Complete Geometric Query Languages

Marc Gyssens, Jan Van den Bussche Dirk Van Gucht
University of Limburg* Indiana University!

*Dept. WNI, University of Limburg (LUC), Universitaire Campus, B-3590 Diepenbeek, Belgium.
E-mail: {gyssens, vdbuss}@luc.ac.be.

fComputer Science Department, Indiana University, Bloomington, IN 47405-4101, USA.
E-mail: vgucht@cs.indiana.edu

Proposed running head: Complete geometric query languages
Send proofs to:

Marc Gyssens

Limburgs Universitair Centrum
Universitaire Campus

B-3590 Diepenbeek

Belgium

Phone: +32-11-268248
Fax:+32-11-268299

Email: gyssens@luc.ac.be

Abstract

We extend Chandra and Harel’s seminal work on computable queries for re-
lational databases to a setting in which also spatial data may be present, using
a constraint-based data model. Concretely, we introduce both coordinate-based
and point-based query languages that are complete in the sense that they can
express precisely all computable queries that are generic with respect to certain
classes of transformations of space, corresponding to certain geometric interpre-
tations of spatial data. The languages we introduce are obtained by augmenting
basic languages with a while construct. We also show that the respective basic
point-based languages are complete relative to the subclass of the corresponding
generic queries consisting of those that are expressible in the relational calculus
with real polynomial constraints.

1 Introduction

In their seminal work on computable queries for relational databases [3], Chandra and
Harel introduced the notion of computable query as a computable function from rela-
tional databases to relations that is invariant under all permutations of the universe of
atomic data elements. The latter criterion, now known as genericity, states that queries
should preserve database isomorphisms, or, more intuitively, that they should be defined
at the logical level of the data in the database. Chandra and Harel then introduced a
query language, QL, and proved it complete, in the sense that precisely all computable
queries can be expressed in QL.

The purpose of the present paper is to continue Chandra and Harel’s work in the setting
of spatial databases.

To do so, we work in an adaptation of the relational model, where the universe of atomic
data is the set of real numbers, which may represent coordinates of points, and where
relations can be infinite. To ensure finite representability, the relations must be elemen-
tarily definable in terms of polynomial inequalities. In mathematical terminology, they
must be semi-algebraic. Our model is thus an instance of the framework of constraint
databases introduced by Kanellakis, Kuper, and Revesz [7].

As was already pointed out by Paredaens, Van den Bussche, and Van Gucht [11], this
framework can be used in two ways. One possibility consists of using the framework in an
uninterpreted manner. In order to model spatial data and geometric applications, how-
ever, it is necessary to interpret real numbers as coordinates of points in n-dimensional
space. In this setting, the universe of atomic data elements are the points of R”, rather
than the real numbers of R. Also in this paper, we shall clearly distinguish between both
ways of using constraint databases. For clarity, the uninterpreted constraint database
model will be referred to as the semi-algebraic database model, whereas the constraint
database model in which the atomic data are elements of R", interpreted as points in
n-dimensional space will be referred to as the geometric database model. Clearly, the
geometric database model can be embedded in the semi-algebraic database model.

The question of how Chandra and Harel’s concept of genericity extends to the geomet-
ric database model was already considered by Paredaens, Van den Bussche, and Van
Gucht [11]. Tt makes no sense to require that queries are invariant under all permu-
tations of space, as (i) most of these bear no geometric meaning whatsoever, and (i7)
many realistic queries do not preserve arbitrary permutations of space. Instead, a suit-
ably adapted notion of genericity for spatial data should take into account the precise
geometric interpretation intended by the application. Now, it is standard mathematical
practice to identify a geometry with a group of transformations of space. If the geometric
interpretation of the spatial data intended corresponds to a group G of transformations,
then a query in the geometric database model will be defined at the intended geometric
level if and only if it is invariant under all transformations in GG. Such queries are called
G-generic.

In our search for complete geometric query languages, we start with a study of the
underlying semi-algebraic database model. The language most often considered in the

4

semi-algebraic database model is first-order logic augmented with polynomial inequali-
ties, and relation variables of fixed arities, which we denote by FO[R]. We prove that
FO[R] augmented with while-loops, a language which we denote by FO[R] + while,
yields a complete query language for this model. It is instructive to contrast this re-
sult to Chandra and Harel’s, who required unranked relation variables, which can hold
relations of any arity, to achieve completeness for the language QL.

We then bootstrap this result, which yields complete query languages in the geometric
database model under various geometric interpretations. Syntactically, these languages
are all identical to FO[R|+while, but, under each geometric interpretation, the semantics
of a program is appropriately defined so as to be guaranteed generic.

This is accomplished by working on canonical representations of databases, rather than
on the databases themselves.

The approach to finding complete geometric languages just described yields languages
with a very artificial semantics. The main underlying reason is of course the mismatch
between the nature of the geometric database model, in which the atomic entities are
points, and the nature of the languages considered, which have access to the coordinates
of points. However, we can obtain much more natural results when we consider first-
order query languages that do not have access to the specific coordinates of points but
only to the points themselves as atomic entities. Rather than augmenting first-order
logic with polynomial inequalities on real numbers, these query languages provide certain
built-in geometrical predicates on points, besides relation variables of fixed arities.

We show that, for several geometrically interesting choices of the transformation group
(G, there exist appropriate point predicates such that first-order logic on points, aug-
mented with the predicates, expresses precisely all G-generic queries expressible in
FO[R]. For example, we show that providing the predicate between(p, ¢,), which
is true if ¢ lies on the closed line segment between p and r, yields a first-order query
language, denoted FO[between|, that expresses exactly all queries expressible in FO[R]
that are generic for affine geometry.

The results describe above are particularly interesting, because G-genericity of FO[R]
queries is undecidable for every non-trivial transformation group G [11]. Our proof,
which exploits the classical geometrical construction of addition and multiplication, is
inspired by the work of Tarski and his collaborators on axiomatizations of elementary
geometry [14, 15, 12].

Finally, we consider query languages which augment these point-based languages with
relation variables of fixed arities and while-loops. We show that these language are
complete geometric query languages under various geometric interpretations. For ex-
ample, one of our results is that the language FO[between] + while is complete for the
affine-generic geometric queries.

Complete generic query languages relative to FO[R] were first discovered by Kuijpers,
Paredaens, and Suciu [8]. Our results improve upon theirs in the sense that our languages
are purely point-based, while the languages of [8] involve both variables ranging over
points and variables ranging over real numbers. Papadimitriou, Suciu, and Vianu [10]

obtained relative completeness results for point-based query languages in the context of
a different type of genericity than the geometric types of genericity we consider here.

For simplicity, we prove our results for purely spatial database models. To be of practical
interest, spatial database models need to support both spatial and non-spatial data. We
indicate how our results can be extended to this more general setting.

This paper is organized as follows. The semi-algebraic and geometric database models
are presented in Section 2. Semi-algebraic and geometric queries and the notion of
genericity are reviewed in Section 3. Complete query languages based on FO[R]+ while
are presented in Section 4. Completeness results for point-based languages relative
to various types of geometric queries expressible in FO[R] are presented in Section 5.
Completeness results for point-based languages relative to various types of arbitrary
geometric queries are presented in Section 6. Finally, the extension of our results to the
case in which also non-spatial data are present is discussed in Section 7.

2 Semi-algebraic and geometric databases

In this section, we define semi-algebraic and geometric databases.

Both database models are described using the first-order language of the ordered field
of the real numbers (R, <,+, x,0,1), i.e., the language (<,+, x,0,1). A first-order
formula in this language is called a real formula. By Tarski’s theorem [16], every real
formula can effectively be transformed into an equivalent quantifier-free one (equivalent
in R). So we can implicitly assume real formulas to be quantifier-free. A consequence
of Tarski’s theorem is that truth of real sentences in R is effectively decidable.

Let k > 0. A subset A of R¥ is defined by a real formula o(x1, ..., zy) if
A= {(ala"'aak) < Rk | (p(ala"'aak)}‘

A subset of R” is called semi-algebraic if it can be defined by a real formula. Rephrased
in a vocabulary slightly more expanded than (<,+, x,0,1), a semi-algebraic set is a
finite union of sets that can be defined by a system of polynomial inequalities with
integer coefficients. (In practice, rational coefficients will often be used, too. This does
not enlarge the class of sets being considered, as the denominators can be eliminated.)

Example 2.1 Figure 1 shows a heart-shaped semi-algebraic set in R?, which can be
defined as follows:

{(z,9) [(x+1)*+y* <1V (z—-1)24+y*<1V
(-1<z<1Ay>-=2A(+1)°+@y+2°>1V (z-1)*+(y+2)*> 1)}

Figure 2 shows another, arrow-shaped, semi-algebraic set in R? which can be defined as
follows:

{(y)[(2<z<T A=y V(e+ty22A20—y<2A2y—2<2)}

Since the latter set is defined entirely in terms of linear (in)equalities, it is called semi-
linear. a

Figure 1: The semi-algebraic set of Example 2.1.

