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Abstract

We extend Chandra and Harel�s seminal work on computable queries for re�

lational databases to a setting in which also spatial data may be present� using

a constraint�based data model� Concretely� we introduce both coordinate�based

and point�based query languages that are complete in the sense that they can

express precisely all computable queries that are generic with respect to certain
classes of transformations of space� corresponding to certain geometric interpre�

tations of spatial data� The languages we introduce are obtained by augmenting

basic languages with a while construct� We also show that the respective basic

point�based languages are complete relative to the subclass of the corresponding

generic queries consisting of those that are expressible in the relational calculus

with real polynomial constraints�
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� Introduction

In their seminal work on computable queries for relational databases ���� Chandra and
Harel introduced the notion of computable query as a computable function from rela�
tional databases to relations that is invariant under all permutations of the universe of
atomic data elements
 The latter criterion� now known as genericity� states that queries
should preserve database isomorphisms� or� more intuitively� that they should be de�ned
at the logical level of the data in the database
 Chandra and Harel then introduced a
query language� QL� and proved it complete� in the sense that precisely all computable
queries can be expressed in QL


The purpose of the present paper is to continue Chandra and Harel�s work in the setting
of spatial databases


To do so� we work in an adaptation of the relational model� where the universe of atomic
data is the set of real numbers� which may represent coordinates of points� and where
relations can be in�nite
 To ensure �nite representability� the relations must be elemen�
tarily de�nable in terms of polynomial inequalities
 In mathematical terminology� they
must be semi�algebraic
 Our model is thus an instance of the framework of constraint
databases introduced by Kanellakis� Kuper� and Revesz ���


As was already pointed out by Paredaens� Van den Bussche� and Van Gucht ����� this
framework can be used in two ways
 One possibility consists of using the framework in an
uninterpreted manner
 In order to model spatial data and geometric applications� how�
ever� it is necessary to interpret real numbers as coordinates of points in n�dimensional
space
 In this setting� the universe of atomic data elements are the points of Rn� rather
than the real numbers ofR
 Also in this paper� we shall clearly distinguish between both
ways of using constraint databases
 For clarity� the uninterpreted constraint database
model will be referred to as the semi�algebraic database model� whereas the constraint
database model in which the atomic data are elements of Rn� interpreted as points in
n�dimensional space will be referred to as the geometric database model
 Clearly� the
geometric database model can be embedded in the semi�algebraic database model


The question of how Chandra and Harel�s concept of genericity extends to the geomet�
ric database model was already considered by Paredaens� Van den Bussche� and Van
Gucht ����
 It makes no sense to require that queries are invariant under all permu�
tations of space� as �i� most of these bear no geometric meaning whatsoever� and �ii�
many realistic queries do not preserve arbitrary permutations of space
 Instead� a suit�
ably adapted notion of genericity for spatial data should take into account the precise
geometric interpretation intended by the application
 Now� it is standard mathematical
practice to identify a geometry with a group of transformations of space
 If the geometric
interpretation of the spatial data intended corresponds to a group G of transformations�
then a query in the geometric database model will be de�ned at the intended geometric
level if and only if it is invariant under all transformations in G
 Such queries are called
G�generic


In our search for complete geometric query languages� we start with a study of the
underlying semi�algebraic database model
 The language most often considered in the
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semi�algebraic database model is �rst�order logic augmented with polynomial inequali�
ties� and relation variables of �xed arities� which we denote by FO�R�
 We prove that
FO�R� augmented with while�loops� a language which we denote by FO�R� � while�
yields a complete query language for this model
 It is instructive to contrast this re�
sult to Chandra and Harel�s� who required unranked relation variables� which can hold
relations of any arity� to achieve completeness for the language QL


We then bootstrap this result� which yields complete query languages in the geometric
database model under various geometric interpretations
 Syntactically� these languages
are all identical to FO�R��while� but� under each geometric interpretation� the semantics
of a program is appropriately de�ned so as to be guaranteed generic


