is determinate� Let Q� be an HFl�
transformation isomorphically represented by Q� Assume Q�I� J�� Since J is
an isomorphic representation of Q��I�� there exists an I�isomorphism g from
J to Q��I�� Since jQ��I�j � HFl�jIj�� g is an injective mapping from jJ j into
HFl�jIj�� As in the proof of Proposition ����� � � Aut�I� � Aut�J� � f ��
g�� � f � g can be shown to be an extension homomorphism from I to J � By
construction� g���f��o�� � f�g�o�� for each f � Aut�I� and each o � jJ j�
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If� The proof of this implication is analogous to the proof of the if�
implication of Theorem ����� For each pair of instances �I� J� with Q�I� J�
there exists a program P in FO� tuple�new�while with P �I� J� �Propo�
sition 	���� Let PI�J be the �rst such program in some standard recursive
enumeration of all programs� By the genericity of FO� tuple�new�while
programs� we have

PI�J � Pf�I��f�J�� for each permutation f of U� ���

The execution of PI�J on I traces a �nite sequence of FO statements and
tuple�new statements� Let 
I�J be the length of that sequence� For an integer
k� � � k � 
I�J � let Ik be the intermediate result of the program PI�J applied
on I after the execution of the k�the statement in the sequence� Notice that
I� � I� I�I�J � J � and jIj � jI�j � jI�j � 	 	 	 � jI�I�J j � jJ j� We construct an
injective mapping fI�J � jJ j � HFl�jIj� recursively as follows�

Let o � jJ j� If o � jI�j � jIj� we de�ne fI�J�o� �� o� Now assume that
for some k� � � k � 
I�J � fI�J has been de�ned on all objects in jIk��j� If
o � jIkj � jIk��j� then Ik results from Ik�� by a tuple�new statement of the
form R �� tuple�new �� Thus o appears in RIk as a new object associated
to a tuple t in ��Ik���� We de�ne

fI�J�o� ��
�
fI�J�t�� number�k�

�
�

where number is the encoding of natural numbers as hereditarily �nite lists
in HFl�
� de�ned by number��� � � � and number�n� �� � �number�n���

Notice that fI�J is the identity on jIj�
We now de�ne the HFl�transformation Q�� Let I be an instance� If

there is an instance J such that Q�I� J�� then we de�ne Q��I� �� fI�J�J�� If
there is no instance J such that Q�I� J�� then Q� is unde�ned on I� By an
argumentation analogous to the one used in the proof of Theorem ����� we
can show that Q� is a well�de�ned HFl�transformation that is isomorphically
represented by Q� whence Q is list�constructive�

Since we will show in the next section that the transformations expressible
in FO � tuple�new �while are precisely the list�constructive transforma�
tions� the above theorem shows that Proposition 	�� can be �lifted� from the
local level of individual input�output pairs to the global level of transforma�
tions�
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� Completeness results for list�constructive

transformations

In this section� we prove that the language FO � tuple�new � while

expresses precisely the list�constructive transformations� This result� al�
ready important in its own right� will enable us to prove that the language
FO � new �while expresses precisely the constructive transformations�

To simplify the presentation of rather complicated programs that will
be discussed in this section� we will occasionally decompose programs in
subprograms �procedures� with the usual Pascal�like sytax and semantics�

We prove the completeness of FO � tuple�new � while for the list�
constructive transformations by a reduction to the seminal completeness re�
sult of Chandra and Harel ����� Chandra and Harel studied the computation
of unranked databases�

An unranked instance I of a database scheme S is de�ned as an ordinary
instance� the only di�erence being that the arities ��R� of the relation names
R in S are ignored� So� for each R� RI is a relation on jIj not necessarily of
rank ��R�� the rank of the content of R can vary from instance to instance�
The set of all unranked instances of a scheme S is denoted by UnR�inst�S��

The computation of unranked databases from ordinary ones is formalized
by the notion of unranked transformation�

De�nition ��� Let Sin and Sout be two schemes� An unranked transfor�
mation from Sin to Sout is a partial�recursive function Q � inst�Sin� �
UnR�inst�Sout� which �i� �viewed as a binary relationship� is invariant under
every permutation of U and �ii� satis�es jQ�I�j � jIj whenever Q is de�ned
on I�

Example ��� For arbitrary relation names R and T � consider the function
Q � inst�fRg�� UnR�inst�fTg� de�ned by

TQ�I� � RI � 	 	 	 �RI� �z �
�n times�

�

where n is the cardinality of RI � The function Q is an unranked transfor�
mation from fRg to fTg� The rank of the content of T in Q�I� depends on
I�
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Chandra and Harel also introduced a powerful language for expressing
unranked transformations� called QL� and described below�	

Let S be a scheme� A QL program over S is built from statements over
S using composition and while�loops� A statement over S is of the form
X �� 
 � with X a variable and 
 a term over S� Terms over S are de�ned
as follows� ��� D is a term� �	� E is a term� �
� a relation name of S is a
term� and ��� if Y and Z are variables� then Y � ��Y �� ��Y �� e�Y �� �Y � Z��
and �Y �Z� are terms� While�loops� �nally� are of the form while X � 
 do
P od with X a variable and P a program�

Semantically� a statement X �� 
 assigns to the variable X the relation
that is the interpretation of the term 
 � More precisely� given an instance I
of S�

��� the term D is interpreted as jIj viewed as a unary relation�

��� the term E is interpreted as the binary equality relation on jIj�

��� a relation name R is interpreted as RI � and

�	� if relations r and s are assigned to variables Y and Z� respectively� then

� Y is interpreted as r�

� ��Y � as ��r� �� f�x�� � � � � xk� j �x� � jIj � �x�� x�� � � � � xk� � rg�

� ��Y � as ��r� �� r � jIj�

� e�Y � as e�r� �� f�x�� � � � � xk��� xk� xk��� j �x�� � � � � xk� � rg�

� �Y � Z� as r � s� and

� �Y � Z� as r � s�

Note that variables are untyped in that they can take relations of any rank
as values� The semantics of a QL program over S is now obvious� The pro�
gram expresses an unranked transformation from S to some output scheme
Sout by designating for each relation name R in Sout an associated output
variable XR�

Chandra and Harel proved the following seminal completeness result�

�For technical convenience� we replaced the complement operator by the di�erence
operator� which does not alter the expressiveness of the language
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Lemma ��� ���� QL expresses precisely the unranked transformations�

In order to be able to use the above lemma to prove that FO � tuple�

new�while expresses precisely all list�constructive transformations� we must
establish a link between the setting of Chandra and Harel and ours� Thereto�
we make three basic observations�

�� A relation is a set of tuples of equal length�

�� A tuple can alternatively be seen as a list�

�� Let J be an instance of a scheme containing the binary relation names
Head and Tail � For any unary relation name V also in the scheme�
we can interpret the set V J as a collection of lists� using the binary
relations HeadJ and TailJ as in Example �����

These observations lead us to de�ne�

De�nition ��� Let S be a scheme and let I be an unranked instance of S�
Let J be an ordinary instance of the scheme list�S� �� fHead �Tailg � f �R j
R � Sg� with �� �R� � � for all R � S� We call J a list representation of I if
jJ j � jIj and for each R � S� the lists of �RJ are precisely the tuples of RI�

De�nition ��� Let Q be an unranked transformation from Sin to Sout� An
ordinary transformation Q� from Sin to list�Sout� is called a list representation
of Q if� for each instance I of Sin� Q�I� is de�ned if and only if Q��I� J� for
some J� and in that case J is a list representation of Q�I��

We now prove that FO�tuple�new�while can simulate QL� More precisely�

Lemma ��� Every unranked transformation can be list�represented by a pro�
gram in FO � tuple�new �while�

Proof� Assume an unranked transformation expressed by some QL program
P is given� We shall explain by an inductive argument how P is translated
into an FO � tuple�new �while program P � which list�represents P � The
�rst two lines of P � are

D �� f�x� j trueg�
E �� f�x� y� j x � yg�

�	



Given an input instance I� P � will compute in DI and EI the interpretation
of the QL�terms D and E� respectively�

For each variable X in P � P � will introduce a unary relation name �X�
During the execution of P �� the value of �X will be a collection of lists repre�
senting the corresponding value of X during the execution of P � To represent
these lists� P � also introduces the binary relation names Head and Tail which
are initialized by

Head �� 
�
Tail �� 
�

For convencience� P � also introduces binary relation names Equallist and
Tail�� When invoked� the procedure Comp�Equallist shown in Figure ��
computes in relation Equallist all pairs of list objects introduced thus far
representing equal lists� Similarly� the procedure Comp�Tail� shown in Fig�
ure �	 computes in relation Tail� the re�exive�transitive closure of the current
value of the Tail relation� Finally� if R and S are unary relation names and
the content of R can be interpreted as a collection of lists� then the procedure
Copy�R�var S� shown in Figure �
 computes in relation S a copy of R using
a set of new list objects�

Now consider a QL statement of the form X �� D or X �� E with
X a variable� Due to the �rst two lines of P �� the QL terms D and E can
alternatively be interpreted as relation names� Thus consider a QL statement
of the form X �� R with X a variable and R a relation name �which is either
D� E� or an element of the input scheme S�� The following FO � tuple�

new�while statements simulate X �� R in the case that R is binary� from
this� the general case immediately follows�

R� �� tuple�new R�
R� �� tuple�new R��
Head �� Head � f�l�� x� j ��y���l��R��x� y� l�� l��g�
Tail �� Tail � f�l�� l�� j ��x���y�R��x� y� l�� l��g�
Head �� Head � f�l�� y� j ��x���l��R��x� y� l�� l��g�
�X �� f�l�� j ��x���y���l��S��x� y� l�� l��g�

To simulate QL statements of the form X �� Y � X �� ��Y �� X �� ��Y ��
X �� e�Y �� X �� �Y � Z�� and X �� �Y � Z�� with X� Y � and Z variables�
we �rst observe that we can assume without loss of generality that X� Y �
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Equallist �� f�l�� l�� j trueg�
Next �� f�l�� l�� l�� l�� j Equallist�l�� l��g�
while Next �� 
 do
Equallist �� Equallist � f�l�� l�� j ��l�����l

�
����h����h���Next�l�� l

�
�� l�� l

�
��


 Head�l��� h�� 
 Head�l��� h�� 
 h� �� h��g�
Equallist �� Equallist � f�l�� l�� j ��l

�
����l

�
���Next�l�� l

�
�� l�� l

�
��


 ��t�Tail�l��� t� 
 ���t�Tail�l
�
�� t��g�

Equallist �� Equallist � f�l�� l�� j ��l�����l
�
���Next�l�� l

�
�� l�� l

�
��


 ��t�Tail�l��� t� 
 ���t�Tail�l
�
�� t��g�

Next �� f�l�� t�� l�� t�� j Equallist�l�� l�� 
 ��l�����l
�
���Next�l�� l

�
�� l�� l

�
�� 


Tail�l��� t�� 
 Tail�l��� t���g
od�

Figure ��� Procedure Comp�Equallist� Computes in Equallist all pairs of list
objects representing equal lists�

Prev �� 
�
Tail� �� f�l� l�� j l � l�g�
while Tail� � Prev �� 
 do
Prev �� Tail��
Tail� �� Tail� � f�l� t� j ��l���Tail��l� l�� 
 Tail�l�� t��g

od�

Figure �	� Procedure Comp�Tail�� Computes in Tail� the re�exive�transitive
closure of Tail �
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Comp�Tail��
R� �� tuple�new f�l�� j ��l��R�l� 
 Tail��l� l���g�
Head �� Head � f�l�� h� j ��l��Head�l� h� 
 R��l� l���g�
Tail �� Tail � f�l�� t�� j ��l���t��Tail�l� t� 
 R��l� l�� 
 R��t� t���g�
S �� f�l�� j ��l��R�l� 
 R��l� l���g�

Figure �
� Procedure Copy�R�var S�� Computes in S a copy of R using a
set of new list objects�

and Z are all di�erent� �By introducing auxiliary variables� the program P

can indeed be rewritten to meet this condition��
The statement X �� Y is simulated by Copy� �Y � �X��
The statement X �� ��Y � is simulated by

Copy� �Y � �X��
�X �� f�t� j ��l�� �X�l� 
 Tail�l� t��g�

In case the current value of Y contains di�erent tuples with the same �rst
component� the above simulation gives rise to duplicates in the collection of
lists �X� i�e�� to di�erent objects in �X representing the same list� The possible
presence of duplicates is harmless and is not prohibited by De�nition 
�	�

The statement X �� ��Y � is simulated by

Comp�Tail��

Y � �� f�l�� j ��l�� �Y �l� 
 Tail��l� l���g�
Newlists �� tuple�new f�l� x� j Y ��l� 
D�x�g�
�X �� f�l�� j ��l���x��Newlists�l� x� l�� 
 �Y �l��g�
Head �� Head � f�l�� h� j ��l���x�Newlists�l� x� l��g�
Tail �� Tail �

f�l�� t�� j ��l���t���x��Newlists�l� x� l�� 
 Newlists�t� x� t�� 
 Tail�l� t��g�
Ends �� tuple�new f�l�� j ��l���x�Newlists�l� x� l�� 
 ���h�Head�l�� h�g�
Head �� Head � f�l�� x� j ��l�Newlists�l� x� l�� 
 ��l���Ends�l�� l���g�
Tail �� Tail � Ends�

The statement X �� e�Y � is simulated by
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Copy� �Y � �X��

Length�	 �� f�l�� l�� l�� j �X�l�� 
 Tail�l�� l�� 
 Tail�l�� l�� 
 ���h�Head�l�� h�g�
if Length�	 �� 
 then
�X �� f�l�� j ��l����l��Length�	�l�� l�� l��g�
Tail �� f�l� t� j Tail�l� t� 


���l����l����l���Length�	�l�� l�� l�� 
 �l � l� � l � l���g�
Tail �� Tail � f�l� t� j ��l����l����l���Length�	�l�� l�� l�� 