Figure 2: The semi-linear set of Example 2.1.

A semi-algebraic database is essentially a store of semi-algebraic sets. To define this
formally, we recall that a relational schema is a finite set o of relation names, where
each relation name is assigned an arity.

Definition 2.2 Let o be a relational schema. A semi-algebraic database over o is a
structure’ D over ¢ with domain R such that, for each relation name R of o, RP is a
semi-algebraic subset of R¥, where k is the arity of R in o. O

Example 2.3 Let o be the scheme {R, S}, wherein both R and S are binary. The
structure D with domain R, with RP the semi-algebraic set shown in Figure 1 and S?
the semi-linear set shown in Figure 2, is a semi-algebraic database over o. a

Semantically, a semi-algebraic database can be seen as a relational database, with the
exception that the relations may be infinite, as semi-algebraic sets may be infinite.
Syntactically, however, a semi-algebraic database can be described finitarily using a
(quantifier-free) real formula for each relation name in the schema of the database. We
formally define a representation of a semi-algebraic database as follows:

Definition 2.4 Let o be a relational schema and let D be a semi-algebraic database
over o. A function ® from the relation names of o to real formulas is a representation
of D if, for each relation name R of o, ®(R) defines R”. O

Example 2.5 Let o be the scheme {R, S}, and let D be the semi-algebraic database
considered in Example 2.3. The function which associates with R and S the respective
formulas given in Example 2.1 is a representation of D. O

Semi-algebraic databases can be seen as underlying geometric databases, which we define
next. From now on, we reserve n to denote the dimension of a geometric space which we
shall identify with R™. Let k£ > 0. We shall call a k-ary relation on R" semi-algebraic
if its image under the canonical bijection? between (R")* and R™ is a semi-algebraic
subset, of R"¥.

Definition 2.6 Let o be a relational schema. A geometric database over o in R™ is a
structure D over o with domain R" such that, for each relation name R of o, R? is
semi-algebraic. a

A geometric database D over ¢ in R™ can be viewed naturally as a semi-algebraic
database D over the schema &, which has, for each relation name R of o, a relation
name R with arity kn, where k is the arity of R in 0. For each relation name R, of arity

k, R” is obtained from RP by applying the canonical bijection between (R")* and R"".

L Structure is used here in the sense of mathematical logic [4]. A structure associates, with each of
its relation names, a relation of the appropriate arity over the domain of the structure.
2The canonical bijection between (R™)F and R"™* associates with each k-tuple (x1,...,x;) of R™ the

nk-tuple (x},...x},...,x{,...,x}), where for 1 <i < kand 1 < j <n, x} denotes the j-th component

’

of x;.

Example 2.7 The database defined in Example 2.3 can be seen as the underlying semi-
algebraic database for a geometric database in R?, consisting of two unary relations (i.e.,
sets) of points in the plane. a

3 Semi-algebraic and geometric queries

In this section, we define algebraic and geometric queries and review a classification for
geometric queries based on genericity types.

Definition 3.1 Let o be a relational schema. A k-ary semi-algebraic query Q over o is
a partial function on the set of semi-algebraic databases over o, satisfying the following
conditions:

1. for each semi-algebraic database D over o on which @ is defined, Q(D) is a semi-
algebraic subset of R*; and

2. there is an algorithm taking representations of semi-algebraic databases as input,
and returning real formulas as output, satisfying the following conditions:

(a) for each semi-algebraic database D over o, and for each representation ® of
D, the algorithm terminates on input ® if and only if () is defined on D; and

(b) for each semi-algebraic database D on which @ is defined, and for each repre-
sentation ® of D, the output of the algorithm on @ is a real formula defining

Q(D). 0

The second condition in Definition 3.1 indicates in which sense semi-algebraic queries
are computable.

Example 3.2 Let 0 = {R, S} be the schema defined in Example 2.3. The following
are examples of semi-algebraic queries over o:

1. “Compute the projection onto the x-axis of the semi-algebraic set associated with
R” is a unary semi-algebraic query.

2. “Find the intersection of the semi-algebraic sets associated with R and S” is a
binary semi-algebraic query.

3. “Decide whether the semi-algebraic set associated with R is topologically con-
nected” is a null-ary® semi-algebraic query.

4. “Compute the convex hull* of the semi-linear set associated with S” is a binary
semi-algebraic query.

3The null-ary semi-algebraic sets,) and {()}, can be interpreted as the Boolean values false and
true, respectively.
“The convex hull of a set S is the smallest convex set containing S.

5. “Decide whether the semi-algebraic set associated with R is a circle” is a null-ary
semi-algebraic query.

6. “Decide whether there is a point in the semi-algebraic set associated with R and
a point in the semi-linear set associated with S at distance 1 from each other” is
a null-ary semi-algebraic query.

7. For the query to follow, we consider, besides R and S, a third relation scheme T’
of arity 2. “Decide whether each of the relations R, S, and T a is singleton such
that the triple of points (u,v,w), with u € R, v € S, and w € T, is a positively
oriented orthonormal basis® of R?” is a null-ary semi-algebraic query.

8. “Compute the left-most points of the semi-algebraic set associated with R” is a
binary semi-algebraic query.

9. “Decide whether the semi-linear set associated with S contain the point (0,0)” is
a null-ary semi-algebraic query. a

In analogy to Definition 3.1, we define geometric queries.

Definition 3.3 Let o be a relational schema. A k-ary geometric query () over o in R"
is a partial function on the set of geometric databases over o, satisfying the following
conditions:

1. for each geometric database D over o on which @ is defined, Q(D) is a semi-
algebraic subset of (R™)*; and

2. @ is computable in the sense of Definition 3.1 (where “semi-algebraic” is replaced
by “geometric”). O

Example 3.4 Consider again the queries in Example 3.2. Assume that we work in the
plane, i.e., in R?.

e Query 1 is not an example of a geometric query.
e Queries 3, 5, 6, 7, and 9 are examples of null-ary geometric queries.

e Queries 2, 4, and 8 are examples of unary geometric queries. O

A basis of R™ is an (n + 1)-tuple of points (o, e1,...,e,) such that the vectors oef through oe,, are
linearly independent. A basis is orthogonal if the vectors Gei through oe,, are pairwise orthogonal. A
basis is orthonormal if it is orthogonal and the vectors oef through oe,, have unit length. A basis is
positively oriented if it has the same orientation as the standard basis of R"™, which is the case if the
determinant of the n x n matrix consisting of the components of the vectors oe{ through oe;, is positive;
it is negatively oriented otherwise.

10

Since geometric databases can be identified with certain kinds of semi-algebraic data-
bases, a comparison of Definitions 3.1 and 3.3 reveals that geometric queries can be
identified with certain kinds of semi-algebraic queries.

In the geometric database model, the result of many natural queries does not depend on
the particular coordinates assigned to points by the canonical coordinate system in the
space considered. More precisely, natural geometric queries preserve coordinate system
transitions. The coordinate transitions that must be considered, of course, depend
on the geometry of the space, which can be described by a group of transformations
(permutations) of space. Therefore, we adopt the following general notion of genericity,
originally proposed by Paredaens, Van den Bussche, and Van Gucht [11].

Definition 3.5 Let o be a relational schema and let) be a geometric query over o
in R”, and let G be a group of transformations of R". Then () is called G-generic if,
for any two geometric databases D and D' over o in R™ for which D' = ¢(D) for some
transformation g in G, we have that Q(D') = g(Q(D)). O

In affine geometry, for instance, G is the group of affinities, i.e., compositions of linear
transformations and translations, and the corresponding class of queries is called the
affine-generic queries. In two-dimensional affine geometry, it would make no sense to
ask for all points in the database lying in the unit disk, as this is not an affine-generic
query. (Points can be moved in and out of the unit disk by applying a translation, which
is an affine transformation). It would make sense, however, to ask for all straight lines
contained in the database, as this query is affine-generic: collinearity is preserved under
affinities.

Besides affine genericity, there are several other notions of genericity that correspond
to sensible geometry. We summarize some of them below:

e Similarity genericity, with respect to the group of similarities, i.e., compositions
of isometries (see below) and scalings. This genericity notion corresponds to Eu-
clidean geometry.

e [sometry genericity, with respect to the isometries, i.e., compositions of transla-
tions, rotations, and reflections. This genericity notion corresponds to the frag-
ment of Euclidean geometry where absolute rather than relative measures are
important.

e Direct-isometry genericity, with respect to the direct isometries, i.e., compositions
of translations and rotations. This genericity notion corresponds to the fragment
of the previous geometry where also orientation is important. In this geometry,
two objects are considered isomorphic if one can be mapped to the other by a rigid
motion.

6A rigid motion is a transformation that can be specified as a composition of translations and
rotations [5].

11

e Translation genericity, with respect to the translations. This genericity notion
corresponds to the fragment of the previous geometry where the relative position
of objects (e.g., in the two-dimensional case, above or left of) is important.

Example 3.6 Consider again the queries in Example 3.2.

e Queries 2, 3, and 4 are affine-generic geometric queries.

Query 2 is affine-generic, because affine transformations are permutations, and the
concept of intersection of a pair of sets is preserved under permutations.

Query 3 is affine-generic, because affine transformations are homeomorphisms,
which preserve topological connectedness [9].

To see that Query 4 is affine-generic, let U and V' be an arbitrary pair of sets in
the plane for which there exists an affinity g such that ¢g(U) = V. We need to
show that g(convexhull(U)) = convexhull(V'). We show that g(convexhull(U)) C
convexhull(V). (The reverse inclusion holds because g ! is also an affinity.) Let p
be an arbitrary point in convexhull(U). Then p = Aip; + Aops + A3ps, with py, po,
and p3 points in U, A\; > 0, Ay > 0, and A3 > 0, and \; + Ay + Ay = 1. Since g is
an affinity, there exist real numbers a, b, ¢, d, e, and f with ad — bc # 0 such that,
for each point ¢ = (z,v), 9(¢) = (ax+ by +e,cx+dy+ f). From this information,
it is a simple algebraic exercise to determine that ¢(p) € convexhull(V).

e Query 5 is a similarity-generic query that is not affine-generic.

Query 5 is similarity-generic, because similarities are defined to be exactly those
transformations that preserve shape. Hence, if U and V" are sets such that ¢g(U) =
V', with ¢ a similarity, then either U and V' are both circles, or neither of them
are circles.

Query 5 is not affine-generic, however. To see this, let U = {(x,y) | 2> + y* = 1}
and V = {(z,y) | 42 + y*> = 1}. Clearly, U is a circle and V is an ellipse that is
not a circle, yet the affinity g(z,y) = (z,2y) maps U to V.

e Query 6 is an isometry-generic query that is not similarity-generic.

Query 6 is isometry-generic, because isometries are defined to be exactly those
transformations that preserve distance. Hence, if U = (U, Us,) and V' = (Vi, V5)
are geometric databases such that g(U) = V, with ¢ an isometry, then either U
and V' both satisfy the distance condition in the query, or neither of them does.

Query 6 is not similarity-generic, however. To see this, let U and V be the
databases ({(0,0)},{(0,1)}) and ({(0,0)},{(0,2)}) respectively. Clearly, U satis-
fies the condition of the query and V' does not, yet the similarity g(x,y) = (2x, 2y)
maps U to V.

e Query 7 is a direct-isometry-generic query that is not isometry-generic.

To see that Query 7 is a direct-isometry-generic query, let U = (U, Us, Uz) and
V = (V1, Vs, V3) be two geometric databases, and let g be a direct isometry such

12

that g(U) = V. If U satisfies the condition of the query, then U can be inter-
preted as a positively oriented orthonormal basis. Since direct isometries preserve
distance, orthogonality, and orientation, V' also satisfies the condition of the query.

To see that Query 7 is not isometry-generic, let U = ({(0,0)}, {(1,0)}, {(0,1)})
and V' = ({(0,0)}, {(1,0)},{(0, —1)}). Clearly, U is mapped to V by the reflection’
with respect to the x-axis. Since U represents the standard basis, it satisfies the
condition of the query. However, V represents a negatively oriented basis, and,
therefore, does not satisfy the condition of the query.

e Query 8 is a translation-generic query that is not direct-isometry-generic.

Query 8 is translation-generic, because translations preserve the concept of “being
to the left of.”

The query is not direct-isometry-generic, however. To see this, let U = {(0,0), (1,0)}
and V = {(0,0),(—1,0)}. The reflection with respect to the origin® maps U to V.
However, the leftmost point of U, which is (0,0), is not mapped by this rotation
to the leftmost point of V/, which is (-1, 0).

e Query 9 is a geometric query that is not translation-generic.

To see that Query 9 is not translation-generic, let U = {(0,0)} and V' = {(1,0)}.
Clearly, the translation g(z,y) = (x+1,y) maps U to V', However, the origin (0, 0)
is in U, but not in V. O

4 Complete languages for semi-algebraic queries

In this section, we consider the query languages FO[R] and FO[R] + while and show
that the latter language expresses exactly all semi-algebraic queries. For a wide variety
of geometries, we then show how the semantics of programs in this language can be
modified so as to be guaranteed generic, yielding query languages expressing exactly all
generic geometric queries of the type considered.

4.1 Semi-algebraic queries

Let o be a relational schema. A first-order formula ¢(zy,...,2z,) in the language of
the real numbers augmented with the relation names of o defines on each semi-algebraic
database D over o a subset ¢(D) of R* in the standard manner. Since ¢(D) is obviously
semi-algebraic, ¢ thus defines a k-ary semi-algebraic query over o. The basic query
language obtained by all such formulas ¢ is denoted by FO[R].

"Reflections are isometries.
8Reflections with respect to a point are rotations around that point over an angle of 180°, and,
therefore, are rigid motions.

13

Example 4.1 Consider again the queries introduced in Example 3.2.

Each of these queries, except for the connectivity query (Query 3), is expressible in
FO[R].?

Query 1 is expressed as {(z) | (Jy)R(z,y)}.

Query 2 is expressed as {(z,y) | R(z,y) A S (z,9)}.

Query 4 is expressed as

{(@,y) | (F21)(Fy1)(Fr2)(Fy2) (F2s) (Jyz) (FA1) (3A2) (3A3) (S (w1, 51) A S(@2,92) A S(x3,93) A
M>0AXA>0AN>0AN +A+As=1A

T =Mz + AT+ X323 Ay = Aiyr + Aoy + Asys)),

i.e., a point (x,y) is in the convex hull of S if it can be written as a convex
combination of three points (z1,¥1), (22, %2), and (x3,y3) in S.

Query 5 is expressed as

(30)(36)(3r)(r > 0 A (Vo) (Vy)(R(z,y) & (2 —a)” + (y — b)* =17)).

Query 6 is expressed as

(F21) By1) (32) Fya) (R(21,11) A S(ma,y2) A (w9 — 1) + (y2 — y1)* = 1).

Query 7 is expressed as

(Ja11)(Fai2) (Faz1) (Fazz)(3b1)(3b2) (a11a22 — ar2a21 =1
A (Vz)(Vy)(R(z,y) & S(an1z + apy + b1, a1 2 + azy + ba))).

Note that the variables a1, ais, as1, a2, by, by, are used to represent the rigid
motion that maps the point (z,y) to the point (a1 + a2y + by, as1z + any + by).
The formula then expresses that the sets R and S can be mapped to each other
by a direct isometry, i.e., a rigid motion.

e Query 8 is expressed as {(z,y) | R(z,y) A =(32")(Ty')(R(z",y") N 2’ < x)}.

e Query 9 is expressed as S(0,0). a
We can extend FO[R] into a full-fledged programming language, which we denote by
FO[R] + while.

A program over o is a finite sequence of statements and while-loops. Each statement
has the form R := {(z1,...,xx) | ¢(x1,...,2%)}, with R a relation variable of arity k
and ¢ a first-order formula in the language of the real numbers augmented with the
relation names of ¢ and the previously introduced relation variables. Each while-loop

9By the combined results of Grumbach and Su [6] and of Benedikt, Dong, Libkin, and Wong [2], the
connectivity query is not expressible in FO[R]. From results by Schwartz and Sharir [13], it follows,
however, that this query is computable.

14

has the form while ¢ do P, where P is a program and ¢ is a first-order sentence in the
language of the real numbers augmented with the relation names of o and the previously
introduced relation variables.

Semantically, a program in the query language FO[R]+ while expresses a semi-algebraic
query in the obvious way as soon as one of its relation variables has been designated as
the output variable. Of course, since while-loops need not terminate, this query will in
general not be totally defined (as is the case with FO[R] queries).

As announced, we can show that FO[R]+while is complete for the semi-algebraic queries.
Theorem 4.2 FEvery semi-algebraic query is expressible in FO[R] + while.

Proof. Let () be a k-ary semi-algebraic query over a schema o. Let K be the maximum
of k and the arities of relation names of 0. Then every relation in a semi-algebraic
database over o can be defined by a quantifier-free real formula using only the variables
L1y «ooy TK.