��l� t� � �l�� l�� � �l� t� � �l�� l����g
else

Comp�Tail��

Swap �� f�l�� l�� l�� l�� j ��l�� �X�l� 
 Tail��l� l�� 
 Tail�l�� l�� 
 Tail�l�� l�� 

Tail�l�� l�� 
 ���h�Head�l�� h��g�

Tail �� f�l� t� j Tail�l� t� 
 ���l����l����l����l���Swap�l�� l�� l�� l�� 

�l � l� � l � l� � l � l���g�

Tail �� Tail � f�l� t� j ��l����l����l����l���Swap�l�� l�� l�� l�� 

��l� t� � �l�� l�� � �l� t� � �l�� l�� � �l� t� � �l�� l����g

��

In the above program� the relation Length�	 is used to test for the special case
when the rank of the current value of X is two� The if�then�else construct if
Length�	 �� 
 then P� else P� can be simulated by the two if�then constructs
if Length�	 �� 
 then P� and if Length�	 � 
 then P�� which were shown
to be expressible in FO � tuple�new �while in Example �����

The statement X �� �Y � Z� is simulated by

Union �� �Y � �Z�

Copy�Union� �X��

The statement X �� �Y � Z� is simulated by

Comp�Equallist �

Di
 �� f�l�� j �Y �l�� 
 ���l��� �Z�l�� 
 Equallist�l�� l���g�

Copy�Di
 � �X��

Finally� a QL while�loop while X � 
 do P� od with P� a QL program
over S is simulated by the FO�tuple�new�while while�loopwhile �X � 

do P �

� od with P
�
� the simulation of P��

��



Note that inst�S� � UnR�inst�S�� ordinary instances are special un�
ranked instances in which the ranks of the relations do conform to the ari�
ties of the relation names� Hence� ordinary transformations �De�nition �����
which are deterministic �i�e�� functions� are special unranked transformations
which always yield ordinary instances as output� With this remark in mind
we can prove the following useful corollary of Lemma 
���

Corollary ��� Each deterministic transformation is expressible in FO �
tuple�new �while�

Proof� By Lemma 
��� each deterministic transformation is expressible in
QL� Lemma 
�� thus yields that each deterministic transformation can be
list�represented in FO � tuple�new �while�

It therefore su�ces to show that there exists a program in FO � tuple�

new�while which� given a list representation of an instance I of some �xed
scheme S as input� produces I itself as output� This program consists of one
statement for each R � S� The following statement is for the case ��R� � ��
the other arities are treated analogously�

R �� f�x� y� j ��l���t�� �R�l� 
 Head�l� x� 
 Tail�l� t� 
 Head�t� y��g�

The completeness of QL for the unranked transformations� and the abil�
ity of FO � tuple�new �while to simulate QL� can be exploited to prove
the completeness of FO� tuple�new�while for the list�constructive trans�
formations� Since list�constructive transformations are de�ned in terms of
HFl�transformations� we thereto need an encoding of HFl�instances as un�
ranked instances� which we �rst describe�

Let K be an HFl�instance of some scheme S� Denote the set of atomic
objects �elements of U� appearing in jKj by UK� Let ��
 �left bracket�� ��

�right bracket� and ��
 �blank� be three symbols in U not in UK � With
each HFl�tuple t on jKj we can associate a �at tuple �t� on UK � f�� �g by
using the bracket symbols to mark begin and end of subtuples� For example�
if t is the ternary HFl�tuple �a� �b� c� �a��� b�� then �t� is the ��ary �at tuple
�a� �� b� c� �� a� �� �� b��

Now consider a relation name R � S and the HFl�relation RK� Let n be
the maximal arity of a tuple in f�t� j t � RKg� We can encode RK as an n�ary
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D

a � � � � �

� a a � � �

� b � � � �

� b � c � �

� a b c � �

R�

a � b � c � � �

� b � � a b c �

Figure ��� Flat encoding of the HFl�instance in Figure ���

�at relation �RK� on UK � f�� �� �g by padding �t� to the right with blanks
if needed to bring the arity to n� for each t � RK � In the same way� we can
also encode the domain jKj of K as a �at relation �jKj� by interpreting jKj
as a unary HFl�relation�

We can thus de�ne the notion of �at encoding of an HFl�instance�

De�nition ��	 Let K be an HFl�instance of some scheme S� and let J be
an unranked instance of the scheme

�at�S� �� fLeftbracket �Rightbracket�Blankg � fDg � S�

We call J a �at encoding of K if the following conditions are satis�ed�

� jJ j � jKj � f�� �� �g�

� LeftbracketJ � f���g� RightbracketJ � f���g� and BlankJ � f���g�

� DJ � �jKj��

� For each R � S� RJ � �RK��

Example ��
 Recall the HFl�instance I shown in Figure ��� Figure ��
shows relations D and R� of a �at encoding of I�

A �at encoding J of an HFl�instance K of a scheme S is an unranked
instance �of the scheme �at�S��� According to De�nition 
�	� J can be list�
represented by an ordinary instance J � of the scheme list��at�S��� We will
call J � a �at�list representation of K�

We now have two ways of representing an HFl�instance by an ordinary
instance� the ��at�list representation� just de�ned� and the original �isomor�
phic representation� of De�nition 	�
� The following technical lemma says
that we can go from the former to the latter in FO � tuple�new �while�
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Lemma ���� Let S be a scheme� There exists a program P in FO� tuple�
new�while expressing a transformation from list��at�S�� to S which� given
as input a �at�list representation of some HFl�instance K of S� produces as
output an instance which is UK�isomorphic to K�

Proof� Consider the following algorithm�

Input
 a �at�list representation J of an HFl�instance K of S�

Output
 an instance L containing a list representation of an instance M of
such that M is UK�isomorphic to K�

Method


�� Select all sublists occurring in the current instance which begin with the
left bracket� end with the right bracket� and do not contain a bracket
symbol in between� Let n be the maximal length of these sublists�

�� Generate a collection of all lists over the current domain of length at
most n� No duplicates may be generated� i�e�� each list generated must
be represented by a unique object in the collection�

�� Replace each sublist selected in step � by its unique representative
object generated in step ��

	� Repeat the above steps until no sublist is any longer selected in step ��


� Truncate all lists appearing in the current instance having a tail con�
sisting exclusively of blanks�

We �rst show how this algorithm can be implemented in FO� tuple�new�
while�

�� We will reuse procedure Comp�Tail� of Figure �	 and its associated
binary relation Tail�� already used in the proof of Lemma 
��� Note
that after invoking this procedure� each pair �l� l�� in Tail� identi�es
the begin and end of a sublist occurring in the current instance� So� we
can formulate step � as a deterministic transformation� with a binary
output relation named Select in which the sublists of Tail� with the
desired properties are collected� By Corollary 
��� this step is then
expressible in FO � tuple�new �while�
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By identifying a natural number n with a relation containing a single n�
ary tuple of� say� blanks� we can formulate the computation of the max�
imal length n of the sublists in Select as an unranked transformation�
By Lemma 
��� this unranked transformation can be list�represented in
FO� tuple�new�while� We can thus obtain a unary relation named
Length holding a list of length n�

�� The collection Collect of all lists up to length n is now generated as
follows� We use procedure Copy�R�var S� of Figure �
�

Dom �� f�x� j trueg�
Empty�list �� tuple�new f� � j trueg�
Collect �� Empty�list�
Count �� f�z�� j ��z��Length�z� 
 Tail�z� z���g�
while Count �� 
 do
Copy�Collect �Collect ���
Next �� tuple�new f�l�� x� j Collect ��l�� 
 Dom�x�g�
Tail �� Tail � f�l� t� j ��x�Next�l� t� x�g�
Head �� Head � f�l� x� j ��l��Next�l� l�� x�g�
Collect �� Collect � f�l� j ��l����x�Next�l� l�� x�g�
Count �� f�z�� j ��z��Count�z� 
 Tail�z� z���g�

od�

�� Step � is then programmed as follows� We use procedure
Comp�Equallist of Figure �� and its associated binary relation
Equallist �

Keep�tails �� f�s�� t� j ��s��Select�s�� s�� 
 Tail�s�� t�g�
Tail �� Tail � f�s�� t� j ��s��Select�s�� s��g

� f�s�� e� j ��s��Select�s�� s�� 
 Empty�list�e�g�
Comp�Equallist�
Head �� Head � f�s�� h� j ��s��Select�s�� s��g

� f�s�� r� j ��s��Select�s�� s�� 
 Collect�r� 
 Equallist�s�� r�g�
Tail �� Tail � f�s�� t� j ��s��Select�s�� s��g

� f�s�� t� j ��s���Select�s�� s�� 
 Keep�tails�s�� t��g�

	� Iterating the above steps as speci�ed in the algorithm yields�
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Step ��
while Select �� 
 do
Step ��
Step ��
Step �

od�


� Finally� �nding the lists to be truncated can be formulated as a de�
terministic transformation� By Corollary 
�� this transformation is
expressible in FO�tuple�new�while� so that we can obtain a unary
relation Trunc holding these lists� The actual truncation is easy to
perform�

Tail �� Tail � f�l� t� j Trunc�l�g
� f�l� e� j Trunc�l� 
 Empty�list�e�g�

Denote the complete program implementing the algorithm by P �
Assume now that P is applied to an input instance J which is a �at�list

representation of an HFl�instance K of S� Let L be the output instance�
Fix an arbitrary R � S� We �rst verify that all lists in �RL have length

��R�� Thereto� we establish the following loop invariant of the while�loop
speci�ed in item 	 above�

Each list l in �R can be written as a concatenation l� � � � l��R�t�
where t is a �possibly empty� tail consisting exclusively of blanks�
and each li� � � i � ��R�� is either�

�a� a singleton sublist �o� with o � UK� or

�b� a singleton sublist �p� with p a list object generated in step 	
of the algorithm� or

�c� a sublist beginning with the left bracket and ending with the
right bracket�

Upon entry of the while�loop� the invariant clearly holds since the input
instance J is a �at�list representation of an HFl�instance of S� In this case�
sublists of type �b� do not yet occur� After each iteration of the while�loop�
the invariant also holds since the only thing that can happen is that sublists
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of type �c� are replaced by sublists of type �b�� Hence� the invariant also
holds upon exit of the while�loop� In this case� sublists of type �c� do no
longer occur since the iteration condition of the while�loop is no longer true�
In step 
 of the algorithm� the tail t is removed� so that in the output L�
each list in �R� being a concatenation of ��R� length�one sublists� indeed has
length ��R��

By the same reasoning� we can show that all lists in �DL have length one�
Fix again an arbitrary R � S� We next verify that for each list l in �RL�

every element of l is the element of some �singleton� list in �DL� Thereto� we
establish the following loop invariant of the while�loop in item 	�

For each list l � l� � � � l��R�t in �R� and for each i � �� � � � � ��R��

there is a list l� � lit
� in �D� where t� is a �possibly empty� tail

consisting exclusively of blanks�

That the above property is indeed an invariant can be proven by a similar
reasoning as for the previous invariant� The invariant holds upon exit of the
while�loop� after which step 
 of the algorithm removes the blank tails� Since
we already know that at this point each li is a singleton� every element of l
thus is indeed the element of some singleton list in �DL�

The above allows us to de�ne the following instance M of S� jM j is the
set �unary relation� list�represented by �DL� and for each R � S� RM is the
relation list�represented by �RL� The output instance L of P thus contains a
list representation ofM � but notM itself� However� we can complete P with
a �nal step which produces M from its list representation� How this can be
done was already shown in the proof of Corollary 
���

Hence� in order to conclude the proof of the lemma it is su�cient to prove
that M and K are UK�isomorphic� Thereto� we inductively assign to each
hereditarily �nite list � appearing in jKj an identifying object id��� � jLj
as follows� As basis� we put id�o� �� o for each o � UK � Now let � �
���� � � � � �m� be a hereditarily �nite list appearing in jKj� By induction� we
may assume that id��i� is already known for i � �� � � � � m� Consider the list

l � ��� id����� � � � � id��m�� ���

At some point during the execution of P � l will be replaced by a single
representative object p in step � of the algorithm� Then de�ne id��� �� p�

		



The mapping id just de�ned is clearly injective� Furthermore� id�jKj� �
jM j� Indeed� � is in jKj i� its �at encoding ��� is in �DJ �represented as a list��
In �DL� this list will be replaced by id���� Similarly� we have id�RK� � RM

for each R � S� Finally� the mapping id was de�ned to be the identity on
UK� Hence� id is an UK�isomorphism from K to M �

We now have all the necessary ingredients together to prove our �rst
completeness result�

Theorem ���� Every list�constructive transformation is expressible in FO�
tuple�new �while�

Proof� Let Q be a list�constructive transformation from Sin to Sout� We
must establish the existence of an FO � tuple�new � while program P

expressing Q�
First� consider the following three�line program�

Leftbracket �� tuple�new f� � j trueg�
Rightbracket �� tuple�new f� � j trueg�
Blank �� tuple�new f� � j trueg�

Applied to an instance I of Sin� this program yields an instance I
 of the
scheme S � fLeftbracket �Rightbracket�Blankg which can be interpreted as
the augmentation of I with three new unary relations� each consisting of a
single object� These three objects are di�erent� and are interpreted as the
left bracket� right bracket� and blank symbol� respectively�

Next� we de�ne an unranked transformation Qunr from Sin �
fLeftbracket �Rightbracket�Blankg to �at�Sout�� Thereto� let Q

� be an HFl�
transformation isomorphically represented by Q in the sense of De�nition 	�
�
For an instance I of Sin� de�ne Qunr�I
� as the �at encoding of Q��I� in which
the left bracket� right bracket� and blank are those of I
� By Lemma 
���
Qunr can be list�represented by an FO�tuple�new�while program� When
applied to I
� this program yields a �at�list representation of Q��I��

Finally� by Lemma 
���� there exists an FO�tuple�new�while program
transforming a �at�list representation of an HFl�instance K into an UK�
isomorphic representation of that instance� Applying this program to the
�at�list representation of Q��I� thus yields an instance J which is UQ��I��
isomorphic to Q��I�� But UQ��I� � jIj� so that J is I�isomorphic to Q��I��
Since Q is the isomorphic representation of Q�� J satis�es Q�I� J��

	




Hence� the composition of the above programs yields the desired FO �
tuple�new �while program�

� Completeness results for constructive

transformations

In this section� we prove that the language FO � new � while expresses
precisely the constructive transformations�

We will exploit the completeness of FO�tuple�new�while for the list�
constructive transformations� established in the previous section� to establish
the completeness of FO�new�while for the constructive transformations�
Since list�constructive transformations are de�ned in terms of hereditarily ��
nite lists� while constructive transformations are de�ned in terms of hereditar�
ily �nite sets� we thereto need an encoding of HF�instances as HFl�instances�
which we �rst describe�

Let X be a hereditarily �nite set� We can associate to X a set  �X� of
hereditarily �nite lists� in the following inductive manner�

� For each object o � U �  �o� �� fog�

� For each �nite set V � fV�� � � � � Vng of hereditarily �nite sets�

 �V � �� f������� � � � � ���n�� j � a permutation of f�� � � � � ng�

�i �  �Vi� for i � �� � � � � ng�

With an HF�tuple t � �V�� � � � � Vk�� we then associate the set  �t� of all HFl�
tuples ���� � � � � �k� such that �i �  �Xi� for i � �� � � � � k� Furthermore� with
an HF�relation r we associate the HFl�relation  �r� ��

S
t�r  �t�� Finally�

with an HF�instanceK of some scheme S we associate the HFl�instance  �K�
of S with the same domain de�ned by R��K� ��  �RK� for each R � S� As
for HFl�instances� UK stands for the set of atomic objects appearing in jKj�

The following technical lemma� which is the analogue of Lemma 
��� for
HF�instances� informally says that we can go from  �K� to K in FO�new�
while�
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Lemma ��� Let S be a scheme� There exists a program P in FO � new �
while expressing a transformation from list��at�S�� to S which� given as in�
put a �at�list representation of  �K�� for some HF�instance K of S� produces
as output an instance which is UK�isomorphic to K�

Proof� By Lemma 
���� there exists an FO� tuple�new �while program
which produces from a �at�list representation of an HFl�instance an isomor�
phic representation of that instance� Let P� be the particular such program
constructed in the proof of that lemma� When applied to a �at�list repre�
sentation J of  �K�� for some HF�instance K of S� P� not only produces
an instance M of S which is UK�isomorphic to  �K�� but as a side e�ect
also Head and Tail relations which describe the structure of the hereditarily
�nite lists represented in M �

We can now continue withM and produce an instance UK�isomorphic to
K as follows� Each object appearing in jM j either is an element of UK� or
identi�es a hereditarily �nite list �which can be accessed through Head and
Tail functions�� Using a straightforward program� the subsetUK�jM j can be
isolated in a unary relation variable which we give the same name UK � Each
hereditarily �nite list is accompanied by all its re�orderings� which together
stand for a hereditarily �nite set� It thus su�ces to generate a unique new
identi�er for each equivalence class of orderings� using the set�new operator
in a bottom�up fashion� After each stage of this bottom�up process� the
identi�ers of the considered lists are replaced by their new representative
which then serves as the object representing the corresponding hereditarily
�nite set�

We now show how this can be formally accomplished in FO�new�while�
For notational simplicity� the scheme S is assumed to consist of only one�
binary� relation name R�

To generate an identi�er for the empty set we use the statement

Empty �� tuple�new f�� j trueg�

To replace all empty lists by this identi�er we use the statements

E list �� f�l� j �UK�l� 
 ���h�Head�l� h�g�
Head �� f�l� h� j Head�l� h� 
 �E list�h�g

� f�l� e� j ��h��Head�l� h� 
 E list�h�� 
 Empty�e�g�
Tail �� f�l� t� j Tail�l� t� 
 �E list�t�g
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� f�l� e� j ��t��Tail�l� t� 
 E list�t�� 
 Empty�e�g�
R �� f�x�� y�� j ��x���y���e��R�x� y� 
 Empty�e�


 �E list�x�� x� � x


 E list�x�� x� � e


 �E list�y�� y� � y


 E list�y�� y� � e�g�

The bottom�up replacement process is performed by a while�loop initiated
as follows�

Done �� UK � Empty �
while ���x���y��R�x� y�� Done�x� 
Done�y�� do

In each iteration� we �rst compute the members of each list using the state�
ments

Comp�Tail�� �Figure �	�
Contains �� f�l� x� j �Done�l� 
 ��t��Tail��l� t� 
 Head�t� x��g�
Contains �� f�l� x� j Contains�l� x� 
 ��y��Contains�l� y�� Done�y��g�

Then the equivalence classes are factored out using the statements

Equiv �� set�new Contains�
Done �� Done � f�z� j ��l�Equiv�l� z�g�

Finally� the identi�ers are replaced using the statements

Head �� f�l�� h�� j ��l���h��Head�l� h�

 ��z�Equiv �l� z�� Equiv�l� l��

 ��z�Equiv �h� z�� Equiv�h� h���g�

Tail �� f�l�� t�� j ��l���t��Tail�l� t�

 ��z�Equiv �l� z�� Equiv�l� l��

 ��z�Equiv �t� z�� Equiv�t� t���g�

R �� f�x�� y�� j ��x���y��R�x� y�

 ��z�Equiv �x� z�� Equiv�x� x��

 ��z�Equiv �y� z�� Equiv�y� y���g�

This concludes the body of the while�loop�

od�
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We can now prove our main completeness result�

Theorem ��� Every constructive transformation is expressible in FO �
new �while�

Proof� Let Q be a constructive transformation from Sin to Sout� Let Q� be
an HF�transformation isomorphically represented by Q according to De�ni�
tion �����

De�ne the HFl�transformation  �Q�� from Sin to Sout by the equation

 �Q���I� �  �Q��I���

In the same way as in the proof of Theorem 
���� we can �nd a program
which produces from an input instance I of Sin a �at�list representation of
 �Q��I��� By applying Lemma ���� we can then obtain an instance J which
is UQ��I��isomorphic to Q

��I�� But UQ��I� � jIj� so that J is I�isomorphic to
Q��I�� Since Q is the isomorphic representation of Q�� J satis�es Q�I� J��

Hence� the composition of the above programs yields an FO�new�while
program expressing Q�

The proofs of Theorem ��� and Lemma ��� show that� in order to express
an arbitrary constructive transformation in FO � new � while� the set�
new operation is only needed in a �nal �beautifying� stage� In this stage�
the set objects needed in the output are obtained from collections of their
orderings� represented as list objects� by making abstraction of the ordering
information present in these lists� It is precisely this �abstraction� power
that is provided by the set�new operation� All of the other computations
needed for the constructive transformation can be performed on the level of
lists rather than sets� and can be expressed in the sublanguage FO� tuple�

new � while of FO � new � while without the set�new operation� The
reader interested in a proof that set�new cannot be simulated using tuple�
new is referred to �����

� Concluding remarks

Before we conclude with a few remarks on the rami�cations of the results
obtained in this paper� let us summarize them as follows�
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�� Let Q be a transformation� The following are equivalent�

� Q is constructive�

� Q is determinate� and for each pair of instances �I� J� with Q�I� J�
there exists an extension homomorphism from I to J �

� Q is expressible in FO � new �while�

�� Let Q be a transformation� The following are equivalent�

� Q is list�constructive�

� Q is determinate� and for each pair of instances �I� J� with Q�I� J�
there exists �a� an extension homomorphism � from I to J and
�b� an injective mapping g � jJ j � HFl�jIj� which is the identity
on jIj satisfying

g���f��o�� � f�g�o��

for each f in Aut�I� and each o in jJ j� where f is extended to
HFl�jIj� in the standard way�

� Q is expressible in FO � tuple�new �while�

There are various possible approaches to the representation of hereditar�
ily �nite set and list structures in database manipulation� One can support
these structures directly as built�in data types of the system� One can use
object creation to decompose the structures into atomic� interconnected units
and thus work with a sort of graph representation� One can also use object
creation in a di�erent way by representing the hereditarily �nite sets or lists
appearing in the output of the manipulation by new abstract objects and
thus obtaining a result formally isomorphic to the original one but ignoring
the internal structure of the hereditarily �nite sets and lists� Yet another
approach is to encode the nested structures into �at lists which are un�
bounded in length �cf� the unranked relations of Chandra and Harel�� In the
course of proving our completeness results� we have shown that these various
approaches are all interconnected and moreover possess precisely the same
expressive power� namely that of the constructive and the list�constructive
transformations�

The use of hereditarily �nite sets in databases has been studied before by
Hull and Su ����� and by Dahlhaus and Makowsky �����
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Hull and Su considered a language analogous to FO� new�while� but
used it only for expressing domain�preserving� deterministic transformations�
They showed that the construction of hereditarily �nite sets in intermediate
stages of the computation� while disallowing them to appear in the end re�
sult� can be used to achieve completeness� much as Abiteboul and Vianu
did for object creation �see the Introduction�� In this paper� we have shown
that these two �completeness tools�� hereditarily �nite set construction and
object creation� are in a natural sense equivalent� Furthermore� we have
shown that Hull and Su
s completeness result can be extended from deter�
ministic transformations to HF�transformations in general� Interestingly� our
completeness proofs rely exclusively on the �rst known completeness tool as
originally proposed by Chandra and Harel� namely the unranked relations of
QL� This makes the circle complete� since one of the main goals of the work
of Abiteboul and Vianu was to propose object creation as an alternative for
the use of unranked relations�

Dahlhaus and Makowsky de�ned directory queries� a model of queries on
structures similar to HF�instances� as a generalization of the queries on �at
instances of Chandra and Harel� They proposed a language� called DL� which
they proved to be complete for the directory queries� Although Dahlhaus and
Makowsky did not explicitly consider object creation� directory queries fully
support the construction of hereditarily �nite sets� to which they informally
referred as �the computation of new objects from given objects�� In this
paper� we have demonstrated that this identi�cation was justi�ed and can
be achieved in a very formal way�

A posteriori� it seems not unreasonable to argue in this respect that the
original notion of determinate transformation proposed by Abiteboul and
Kanellakis� although natural and obvious at �rst sight� does not adequately
formalize deterministic object creation� As mentioned in the Introduction�
making FO � new � while complete for the determinate transformations
requires the introduction of a copy elimination operation� Van den Bussche
and Van Gucht ���� obtained results indicating that the phenomenon of copy
elimination can be more naturally explained in a non�deterministic context�
Our results put this approach in perspective� Indeed� while in this paper we
have restricted the determinacy criterion of Abiteboul and Kanellakis with
an extension morphism condition� the authors of ���� proposed a relaxation of
determinacy� called semi�determinism� From this perspective� determinacy
might be merely an intermediate between constructivity on the one hand and


�



semi�determinism on the other hand�
But perhaps the main philosophical consequence of our results is a for�

mal reconciliation of the two main approaches to creating new objects that
have been considered in the literature on formal query languages for object�
oriented database systems� The �rst approach recognizes created objects as
new� atomic entities �e�g�� �	� ��� ����� We took this approach here� The
second approach treats new objects in the output as terms� constructed from
the objects in the input �e�g�� ��
� ����� Since these terms can be interpreted
as hereditarily �nite lists� the results in this paper highlight the close link
between both approaches�
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A Appendix

In this appendix we show that FO � new �while has the same expressive
power as the languages GOOD and IQL mentioned in the Introduction� We
do this by showing that GOOD can be simulated in FO � new � while

�Section A���� that FO�new�while can be simulated in IQL �Section A����
and that IQL can be simulated in GOOD �Section A����

In the GOOD data model� a database scheme is a directed� edge�labeled
graph the nodes of which are class names and the edges of which repre�
sent relationships between classes� These relationships can be required to be
functional� A database instance then is a directed labeled graph the nodes of
which are objects� labeled by the name of their class� and the edges of which
are relationships among the objects� labeled in accordance with the scheme�
Programs in the GOOD language are sequences of graph transformation op�
erations� There are �ve basic kinds of such operations� GOOD programs can
also de�ne and call procedures �called methods� which can be recursive�

The IQL data model is based on complex values built from atomic objects
using the tuple and set constructors� A database scheme is described by a set
of class names and a set of relation names� A complex value type is assigned
to each class name and relation name� An instance then populates each class
with a set of atomic objects� and each relation with a set of complex values
of the correct type� Each atomic object is also assigned a complex value of
the correct type� The language of IQL is rule�based�

A�� From GOOD to FO � new �while

We assume the reader is familiar with GOOD as described in ����� we will use
the terminology and notation of that paper� We note one exception however�







we will ignore printable objects� The simulation of printable objects would
require the introduction of constant symbols in the formalism of FO�new�
while� which we have avoided for reasons of simplicity� It is well�known �e�g��
�
�� how the use of constant symbols can be accounted for in the theory of
database transformations�

We begin by representing GOOD schemes and instances by the relational
schemes and instances of Section ��

Let S be a GOOD scheme with set of object labels OL and set of pro�
ductions P� We de�ne a relational scheme rel�S� representing S as follows�
For each K � OL we have a relation name K of arity �� Furthermore� for
each p � P we have a relation name p of arity ��

Now let I � �N�E� be an instance of the GOOD scheme S� We de�ne
an instance of rel�S� representing I as follows� The domain equals N� For
each K � OL� the content of K equals fn � N j ��n� � Kg� For each p �
�K��� L� � P� the content of p equals f�n� ��m� � E j ��n� � K� ��m� �
Lg�

We next show how the set of matchings of a pattern in a GOOD in�
stance can be expressed in FO � new � while� Let J � �M�F� be a
pattern� We will use the elements of M as variables in �rst�order for�
mulas� With each edge f � �m� ��n� � F we associate the atomic
formula af�f� � ���m�� �� ��n���m�n�� For each list m�� � � � �mk of ele�
ments of M we then de�ne the �rst�order formula match�J �m�� � � � �mk�
as ��n�� � � � ��n��

V
f�F af�f�� where fn�� � � � �n�g � N� fm�� � � � �mkg�

We can now consider the �ve basic operations of GOOD and their simu�
lation in FO � new �while�

�� A node addition� NA�J�K� f����m��� � � � � ��k�mk�g� is simulated as fol�
lows� We denote �K��i� ��mi�� by pi�

NA �� tuple�new f�m�� � � � �mk� j match�J �m�� � � � �mk� 

���x��K�x� 


Vk
i
� pi�x�mi��g�

p� �� p� � f�x� x�� j ��x�� � � � ��xk�NA�x�� � � � � xk� x�g�

�The notation in ���	 also includes parameters for the scheme and the instance on which
the node addition operates� but for simplicity we leave these parameters understood



�



���
pk �� pk � f�x� xk� j ��x�� � � � ��xk���NA�x�� � � � � xk� x�g�

�� An edge addition EA�J� f�m�� ���m
�
��� � � � � �mk� �k�m

�
k�g� is simulated

as follows� We denote ���mi�� �i� ��m
�
i�� by pi�

EA �� f�m�� � � � �mk�m
�
�� � � � �m

�
k� j match�J �m�� � � � �mk�m

�
�� � � � �m

�
k�g�

p� �� p� � f�x�� x��� j ��x����x
�
�� � � � ��xk���x

�
k�EA�x�� x

�
�� � � � � xk� x

�
k�g�

���
pk �� pk � f�xk� x

�
k� j ��x����x

�
�� � � � ��xk�����x

�
k���EA�x�� x

�
�� � � � � xk� x

�
k�g�

�� An edge deletion ED�J� f�m�� ���m
�
��� � � � � �mk� �k�m

�
k�g� is simulated

in an analogous manner as the corresponding edge addition� It su�ces
to replace each union in the simulation by a di�erence�

	� A node deletion ND�J�m� is simulated as follows�

ND �� fm j match�J �m�g�
��m� �� ��m�� ND �

followed by� for each production p � ���m�� �� L� � P�

p �� f�x� y� j p�x� y� 
 �ND�x�g�

followed by� for each production p � �K��� ��m�� � P�

p �� f�x� y� j p�x� y� 
 �ND�y�g�


� An abstraction AB�J�n� K� �� �� is simulated as follows� We denote the
set of productions in P of the form ���n�� �� L� by Q� and we denote
�K� �� ��n�� by p�

AB� �� f�n� y� j match�J �n� 

W
q�Q q�n� y�g�

Equiv �� f�x� x�� j ��n��x� 
 ��n��x�� 
 ��y��AB��x� y�� AB��x
�� y��g�

AB� �� set�new f�x� y� j AB��x� y� 

���z��K�z� 
 p�z� x� 
 ��x���p�z� x��� Equiv�x� x����g�

K �� K � fz j ��x�AB ��x� z�g�
p �� p � f�z� x� j AB ��x� z�g�
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To complete the simulation of GOOD by FO � new �while it remains
to simulate the method construct� Methods in GOOD are procedures� it is
general knowledge in programming that non�recursive procedure calls do not
add expressive power and that recursive procedure calls can be simulated
using while loops� Van Rossum ���� has done this exercise in the context of
GOOD�

A�� From FO � new �while to IQL

Relational database schemes and instances can be directly represented in the
IQL data model� The domain of the instance is kept in some �xed class Dom�
The type T�Dom� is not important and can be set to the empty tuple type�
Each relation R of arity � is directly represented as an IQL relation R of
type T�R� � �Dom� � � � �Dom� �� times��

IQL is a rule�based language with in�ationary semantics� The language
FO � new � while� in contrast� is based on �rst�order logic� composition�
and while�loops� and assignment to relation variables in its programs need
not be in�ationary� It is known however ��� 	� �� that all these features can be
simulated in a su�ciently powerful in�ationary rule language such as IQL�

We can therefore concentrate on the operations tuple�new and set�new�
A tuple�new statement

R �� tuple�new f�x�� � � � � xk� j �g

is simulated by a rule
R�x�� � � � � xk� z��� ��

A set�new statement

R �� set�new f�x� y� j �g

is simulated as

Proj ��x��� ��x� y�
Aux ��x� z��� Proj �x�
bz�y��� Aux ��x� z�� ��x� y�
Proj ��bz��� Aux ��x� z�
Aux ��s� w��� Proj ��s�
R�x� w��� Aux ��x� z�� Aux ��bz� w��
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A�� From IQL to GOOD

We assume the reader is familiar with IQL as described in �	�� we will use
the terminology and notation of that paper�

Schemes and instances� We �rst need to represent IQL schemes and
instances by GOOD schemes and instances�

Let S � �P�R�T� be an IQL scheme� We de�ne a GOOD scheme good�S�
representing S as follows� The set of object labels is fD� V g � P �R� The
set of productions consists of the following�

�� For each attribute A occuring in S� the production �V�A� V �� where A
is used as a functional edge label�

�� The production �V��� V �� where ��
 is used as a multivalued edge label�

�� The production �V� �� V �� where ��
 is used as a multivalued edge label�

	� The production �D��� V ��


� For each class name P � P� the production �P��� v��

�� For each relation name R � R� the production �R��� V ��

Let I � ��� �� �� be an instance of the IQL scheme S� We de�ne an
instance of good�S� representing I as follows� The set of nodes consists of
the following�

� All o�values appearing in I� labeled by V �

� A node D� labeled D�

� For each class name P � a node P labeled P �

� For each relation name R� a node R labeled R�

The set of edges consists of the following�

�� For each tuple value v � �A�� v�� � � � � Ak� vk�� the edges �v� Ai� vi� for
each i � �� � � � � k�

�� For each set value v� the edges �v��� v�� for each v� � v�


�



�� For each oid o such that ��o� is de�ned� the edge �o� �� ��o���

	� For each constant d� the edge �D��� d��


� For each class name P � the edges �P��� o� for each o � ��P ��

�� For each relation name R � R� the edges �R��� v� for each v � ��R��

We note two useful facts about the above representation of schemes and
instances�

�� The function T in the IQL schema� which assigns types to class and
relation names� is not represented in the corresponding GOOD schema�
However� given a type 
 � there is a GOOD program FIND� that works
on the GOOD representation of any IQL instance� and marks all o�
values that are of type 
 � More speci�cally� this program creates a
node 
 labeled 
 and adds edges �
���n� for each V �labeled node n
representing an o�value of type 
 �

Note that when 
 is an �atomic type�� i�e�� 
 � D or 
 � P with P

a class name� this information is already present in the instance� So
for atomic types 
 the program FIND� is trivial� The construction of
FIND� for more complex types 
 then is an obvious structural induc�
tion�

�� In the GOOD representation of an IQL instance� each o�value is repre�
sented by a unique node� However� in our simulation of IQL programs
by GOOD programs� it will be possible that intermediate results con�
tain di�erent nodes representing the same o�value �this will not be the
case for atomic o�values� i�e�� constants and oids�� Such nodes will be
called value�equal�

More formally� let n and m be nodes representing o�values of type 
 �
Value�equality with respect to 
 is de�ned inductively as follows�

�a� If 
 is D or a class name� n and m are value�equal w�r�t� 
 if and
only if they are identical�

�b� If 
 is �A�� 
�� � � � � Ak� 
k�� n and m are value�equal w�r�t� 
 if for
each i � �� � � � � k there are edges �n� Ai�ni� and �m� Ai�mi� such
that ni and mi are value�equal w�r�t� 
i�

��



�c� If 
 is f
 �g� n and m are value�equal w�r�t� 
 if for each edge
�n���n�� there is an edge �m���m�� such that n� andm� are value�
equal w�r�t� 
 �� and vice versa� for each edge �m���m�� there is an
edge �n���n�� such that m� and n� are value�equal w�r�t� 
 ��

�d� If 
 is 
� � 
�� then n and m are value�equal w�r�t� 
 if for either
i � � or i � �� n and m are value�equal w�r�t� 
i�

By structural induction� for every type 
 a GOOD program EQUAL�
can be constructed that adds edges labeled �equal � 
 between exactly
those pairs of nodes that are value�equal w�r�t� 
 �

Valuation�domains� We now turn to the expression of the valuation�
domain of an IQL program in GOOD�

Since valuations are linked to rules� we represent each rule r as a node in
the instance by a sequence of node additions� The label of each r is r itself�

Valuations are represented as follows� Let r be a rule and let � be a
valuation of body�r�� The pair �r� �� is represented by a node n labeled �Val
�
with for each variable x in body�r� an edge �n� x� ��x��� and with an edge
�n� rule� r�� Here� each variable as well as �rule
 is used as a functional edge
label�

Let r be a rule� and let fx�� � � � � xkg be the set of variables in body�r��
Let the declared type of xi be 
i� for each i � �� � � � � k� The set of all pairs
�r� �� with � a valuation of fx�� � � � � xkg can be constructed as follows�

�� For each i � �� � � � � k� apply FIND�i �

�� Apply the node addition

V


�

V


k

Val r

� �

x� xk

rule

� � �

� � �

We have to delete those pairs �r� �� that are not in the valuation�domain�
For these pairs� � makes body�r� true� i�e�� it makes each positive literal in

��



body�r� true and makes each negated literal in body�r� false� Marking the
valuations that make a literal false amounts to marking all valuations and
then deleting those that make the literal true�

So let us see how to test whether a valuation � makes a literal of the form
t� � t� or t��t�� true� This can be done by deriving representations n� and
n� of the o�values ��t�� and ��t��� after which

� in the case t� � t�� we test whether n� and n� are value�equal w�r�t�
the appropriate type� and

� in the case t��t��� we test whether there is a node n such that n is
value�equal to n� w�r�t� the type of t�� and such that there is an edge
�n����n��

These tests can be performed by an application of EQUAL� for the appro�
priate types 
 � followed by a simple pattern match�

The just�mentioned representation of ��t� for some term t can be derived
as follows� The representation will be a node� linked to �r� �� by an edge
labeled t� The derivation is by induction on t�

� If t is a variable x� the representation is already there�

� If t is a class name P � perform the node addition

Val
rule

r
P

V

followed by the edge addition

V

V
rule

r

�
P

Val
P

�

� If t is a relation name R� do the same as in the previous item with R

substituted for P �

��



� If t is of the form bx� perform the node addition

V

V
rule

rVal
x

�
bx

� If t is of the form ft�� � � � � tkg� derive the representations of ��t��� � � � �
and ��tk�� and then perform the node addition

Val
rule

rV
ft�� � � � � tkg

followed by the edge additions

V
ft�� � � � � tkg

V

ti
�

Val
rule

r

for each i � �� � � � � k�

� If t is of the form �A�� t�� � � � � Ak� tk�� do the same as in the previous
item with �A�� t�� � � � � Ak� tk� substituted for ft�� � � � � tkg and� for each
i � �� � � � � k� Ai substituted for ��

We can now assume that all pairs �r� �� for which � does not make body�r�
true have been deleted� To arrive at the valuation�domain� it remains to also
delete those pairs where � can be extended to the variables in head�r� so
as to make head�r� true� This can be achieved by the same techniques just
explained�
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Valuation�maps� We next turn to the computation in GOOD of a
valuation�map on the valuation�domain� This amounts to extending� for
each �r� �� in the valuation�domain� � to the variables in head�r� by creating
new oids�

By the previous paragraphs� we can assume that of all nodes �r� �� only
those in the valuation�domain remain� In addition to this� we also delete the
pairs �r� �� where head�r� is of the form bx � t� and ����x�� is already de�ned�
This can be tested by a simple pattern�

The above�mentioned extension of the valuations in the valuation�domain
is now done by the following node addition for each rule r and each variable
z in head�r� not in body�r��

V

Val
rule

r

z
rule

The simulation� The application of a rule r� given that the valuation�
map has already been computed� can now be performed as follows� First�
as explained earlier� derive a representation of ��t�� where t is the term in
head�r�� for each �r� ��� Then�

� If head�r� is of the form P �t� with P a class name� perform the edge
addition

rule
rVal

t

P

V

�

� If head�r� is of the form R�t� with R a relation name� do the same as
in the previous item with R substituted for P �

� If head�r� is of the form bx � t� perform the edge addition

�	



Val r
x t

rule

V V
�

We are �nally ready to describe the complete simulation of an IQL pro�
gram by a GOOD program�

compute the valuation�domain�
while valuation�domain not empty do
compute the valuation�map�
apply each rule�
undo ambiguous assignments�
delete auxiliary nodes and edges�
compute valuation�domain

od�

The clause �undo ambiguous assignments
 corresponds to a semantic check
that is built in in the in�ationary �xpoint computation of IQL programs�
The check detects nodes having two or more outgoing edges labeled � and
deletes these edges� This can be easily programmed in GOOD�

Duplicate elimination� When applying the GOOD simulation P of an
IQL program # on the GOOD representation of an IQL instance I� we obtain
a correct GOOD representation of #�I�� with the exception that value�equal
nodes will be present� It remains to perform a duplicate elimination� replac�
ing each equivalence class of value�equal nodes by a single representative�
This is accomplished by using the abstraction operation of GOOD �which
has not yet been used so far��

To perform duplicate elimination on all nodes representing o�values of
type 
 � we execute the GOOD program DUPELIM� described in detail be�
low� The complete duplicate elimination process consists of an application
of DUPELIM� for each non�atomic type 
 occurring in the output schema of
the IQL program to be simulated� such that whenever some type 
 � occurs
in another type 
 � DUPELIM� � is performed before DUPELIM� �

The program DUPELIM� �rst performs FIND� � then performs EQUAL� �
and then performs an abstraction� a series of edge additions� and a node
deletion in the order as shown in Figure ���

�




��

V V
equal �rep�


�

V

V V
�

�

rep�

��

V

V V
A

A

rep�

for all attributes A�

��

V

V V
�

�

rep�

��

V

V V
�

�

rep�

��

V

V R
�

�

rep�

	�

V

V V
A

A

rep�

for all attributes A�

��

V V
rep�

Figure ��� The �nal duplicate elimination step�
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This concludes the Appendix�
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