We next introduce a specific way of encoding such formulas as natural numbers in
such a way that that the encoding of a subterm or subformula occurring in another
term or formula comes before the encoding of that term or formula. Notice that these
formulas, and the terms that can occur in them, are strings over the finite alphabet
¥ = {ai,...,a9:x}, where the alphabet symbols are shown in Table 1. Any string
(a;, .. .a;,) over ¥ can be encoded as a natural number enc(a;, . ..a;,) = p'' ...p'r, where
p; is the j-th prime number. Observe that if s is a substring of ¢, then enc(s) < enc(t).

ay
as
as
ay
as
ag
az
as
ag

— o X +IN< 1 ——

8
-

aio

a9+K TK
Table 1: The alphabet ¥ of formulas and terms.

Now let R be a relation name of arity [in 0. We show that there is a program Encodeg
which, when applied to a database D, computes in the variable ny the encoding of a
real formula defining RP.

To do so, we point out that programs in FO[R] + while have full computational power
on natural numbers. Indeed, natural numbers can be stored in variables in the form
of unary singleton relations, and it is easy to simulate counter programs. The program

15

n:=0;T:=0; F:=0;
Found := false;
while - Found do
n:=n+1;
if n encodes z; then
T:=TU{(n,a,...,a;,a1) | ai,...,a; € R} else

if n encodes x; then
T:=TU{(n,a1,...,a;,a;) | ay,...,a; € R} else
if n encodes 0 then
T:=TU{(n,ay,...,a;,0) | ay,...,a; € R} else
if n encodes 1 then
T:=TU{(n,ay,...,a;,1) | ay,...,a; € R} else
if n encodes (s +t) then
T:=TU{(n,a1,...,a;,c+d) | T(enc(s),a,...,a;c) AN T(enc(t),a,...,a;,d)} else
if n encodes (s x t) then
T:=TU{(n,a,...,a;,cd) | T(enc(s),ai,...,a;,c) A T(enc(t),a,...,a;,d)} else
if n encodes (s < t) then
F:=FU{(n,ai,...,a;) | (3c)(3d)(T(enc(s),a1,...,a;,c) A
T(enc(t),a,...,a;,d) A c<d)} else
if n encodes (—p) then
F:=FU{(n,a1,...,a;) | ~F(enc(yp),ai,...,a;)} else
if n encodes (¢ V) then
F:=FU{(n,a1,...,a;) | F(enc(y),ai,...,a;) V F(enc(v),ai,...,a;)};
Found := n encodes a formula A (Yay) ... (Ya))(F(n,a1,...,a;) < R(ai,...,aq;))
od;
nr = n.

Figure 3: The program Encodeg.

Encodeg, shown in Figure 3, builds up relations 7" (for term) and F' (for formula). The
arity of T is [+ 2; each tuple in T is of the form (¢, ay,...,a;,7), where ¢ is the encoding
of a term which only uses the variables x1, ..., x;, where aq, ..., a; are real numbers, and
where 7 is the value of ¢ evaluated under the valuation xy — aq,...,z; — a;. The arity
of F'is [+ 1; each tuple in F' is of the form (f,ay,...,qa;), where f is the encoding of a
formula which only uses the variables xy, ..., z;, and where f(ay,...,q) is true.

The program Encoder works, because encodings and decodings can be performed effec-
tively, and because terms and formulas are evaluated before the terms and formulas in
which they occur.

We define the program FEncode as the composition of all programs Encoder for all
relation names R of o.

We next show that there exists a program Decode which, when applied to the encoding
f of a formula ¢, computes in a relation variable Dec the semi-algebraic subset of
R* defined by ¢. Thereto, it suffices to modify the program Encoder in Figure 3 as

16

follows. First, substitute the subscript & for the subscript [in Encoder. Next, the
statement assigning the variable Found in the body of the while-loop is replaced by
Found :=n = f. The last statement of the program is replaced by Dec := {(ay, ..., a) |
F(n,ay,...,ax)}.

Now, revisiting the k-ary computable query () over o, denote the set of relation names of
o by {Ri,..., R, }. Then there exists a counter program M such that, for each database
D on which @ is defined, if (ng,,...,ng,) are the results of applying program Encode
to D, then M(ng,,...,ng,) is the encoding of a quantifier-free formula defining Q (D),
using the variables xy,...,zx. If Q(D) is not defined, then M does not halt on this
input. As already noted above, we can simulate M by a program P in FO[R] + while.
Hence, query (@ is expressed by the program

Encode; P; Decode. O

Recently, a lot of attention has been devoted to semi-linear databases, which are essen-
tially stores of semi-linear sets, and languages to query these databases. Semi-algebraic
queries on semi-linear databases returning semi-linear outputs are called semi-linear
queries. To design languages for expressing semi-linear queries, it is natural to consider,
as a core language, the language FO[Ryy,), which is FO[R] restricted to formulas in
which only linear polynomials occur. From re-examining the proof of Theorem 4.2, the
following is readily derived.

Corollary 4.3 Every semi-linear query is expressible in FO[Ry;,| + while.

In fact, the proof is the same as that of Theorem 4.2, with the exception that every
statement in that proof which refers to multiplication must be omitted.

4.2 (Geometric queries

We will assume that we work in the n-dimensional space R", n > 1.

Let o be a relational schema, and let G' be a group of transformations of R". Represen-
tations of geometric databases over o are essentially strings over some finite alphabet
and hence can be compared lexicographically. We can thus define the following notions.

Definition 4.4 1. Two geometric databases D and D’ are called G-isomorphic if
D' = g(D) for some g in G.

2. The G-canonization of a geometric database D, denoted by canong(D), is the
geometric database D’ which is G-isomorphic to D and has a representation that
occurs lexicographically first among the representations of geometric databases
G-isomorphic to D.

3. The G-type of D, denoted by Type(D), equals {g € G | g(D) = canong(D)}. O

17

Clearly, if D and D’ are G-isomorphic databases, then canong(D) = canong(D').

Canonization can be carried out effectively for a wide variety of transformation groups
G. Tt suffices for G to be identifiable with a semi-algebraic subset of RY, for some fixed ¢,
such that the “graph” of G, the set {(g,x1,..., 2,2}, ...,2)) | g € GAg(xy,...,2,) =
(z),...,2)} is a semi-algebraic subset of R‘?". If this is the case, we call G semi-
algebraic. For semi-algebraic transformation groups GG, we can compute a representation
of canong (D) from a representation of D by enumerating all representations of databases
D' until we find one for which (3g € G)(g(D) = D') is true. This condition is a real
sentence, and, therefore, decidable by Tarski’s theorem.

Example 4.5 Most naturally occurring transformation groups are semi-algebraic; in
particular, all transformation groups considered in Section 3 are.

The group of affinities is semi-algebraic. An affinity is a composition of a linear trans-
formation, which can be described by a regular n x n matrix, and a translation, which
can be described by an n-dimensional vector. If n = 2, we can identify the group of
affinities with the semi-algebraic set

{(au, a2, A1, G2, b1, b2) | Q11022 — Q12021 7"é 0},
whence the graph of this group equals

{(an, a12,a21,aQZ,bl,bQ,x,y,x',y’) | 11022 — Q12091 7 0 A
IL" =a1xr + ay + b1 A yl = a91T + a2y + bg},

which is clearly a semi-algebraic set.

The group of similarities is semi-algebraic. If n = 2, the graph of this group equals
{(kya,b,c;d,x,y, 2, y) | k> =1 A a®> + 0> #0 A
¥ =ax —by+c Ay = kbr+ kay + d},

which is clearly a semi-algebraic set.

The group of isometries is semi-algebraic. For n = 2, we only need to refine the case for
similarities by insisting that a? + 0% = 1.

The group of direct isometries is semi-algebraic. For n = 2, we only need to refine the
case for similarities by insisting that a? +b? = 1 and k = 1.

The group of translations is semi-algebraic. For n = 2, we only need to refine the case
for similarities by insisting that e =1, b =0, and k = 1. a

We are now ready to define a modified semantics of programs, in conjunction with
some semi-algebraic group G. If P is a program expressing a geometric query and D a
database, then we define

P(D) = J{g™" (P(canong(D))) | g € Typea(D)}.

We can show the following.

18

Theorem 4.6 The partial function mapping D to P¢(D) for each geometric database D
is a G-generic geometric query (in particular, it is computable). Moreover, if P already
expresses a G-generic query then PY(D) = P(D) for each geometric database D.

Proof. We first prove that the mapping PY is a G-generic geometric query. The
computability of PY follows from the arguments made above. We can thus concentrate
on the G-genericity. Let D and D’ be geometric databases such that D’ = g(D) for some
transformation g in G. We have to prove that P“(D’') = g(P%(D)).

Since D' = ¢g(D), and also canong(D') = canong(D), we have furthermore that

Type(D') = Typeg(D) o g™,

where composition must be interpreted element-wise. Thus we can deduce that

g(Pe(D)) = g(U{h " (P(canona(D))) | h € Types(D)})
= Ulgoh™'(P(canong(D))) | h € Typeq(D)}
= J{(hog™") " (P(canong(D))) | h € Typeg(D)}
U{W' "1 (P(canong(D))) | h' € Typeq(D')}
= PY(D").

If P itself is G-generic, then, for each g in Type (D),

g~ (P(canong (D)) = g~ (P(9(D))) = g~ 0 g(P(D)) = P(D),

whence P¢ = P. O

According to Theorem 4.6, we can produce complete, generic, geometric query languages
for a wide variety of geometries. Notice that all these languages are syntactically identi-
cal to FO[R] + while, and are thus very artificial. In Section 6, we provide more natural
languages which are sound and complete for the various classes of computable geometric
queries. Some of the groundwork to establish these results will be laid in the following
section.

5 First-order geometric query languages

In this section, we first propose a family of first-order query languages, FOIII], parame-
terized by sets Il of so-called point predicates. We then proceed by identifying several
members of this family and showing that each of these is sound and complete for a
natural genericity class of geometric queries expressible in FO[R)].

We recall that the domain of a geometric database in dimension n is R", i.e., the
geometric space itself, the elements of which we naturally call points. In the logic-based
query languages we will define next, the variables stand for points (as opposed to real

19

numbers). Thus the predicates used in these languages are evaluated over the set of
points of R™ (as opposed to the set of real numbers) and will therefore be referred to as
point predicates.

Apart from relation names, we consider the following point predicates':

e between(p;, p2, p3), which is true if either py lies on the closed line segment be-
tween p; and ps, or if p1, p2, and ps coincide;

e equidistance(pi, p2, p3, p4), which is true if the distance between p; and p, equals
the distance between p; and py;

e unitdistance(p;, ps), which is true if the distance between p; and p, equals 1;

e positive(o, py,...,p,), which is true if (0, p1,...,pn), is a positively oriented basis
of R™;
oriented,

e smaller;(p;,p2), 1 < i < n, which is true if the i-th component of p; is smaller
than the i-th component of p,.

Now, let Il be a finite set of point predicates such as the ones above, and let o be a
relational schema. A first-order formula

(01, ..., 0x) over the relation names of o and the predicate names in II defines on each
geometric database D over o a subset ¢(D) of (R")* in the standard manner.!' Notice
that variables now range over R" instead of R, i.e., over points instead of coordinates.
If the predicates in IT can be defined by real formulas (in terms of the coordinates of the
points involved, ¢ is equivalent to an FO[R]-formula i over the schema @ corresponding
to o (cf. Section 2). Hence, ¢(D) will be semi-algebraic and thus ¢ defines a k-ary
geometric query over o. The query language obtained is denoted by FOIII].

We observe that all point predicates considered above are definable by real formulas. To
illustrate this, we assume that we work in the plane. Furthermore, the first and second
coordinates of a point p will be denoted by p' and p?, respectively.

1. The real formula
(3)\1)(3)\2)(]75 =)\1}7% +)\2]7;) /\p% =)\1}7% +)\2])3 VAN)\1 Z 0A)\2 Z 0A)\1 +)\2 = 1)
defines the predicate between(p;, p2, p3).

2. The real formula (p; —p3)?+ (p?—p3)* = (p5—pi)*+ (p3—p7)? defines the predicate
equidistance(py, p2, ps, P4)-

3. The real formula (p} —p})?+(p?—p2)? = 1 defines the predicate unitdistance(p;, p).

10The predicates between and equidistance were introduced by Tarski [15].
HWe use “hatted” symbols to denote point variables.

20

4. The real formula (p; — o) (p? — 0%) — (p3 — 0')(p% — 0?) > 0 defines the predicate

positive(o, p1, p2).

5. The real formulas p; < p and p? < p2 define the predicates smaller;(p;, ps) and
smallers(p1, p2), respectively.

Example 5.1 Consider again the queries in Example 3.2.

Query 4 can be expressed in FO[between| as
{@\ | (3@1)(362)(363)(5(@1) A\ S('I/J\g) A\ S('I/J\g) A\ triangle(ﬁ, @1,62,@\3))},

where triangle(v, vy, U9, U3) states of the point o that is in the triangle spanned by the
points vy, Uy, and 03. The predicate triangle(v,v;,02,03) is an abbreviation for the
formula

(3p) (between(vy,p, v2) A between(vs, v,Dp)).

Query 5 can be expressed in FO[between, equidistance]| as

(3¢)(3u)(3F0)(Vp)(R(p) < equidistance(c, p, i,)). O

We intend to show that, for each of the sets IT of point predicates listed in Table 2, the
language FO[II] captures precisely all geometric queries expressible in FO[R] that are
generic with respect to the corresponding genericity notion.

Genericity notion Point predicate set 11

Affine genericity {between}

Similarity genericity {between, equidistance}

Isometry genericity {between, equidistance, unitdistance}

Direct-isometry genericity | {between, equidistance, unitdistance, positive}

Translation genericity {between, equidistance, unitdistance, positive,
smallery,...,smaller,}

Table 2: Point predicate sets for various geometric genericity notions.

We first consider the language FO[between|. We are going to show that FO[R]-formulas
can be simulated by FO[between] formulas that are parameterized by a basis, in a way
that we shall make precise in Lemma 5.2.

It is well-known (e.g., [12]) that there exists a formula in the language (between)

which defines the predicate basis(Zp, Z1, . . ., 2,) which is true for the points o,eq,. .., e,
if (o0,e1,...,e,) is a basis of R™.
In a basis (o,e1,...,e,), we associate to any real number p the point p on the line

oe, for which op = poef, i.e., the point on the first coordinate axis with coordinate p.
Conversely, each point p on the line oe; is associated to the real number p for which
op = poe;. We shall denote this real number p as op/oef.

21

It is also well-known (e.g., [12]) that the arithmetic operations on these numbers are
first-order-expressible in the language (between). Therefore, we may assume the ex-

istence of the point predicates less(Zp, 21, .-, 2n, T, Y), plus(Zo,Z1,---,2n, 2,4, 2), and
times(Zo, 21, - -, 2n, Z, Y, 2), such that
e less(o,eq,...,en,D,q) is true if (0,e1,...,€,) is a basis, p and ¢ are points on the

line oe;, and op/oef < o¢/oet;

e plus(o,eq,...,en,p,q,7) is true if (o,e1,...,e,) is a basis, p, ¢, and r are points
on the line oe;, and op/oet + o(/oe; = of /oei; and

e times(o,e1,...,en,p,q,7) is true if (o,eq,...,e,) is a basis, p, ¢, and r are points
on the line oe;, and op/oet x o /oe; = of | oe].

We also need the predicate coordinates(Zo, 21, ..., 2n, U, U1, ..., Uy,) that is true for the
points o, ey, ..., €, D, P1,---,Pn if (0,€1,...,€,) is a basis of R", py, ..., p, are points on
the line oe;, and
_,_opl _, by
op = oer + -+ — oep.
1 o€l

In other words, one can think of the points p; through p,, on the line oe; as representing
the coordinates of the point p. In subsequent results, the coordinates predicate will be
used to associate points with their respective coordinates. As shown in [12] (Chapter 16,
pages 163-164), the predicate coordinates can be defined by an FO[between| formula.

Finally, we observe that the predicate collinear(Z,,Z), which is true for the points p,
q, and r if p, ¢, and r are collinear, can be expressed as

between(Z,y,2) V between(y,Z,2) V between(z,7, T).

Using the predicates introduced above, we can simulate FO[R] formulas by FO[between]
formulas that are parameterized by a basis, in the following sense.

Lemma 5.2 Let o be a relational schema. For each FO[R] formula &(z1,...,2n)
over @, there erists an FO[between| formula 5(20, Zlyeees 2y X1y ey L) over o, with
205 21y -+ 2ns T1y- .-, T free point variables, such that, for each geometric database D
over o in R"™, for each basis (0,ey,...,e,) of R", and for all points p,...,pm on the
line oeq, R

DE&(o,e1,.- €n,D1y---Dm)

if and only if

o[BI
0—61) AR (E))
where « is the unique affinity of R™ mapping the basis (0,e1,...,e,) into the standard
basis of R™.

22

Proof. Without loss of generality, we may assume that every atomic subformula of ¢ is
either of the form x <y, v +y =2, x Xy =2z, x =0, or x = 1, where z, y and 2 are
real variables, or a relational atom in which only real variables occur. We now prove
Lemma 5.2 by structural induction.

~

1. If £ is & < y, then € is less(Zo, 21, - - - » Zns T, §).

2. If €is ¢ +y = 2, then € is plus(Zo, 21, . - -, Zn, T, 7, 2)-

3. If £is ¢ X y = z, then € is times (2, 21y« -+ 2ny L, Yy 2)-

4. IfEisz =0, then £ is 7 = .

5. If Cisa =1, then £ is 7 = 2.

6. If £ is a relational atom R(zi,... 2L, ... 27 ... 2™), with R a relation name of
arity m in o, then
~ m . .
€= (Fu)...(Fn)(R(U1, ..., Um) A)\ coordinates(Zo, 21, .. ., Zp, Ui, T, . . ., Th)).

i=1

To see that this translation is correct, we need to make some observations about

the coordinates predicate. Given a point p in R"” and given points p;,...,p, on
the line oe;, we know that coordinates(o, ey, ..., en,p,p1,...,Py) is true if and only
if
s >

— op1 — OPn —

op" = — oei +-:++ — 0€p.

P 0—61> 1 0—61> n
Since affinities preserve linear combinations of vectors, the above equality is equiv-
alent to

a(op’) = — «a(oet) +---+ — afoe).
oeq oel

Since « maps the basis (o,€1,...,e,) to the standard basis of R”, the above

equality is equivalent to

Sl
as

)

Thus, given pi,...,pL, ..., p", ..., p™ on the line oe;, we have that

o(p) = (

D):6(0,61,,en,p%,,pi,,p?l,,pnm)

if and only if

pon S G S
WD) T [2 OPn opi” op)y
0—€1>’ 70—€1>7) (E)a' 70—€1>

7. If € is —p, then & is —).

23

8. If £istp V 0, then € is ¢ V 0.
9. If £ is (Fz)h(x, x4, ..., 2p), then € is
(3%) (collinear(Zo, 21, &) A(Z0, Bty - - -y Zns By Bty - - s Bm))-

To see that this translation is correct, we observe that, given points py,...,p, on
the line oe;, D |= 5(0, €1y y€nyP1,- -, Dm) if and only if there exists a point p
on the line oe; such that D @Z(o, €1y -y EnyDyD1,---,Pm)- By induction, this
statement is equivalent to the existence of a point p on the line oe; such that

o(D wz)(_f3 Z @)

Since each real number can be written as op/6e{ for some point p on the line oe;,
the above statement is equivalent to

—> —
n op1 OPm
D — e, — | .
@ (2 T
This completes the proof of Lemma 5.2. O

To show that FO[R]-expressible affine-generic queries are expressible in FO[between],
we must somehow eliminate the bases which parameterize the formulas in FO[between]
that simulate FO[R] formulas. We shall use affine genericity to show that these bases
can be eliminated properly. To do so, we will first prove a genericity result that holds
for geometric queries that are expressible by FO[R] formulas, and that is at the core of
the elimination of bases.

Lemma 5.3 Let G be a semi-algebraic group of transformations of R". Let o be a
relational schema, and let D be a geometric database over o in R™. Let D be the
underlying semi-algebraic database over @. Let ¢ be an FO[R] formula expressing a
G-generic geometric query over o in R™ Then, for each g in G, ¥(g(D)) = g(¢(D)).

Proof. Lemma 5.3 is non-trivial, because a semi-algebraic group of transformation
may (and, in general, will) contain transformations whose coordinates are not all real
algebraic. If ¢ is such a transformation, g(D) need not be semi-algebraic, whence the
definition of G-genericity cannot be applied to D, g, and 1. However, if all coordinates
of g are real algebraic, then ¢(D) is semi-algebraic, and ¥ (g(D)) = g(v(D)), by G-
genericity. Hence, the following real sentence is true about the field of real algebraic
numbers:

(Vg € G)(¥(9(D)) = g(¢(D))-
Since Tarski [14] showed that the field of the real algebraic numbers and the field of the

real numbers are elementary equivalent, it follows that this sentence is also true about
the field of the real numbers, whence the lemma holds. O

We can now round off our investigation of the language FO[between].

24

Proposition 5.4 The query language FO[between] expresses exactly all affine-generic
geometric queries expressible in FO[R].

Proof. First, we observe that queries expressed in FO[between] are indeed affine-
generic, since FO[()] preserves arbitrary permutations of R"™, and since the ternary be-
tweenness relation on R” is invariant under all affine transformations of R".

Now, consider a k-ary affine-generic geometric query over the schema o in R”, expressed
by an FO[R] formula ¢ (z},...,zL, ... 2% ... 2) over 7.

b n? n

By Lemma 5.2, there exists an FO[between] formula

TiaA A ~ ~1 ~1 ~k ~k

U(Z0y 21y vy Py Ty e v ey Ty ooy Dy eney)
over o, with 2,21,...,2,, T1,...,2L,...,2% ..., 2 free point variables, such that,
for each database D over o, for each basis (o0,e;,...,e,) of R" and for all points
1 1 k k :
Dis--sDPps---sPyy-.., Py on the line oeq,

D):12)\(07617‘“7€n7p%7"'7p7117"'7p]f7"'7p7]z)

if and only if

— 1 — 1
N N S U S L
0—€1> AR 0—61) y ottt (E)) ") (E})
where « is the unique affinity of R™ mapping the basis (o, €y, ..., e,) into the standard

basis of R".
Consider the following FO[between]-formulas ¢’ and ¢:

go'(zo,kzl,...,zn,f},...,f;,...,:z’f,...,:zg) = basis(29, 21y .-, Zn) A
A ;\cozzinear(zo,zl,aﬁ;) A D(Z0, 21y By By BN B L 2R); and
oG B) = (3)(38) . (F5)(F5Y) .. (3E).. . (35)) ... (3aD)
(¢ (o, Bty By B BT RL BN A
/k\ coordinates (2o, 21, - - -, Zn, Uiy Tiy - -, 21)).
i=1

Formula ¢ expresses a k-ary geometric query over ¢ in R".

To see the effect of this query, let D be a geometric database over ¢ in R". Let
(0,€e1,...,e,) be an arbitrary basis of R™ and let a be the affinity mapping the basis
(0,€1,...,€e,) into the standard basis of R™. Consider the partial output of ¢ obtained
by substituting o, ey, ..., e, for 2y, Z1, ..., Z,, respectively.

It follows from Lemma 5.2 that ¢ simulates ¢ (with points on the line oe; being used
to represent real numbers), with the exception that the n components of a point in R”
are its coordinates with respect to the standard basis, whereas in ¢, their representa-
tions refer to the basis (o, e,...,e,). Thus, the partial output of ¢ considered equals
a Y ((a(D))). Since there is a one-to-one correspondence between the affinities and the

25

bases of R", it follows that (D) = U, a (¢ (a(D))), where o ranges over all affinities
of R™. Since 1) expresses an affine-generic geometric query, it follows from Lemma 5.3

that, for each affinity o of R™, o (¢)(a(D))) = (D), whence (D) = (D). O

This concludes the case of the language FO[between]. It now turns out that the other
instances of Table 2 can be dealt with in almost the same way.

Theorem 5.5 The query language FOIII] expresses exactly all generic geometric queries
expressible in FO[R], with I1 and the genericity type as listed in Table 2.

Proof. The case where II = {between} has been dealt with in Proposition 5.4. We
next show that Theorem 5.5 holds for the other instances in Table 2.

A straightforward verification suffices to see that FO[II] is sound relative to the FO[R]-
expressible geometric queries of the corresponding genericity type.

The completeness proof is analogous to the proof of the completeness of FO[between]
relative to the affine-generic queries. The only difference is that instead of working with
arbitrary bases of R"”, we need to work with bases appropriate for the genericity type
considered. Thus we only need to know that there exists a formula in the language (II)
which characterizes these bases.

For the case that II = {between, equidistance}, we need a formula in the language
(between, equidistance) characterizing Euclidean bases. Such a formula is given in
[12] (Definition 16.1, page 163). We denote this formula by basis™? for further use.

For the case that IT = {between, equidistance, unitdistance}, we need a formula in
the language (between, equidistance, unitdistance) that characterizes the Euclidean
bases of unit length. The following is such a formula:
Z0,21,..-,2,) A /\ unitdistance(Zy, ;).

i=1

baSZ-SEuclid(

We denote this formula by basis“™® for further use.

For the case that II = {between, equidistance, unitdistance, positive}, we need a
formula in the language (between, equidistance, unitdistance, positive) character-
izing the Euclidean bases of unit length which are oriented in the same way as the
standard basis of R™. The following is such a formula:

~

20y 21y« -+, 2n) N positive(Zy, 21, ..., Z,).

basis"™ (

We denote this formula by basis?****¢ for further use.

Finally, for the case that II = {between, equidistance, unitdistance, positive,
smallery, ..., smaller, }, we need a formula in the language (between, equidistance,
unitdistance, positive, smallery, ..., smaller,) characterizing the bases which can be
translated to the standard basis of R™. The following is such a formula:

n
§POS e (B, 21, ey Zn) A /\ smaller; (2, Z;).

i=1

basi

This completes the proof of Theorem 5.5. O

26

6 Complete geometric query languages

In Section 4.2, we showed that the language FO[R] + while, when given appropriate
semantics, is complete for various classes of geometric queries (see Theorem 4.6). While
of interest, this result is unsatisfactory since FO[R] + while does not have a natural
geometric syntax. In this section, we augment the languages FO[II] from the previous
section with while-loops and show the more satisfactory result that the resulting lan-
guages FOIII] + while, which do have a natural geometric syntax and semantics, are
complete for the corresponding classes of geometric queries.

Let II be a finite set of point predicates, and let o be a relational schema. Syntactically,
a program over o in the query language FOI[II] + while is a finite sequence of statements
and while-loops. Each statement has the form

R = {(617 st 7@’6) | 90(617 s 777/6)}7

with R a relation variable of arity k& and ¢ a first-order formula in the language (IT)
augmented with the relation names of o and the previously introduced relation variables.
Each while-loop has the form while ¢ do P, where P is a program and ¢ is a first-order
sentence in the language (I1) augmented with the relation names of o and the previously
introduced relation variables.

Semantically, a program in the query language FOIII| + while expresses a geometric
query in the obvious way as soon as one of its relation variables has been designated as
the output variable.

Theorem 6.1 The query language FO[IT]+while ezpresses exactly all generic geometric
queries, with I1 and the genericity type as listed in Table 2.

Proof. To simplify the exposition, we restrict ourselves to geometric queries in the
plane, i.e., in R%?. Furthermore, we will assume that 0 = {R} and that R is a unary
relation. Finally, we only consider unary geometric queries, so the output is also a unary
relation. (Such queries can be thought of as mapping point sets in the plane to points
sets in the plane.) The proof we shall give can easily be generalized, however. Indeed,
if we work in a higher-dimensional space, we only have to adjust each formula occurring
in the proof to this case. If we have multiple input relations, of potentially different
arities, we only have to encode each of them separately. (The encoding algorithm will
need to consider the arity of an input relation.) Finally, if the output is k-ary, we only
have to use an adapted version of the decoding algorithm described below.

We only develop the proof for the case where II = {between}. For the other cases, it
suffices to modify this proof as explained in the proof of Theorem 5.5.

It is clear that queries expressed in FO[between] + while are affine-generic.

We thus have to show that every unary geometric query @ over o in R? can be ex-
pressed by a program in FO[between| + while. The proof strategy we follow is that of
Theorem 4.2, using insights gained from proving Theorem 4.6, and adopting techniques
developed in the proof of Theorem 5.5. We first provide a sketch of this strategy:

27

1. Encode: Given a geometric database D over o, we compute in FO[between|+while
the natural number n such that n = enc(s), where s is the first string over X
(defined as in the proof of Theorem 4.2, with K = 2) encoding the quantifier free
FO[R/] formula defining canong(D), where G is the group of affinities in the plane.
We also compute Type (D).

2. Compute: Let M be the counter machine that computes the query). We simulate
in FO[between| + while the effect of running M on n.

3. Decode: In the case where the computation terminates with as output a nat-
ural number m that encodes a valid FO[R] formula, we compute, again using
an FO[between| + while program, its corresponding point set. This point set
corresponds to Q(canong(D)). Since @ is affine-generic, we have, for each g
in Type, (D), that Q(canong(D)) = Q(g(D)) = ¢g(Q(D)). Therefore, to com-
pute Q(D), an FO[between]| expression must be constructed which computes

Uge Type (D) g_l (Q(CanonG(D)))-

To accomplish this strategy, we need to realize that, unlike in FO[R]+ while, we have no
direct access to real numbers in FO[between|+ while. However, as should be clear from
the techniques developed in the proofs of Theorem 5.5 and preceding auxiliary results,
we can represent such real numbers relative to an arbitrary basis of the plane.

We now elaborate on each of the steps in our strategy.

1. Encode: The encoding program, shown in Figure 4, builds up relations T (for
term) and F' (for formula). The arity of T is (n+ 1) + 1+ 2 = 7 (where n = 2,
the dimension of the plane, and [= 2, n times the arity of R); each tuple in T
is of the form (o, ey, ey, t,p1,p2,7), where (0,€1,e2) is a basis of the plane, and
t, p1, p2, and 7T are points on the line oe; (of which we think as real numbers).
More specifically, ¢ is the encoding of a term which only uses the variables x; and
Zo, and 7 represents the value of ¢ evaluated under the valuation z; — p; and
Ty > po. The arity of F'is (n+ 1) +1+ 1 = 6. Each tuple in F' is of the form
(0,1, e, f,p1,p2), Where (0,eq,e3) is a basis of the plane, and f, p; and p, are
points on the line oe; (of which we think as real numbers). More specifically, f is
the encoding of a formula which only uses the variables x; and x5, and f(py, ps)
is true.

In this program, the statement n := 0 is an abbreviation for the statement
n .= {(/Z\[), 31, //2\2, ﬁ) | bCLSZ.S(/Z\U, 31, //2\2) An= /Z\()},
and the statement n :=n + 1 is an abbreviation for the statement
~/

n .= {(30,21,22,??) | (Elﬁ)(TL(/Z\(),/Z\l,,/Z\Z,ﬁ) N pZUS(g[),,/Z\l,/Z\Q,?L, El,n))}

The translations of the statements occurring under the various if-statements is
straightforward. For example, the statement

T :=TU{(o,e1,e2,n,p1,p2,01) | P1,P2 € 0€1}

28

n:=0;T:=0; F:=0;
Found := false;
while = Found do
n:=n++1;
if n encodes z; then
T :=TU{(o,e1,e2,n,p1,p2,p1) | P1,p2 € 01} else
if n encodes x5 then
T:=TU{(o,e1,e2,n,p1,p2,p2) | P1,p2 € 0e1} else
if n encodes 0 then
r:=TU {(Oa €1,€2,M,P1, P2, 0) | p1,p2 € 061} else
if n encodes 1 then
Tr=TU {(07 €1,€2,1,P1, P2, 61) | p,p2 € 061} else
if n encodes (s + t) then
Tr=TU {(07 €1, €2,n,p1,pP2, ¢+ d) | T(Oa €1, €2, enc(s),pl,pz, C) A
T(o,e1,e2,enc(t),p1,p2,d)} else
if n encodes (s x t) then
T :=TU{(o,e1,e2,n,p1,p2,cd) | T(0,e1,e2,enc(s),p1,p2,c) A
T (o,e1,e9,enc(t),p1,p2,d)} else
if n encodes (s < t) then
F := FU{(o,e1,ea,n,p1,p2) | (3c)(3d)(T (0, e1,e2,enc(s),p1,p2,¢) A
T(o,e1,e2,enc(t),p1,p2,d) A c <d)} else
if n encodes (—¢p) then
F :=FU{(o,e1,e3,n,p1,p2) | ~F(0,€1,e2,enc(p),p1,p2)} else
if n encodes (¢ V 1) then
F:=FU{(o,e1,e2,n,p1,p2) | F(o,e1,e2,enc(p),p1,p2) V F(o,e1, ez, enc(tp), p1,p2)};
Found := n encodes a formula which represents canong(R);
od;
Neanong(R) *— 1
Type :={g € G| g(R) = canong(R)}.

Figure 4: The encoding program. Points on the line oe; are identified with real numbers.

29

is an abbreviation for the statement

A~ o~ A~ A~~~

T = {(%,%,%,m,2,9,9) | T(2, 2,22, m, 2,7,0) V

(n(Zo, 21, 22, m) A collinear(Zy, z1,%) A collinear(Zy, z1,y) N T =10)}.
In the statement
Found := n encodes a formula which represents canong(R),

the part where we need to verify that the formula represents canong(R) is an
abbreviation for the sentence
(V%\O)(V%})(V%) (3611)(3612) (3621)(3622) (351)(3/52)(3771)(?)%% (2’0, 21, 2’2) N
collinear(Zo, z1,a11) A collinear(Zo, z1,a12) A collinear(Zp,z1,a21) A collinear(Zo,z1,a22) A
collinear(Zo,31,b1) A collinear (39,71, b2) A Gr1daz — Grata1 7 0 A n(30, 21, 22, M) A
(va')(Vy") (F (20,21, 22, M, x,y) (F0)(32)(Fy) (R(v)/\
coordinates(Zo,21,0,%,9) A T' = anZ + a2y + b1 AT =021 T + Go2l + b2)))

Here, again, the subformulas dy,day — Gi9G21 # 0, T = an + apy + Bl, and
§' = G217+ a9y +bs can be seen as formulas in the language (between), expressed
using the predicates plus and times.

Finally, the right-hand side of the statement

Type; = {g € G | g(R) = canong(R)}
is an abbreviation for
{(20, 21,22, 011, G12, Q21, G22, b1, b2) | (3m)(basis(zo, 21,22) A
collinear (2o, z1,a11) A collinear(Zo, z1,a12) A collinear(Zp,z1,a21) A collinear(Zo,z1,a22) A
collinear(é\o, /2’\1, bl) A collinear (/2’\0,/2’\1, b2) A 611622 — 612621 75 0A TL(%\(),/Z\l,/Z\Q,T/ﬁ) N

(Vz")(Vy')(F(20,21, 22,1, 7' 27') (30)(37)(Fy) (R(v) A
coordinates(Zo,21,0,T,9) A T' = a11Z + a12y + b1 AN Y =217 + A22y + bg)))}

A crucial aspect of this encoding program is that its while-loop terminates. The
termination condition is determined by the last statement in the loop, i.e., the
statement

Found := n encodes a formula which represents canong(R).

We first observe that the relation n represents a unique natural number, in the
sense that, if (of, ef,e5,n1) and (of, €7, €3,m,) are both in n, then (oj, ej, e;) and

(02, €2, e2) are both bases of the plane, and o'n; /o'el = 0%ny /0%

Let D be the input to our query (). We claim that the algorithm finds in 7 .4nong(r)
the encoding of the formula that represents canong(D) eventually, and thus sets
Found to true.

To see this, consider the following property of the F' relation. Let b = (o, ey, e3)
be a basis of the plane and let n, be the point on the line oe; representing the
natural number n. Now consider the point set

F=A{v | (3z)(39)(F (o, e, ez, np, T,y) A coordinates(o,eq,e2,0,Z,7))}

30

Then, for each pair of bases b; and by of the plane, and for each natural number
n, v(Fy) = F},, where v is the unique affine transformation mapping basis b; to
basis by. This implies that, if there exists an affine transformation ¢g such that
g(D) = F},, then there exists an affine transformation h such that h(D) = F},,
e.g., h = v o g. This property entails that the while-loop terminates and that
the program computes in 7eenon(r) the encoding of the formula that represents
canong(D).

2. Compute: In this phase, we simulate in FO[between| + while the counter ma-
chine M corresponding to the given query (). The input to this program will be
Neanong (R)- Let m be the output variable of this program. Either the program will
diverge or else it will report its answer in m. We may assume, without loss of
generality, that, if the program halts, the contents of m is a natural number repre-
senting a valid formula. In this case, this natural number necessarily corresponds
to a formula representing the point set Q(canong(D)).

3. Decode: We finally describe the program that decodes the result in m in the correct
output of @, i.e., the point set (D). This program is the same as the encode
program in Figure 4, except that the last line in the while-loop is replaced by the
statement

Found :=n = Neanong(R)-

Furthermore, the last two statements in the encode program are replaced by an
assignment to the unary relation variable Result of the query

{(®) | (32)(321)(3%) (Fa11) (3a12) (Fzs) (Fazz) (3b1) (Tb2) (37 (I7) (37) (33') (37')
(TypeG(/Z\g,El,/2\2,27,\11,612,?1\21,622,bl,bg) N TL(/Z\(),El,/Z\Q,T/fL) N coordinates(gg,gl,ﬁ, l/L’\, @\) N
T=anZ+apy+b ANY =anZ+ a2y +b A F(Z,21,22,m,2',7"))}-

This completes the proof of Theorem 6.1. O

7 Extension to models with non-spatial data

In the model we have been using so far, a database can contain semi-algebraic sets
only. Practical spatial database models support, in addition to purely spatial data, also
non-spatial data without geometrical interpretation, such as the data stored in classical
relational databases. For example, for a road, one typically does not only want to store
its appearance on a map as a curve (a semi-algebraic set), but also its name or number.
In this section, we briefly outline how our completeness results can be carried over to
this setting.

It is not difficult to extend the semi-algebraic database model to incorporate non-spatial
data [11]. Each relation name R of the schema then has a composite arity [m, k|: m is
the non-spatial arity of R, and k is the spatial arity of R. In a semi-algebraic database
D, RP then is a subset of U™ x RF, where U is the universe of non-spatial values,

31

such that (i) m,_,(RP) is finite, and (i), for each tuple (vi,...,vy) in 7 (RP),
the set {(ar,...,ax) | (v1,...,vm,a1,...,a;) € RP} must be a semi-algebraic subset of
RF. A representation of R? is now no longer simply a real formula defining it, but a
finite (m + 1)-ary relation, where m is the non-spatial arity of R, consisting of tuples
(V1 -+, U,y @), Where (vy,...,v) is in m_,(RP) and ¢ is a real formula defining
{(ar,...;a1) | (vi,.. ., Umy a1, ..., a;) € RP}. Tt is now straightforward to also extend
the geometric database model to incorporate non-spatial data.

These extended models fit neatly in the model for the language EQL described by
Chandra and Harel [3]. This language is an extension of the well-known QL, a complete
language for generic queries on classical relational databases. The extension supports
the appearance of fully interpreted data values in relations. In our application of this
model, these interpreted data values are real formulas.

The key construct of EQL is an operator for going from an ¢-ary relation to the i-th
interpreted data value. In a direct combination of the languages QL and FO[R]+ while,
this construct can be expressed. The QL component of the combined language deals
with the projection of the relations on the ordinary data columns, and the FO[R]+ while
component deals with the spatial projection.

Based on this observation, it can be verified that the combined language, QL& (FO[R]+
while), expresses exactly all queries on semi-algebraic databases extended with non-
spatial data. Similarly, it can be shown that the combined languages QL & (FOI[II] +
while) express exactly all generic queries on geometric databases extended with non-
spatial data, where Il and the genericity type is as listed in Table 2.

Acknowledgments

The authors wish to thank Jan Paredaens and Bart Kuijpers for interesting discussions
related to generic geometric queries. We are grateful to the two anonymous referees
whose feedback led to improvements in the presentation of the paper. The authors also
wish to acknowledge their collaboration with Luc Vandeurzen to establish Corollary 4.3.

References

[1] S. Abiteboul and V. Vianu, “Procedural Languages for Database Queries and Up-
dates,” Journal of Computer and System Sciences, 41:2, 1990, pp. 181-229.

[2] M. Benedikt, G. Dong, L. Libkin, and L. Wong, “Relational Expressive Power of
Constraint Query Languages,” Journal of the ACM, 45:1, 1998, pp. 1-34.

[3] A. Chandra and D. Harel, “Computable Queries for Relational Data Bases,” Journal
of Computer and System Sciences, 21:2, 1980, pp. 156-178.

32

[4] H.B. Enderton, A Mathematical Introduction to Logic, Academic Press, New York,
1972.

[5] D. Gans, Transformations and Geometries, Meredith Corporation, New York, 1969.

[6] S. Grumbach and J. Su, “Queries with arithmetical constraints,” Theoretical Com-
puter Science, 173:1, 1997, pp. 151-181.

[7] P.C. Kanellakis, G.M. Kuper, and P.Z. Revesz, “Constraint Query Languages,” Jour-
nal of Computer and System Sciences, 51:1, 1995, pp. 26-52.

[8] B. Kuijpers, J. Paredaens, and D. Suciu, unpublished results, University of Antwerp,
1995.

9] G. McCarty, Topology: An Introduction with Applications to Topological Groups,
McGraw-Hill Inc., 1967.

[10] C.H. Papadimitriou, D. Suciu, and V. Vianu, “Topological Queries in Spatial
Databases,” in Proceedings 15th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (Montreal, Quebec, Canada), ACM Press, New York,
1996, pp. 81-92.

[11] J. Paredaens, J. Van den Bussche, and D. Van Gucht, “Towards a theory of spatial
database queries,” in Proceedings 15th ACM SIGACT-SIGMOD-SIGART Sympo-
sium on Principles of Database Systems (Minneapolis, Minnesota), ACM Press, New
York, 1994, pp. 279-288.

[12] W. Schwabhéduser, W. Szmielew, and A. Tarski, Metamathematische Methoden in
der Geometrie, Springer-Verlag, Berlin, 1983.

[13] J. Schwartz and M. Sharir, “On the ‘Piano Movers’ Problem. II. General Techniques
for Computing Topological Properties of Real Algebraic Manifolds,” Advances in
Applied Mathematics, 4, 1983, pp. 298-351.

[14] A. Tarski, A Decision Method for Elementary Algebra and Geometry, University of
California Press, 1951.

[15] A. Tarski, “What is Elementary Geometry?”, in The Aziomatic Method, L. Henkin,
P. Suppes, and A. Tarski, eds., North Holland Publishing Company, Amsterdam,
1959, pp. 16-29.

[16] L. Van Den Dries, “Alfred Tarski’s Elimination Theory for Real Closed Fields,”
Journal of Symbolic Logic, 53, 1988, pp. 7-19.

33