This is accomplished by working on canonical representations of databases� rather than
on the databases themselves


The approach to �nding complete geometric languages just described yields languages
with a very arti�cial semantics
 The main underlying reason is of course the mismatch
between the nature of the geometric database model� in which the atomic entities are
points� and the nature of the languages considered� which have access to the coordinates
of points
 However� we can obtain much more natural results when we consider �rst�
order query languages that do not have access to the speci�c coordinates of points but
only to the points themselves as atomic entities
 Rather than augmenting �rst�order
logic with polynomial inequalities on real numbers� these query languages provide certain
built�in geometrical predicates on points� besides relation variables of �xed arities


We show that� for several geometrically interesting choices of the transformation group
G� there exist appropriate point predicates such that �rst�order logic on points� aug�
mented with the predicates� expresses precisely all G�generic queries expressible in
FO�R�
 For example� we show that providing the predicate between�p� q� r�� which
is true if q lies on the closed line segment between p and r� yields a �rst�order query
language� denoted FO�between�� that expresses exactly all queries expressible in FO�R�
that are generic for a�ne geometry


The results describe above are particularly interesting� because G�genericity of FO�R�
queries is undecidable for every non�trivial transformation group G ����
 Our proof�
which exploits the classical geometrical construction of addition and multiplication� is
inspired by the work of Tarski and his collaborators on axiomatizations of elementary
geometry ���� ��� ���


Finally� we consider query languages which augment these point�based languages with
relation variables of �xed arities and while�loops
 We show that these language are
complete geometric query languages under various geometric interpretations
 For ex�
ample� one of our results is that the language FO�between� � while is complete for the
a�ne�generic geometric queries


Complete generic query languages relative to FO�R� were �rst discovered by Kuijpers�
Paredaens� and Suciu �
�
 Our results improve upon theirs in the sense that our languages
are purely point�based� while the languages of �
� involve both variables ranging over
points and variables ranging over real numbers
 Papadimitriou� Suciu� and Vianu ����
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obtained relative completeness results for point�based query languages in the context of
a di�erent type of genericity than the geometric types of genericity we consider here


For simplicity� we prove our results for purely spatial database models
 To be of practical
interest� spatial database models need to support both spatial and non�spatial data
 We
indicate how our results can be extended to this more general setting


This paper is organized as follows
 The semi�algebraic and geometric database models
are presented in Section �
 Semi�algebraic and geometric queries and the notion of
genericity are reviewed in Section �
 Complete query languages based on FO�R��while
are presented in Section �
 Completeness results for point�based languages relative
to various types of geometric queries expressible in FO�R� are presented in Section �

Completeness results for point�based languages relative to various types of arbitrary
geometric queries are presented in Section 	
 Finally� the extension of our results to the
case in which also non�spatial data are present is discussed in Section �


� Semi�algebraic and geometric databases

In this section� we de�ne semi�algebraic and geometric databases


Both database models are described using the �rst�order language of the ordered �eld
of the real numbers �R������� �� ��� i
e
� the language ������� �� ��
 A �rst�order
formula in this language is called a real formula
 By Tarski�s theorem ��	�� every real
formula can e�ectively be transformed into an equivalent quanti�er�free one �equivalent
in R�
 So we can implicitly assume real formulas to be quanti�er�free
 A consequence
of Tarski�s theorem is that truth of real sentences in R is e�ectively decidable


Let k � �
 A subset A of Rk is de�ned by a real formula ��x�� � � � � xk� if

A � f�a�� � � � � ak� � Rk j ��a�� � � � � ak�g�

A subset of Rk is called semi�algebraic if it can be de�ned by a real formula
 Rephrased
in a vocabulary slightly more expanded than ������� �� ��� a semi�algebraic set is a
�nite union of sets that can be de�ned by a system of polynomial inequalities with
integer coe�cients
 �In practice� rational coe�cients will often be used� too
 This does
not enlarge the class of sets being considered� as the denominators can be eliminated
�

Example ��� Figure � shows a heart�shaped semi�algebraic set in R�� which can be
de�ned as follows�

f�x� y� j �x� ��� � y� � � � �x� ��� � y� � � �
��� � x � � � y � �� � ��x� ��� � �y � ��� � � � �x� ��� � �y � ��� � ���g�

Figure � shows another� arrow�shaped� semi�algebraic set in R� which can be de�ned as
follows�

f�x� y� j ��� � x � � � x � y� � �x� y � � � �x� y � � � �y � x � ��g�

Since the latter set is de�ned entirely in terms of linear �in�equalities� it is called semi�
linear
 �

	



Figure �� The semi�algebraic set of Example �
�


Figure �� The semi�linear set of Example �
�
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A semi�algebraic database is essentially a store of semi�algebraic sets
 To de�ne this
formally� we recall that a relational schema is a �nite set � of relation names� where
each relation name is assigned an arity


De�nition ��� Let � be a relational schema
 A semi�algebraic database over � is a
structure� D over � with domain R such that� for each relation name R of �� RD is a
semi�algebraic subset of Rk� where k is the arity of R in �
 �

Example ��� Let � be the scheme fR� S g� wherein both R and S are binary
 The
structure D with domain R� with RD the semi�algebraic set shown in Figure � and SD

the semi�linear set shown in Figure �� is a semi�algebraic database over �
 �

Semantically� a semi�algebraic database can be seen as a relational database� with the
exception that the relations may be in�nite� as semi�algebraic sets may be in�nite

Syntactically� however� a semi�algebraic database can be described �nitarily using a
�quanti�er�free� real formula for each relation name in the schema of the database
 We
formally de�ne a representation of a semi�algebraic database as follows�

De�nition ��� Let � be a relational schema and let D be a semi�algebraic database
over �
 A function � from the relation names of � to real formulas is a representation
of D if� for each relation name R of �� ��R� de�nes RD
 �

Example ��� Let � be the scheme fR� S g� and let D be the semi�algebraic database
considered in Example �
�
 The function which associates with R and S the respective
formulas given in Example �
� is a representation of D
 �

Semi�algebraic databases can be seen as underlying geometric databases� which we de�ne
next
 From now on� we reserve n to denote the dimension of a geometric space which we
shall identify with Rn
 Let k � �
 We shall call a k�ary relation on Rn semi�algebraic
if its image under the canonical bijection� between �Rn�k and Rnk is a semi�algebraic
subset of Rnk


De�nition ��� Let � be a relational schema
 A geometric database over � in Rn is a
structure D over � with domain Rn such that� for each relation name R of �� RD is
semi�algebraic
 �

A geometric database D over � in Rn can be viewed naturally as a semi�algebraic
database D over the schema �� which has� for each relation name R of �� a relation
name R with arity kn� where k is the arity of R in �
 For each relation name R� of arity

k� R
D
is obtained from RD by applying the canonical bijection between �Rn�k and Rnk


�Structure is used here in the sense of mathematical logic 

�� A structure associates� with each of
its relation names� a relation of the appropriate arity over the domain of the structure�

�The canonical bijection between �Rn�k and Rnk associates with each k�tuple �x�� � � � �xk� of R
n the

nk�tuple �x�
�
� � � �x�n� � � � �x

k
�
� � � � �xkn�� where for � � i � k and � � j � n� xij denotes the j�th component

of xi�






Example ��	 The database de�ned in Example �
� can be seen as the underlying semi�
algebraic database for a geometric database inR�� consisting of two unary relations �i
e
�
sets� of points in the plane
 �

� Semi�algebraic and geometric queries

In this section� we de�ne algebraic and geometric queries and review a classi�cation for
geometric queries based on genericity types


De�nition ��� Let � be a relational schema
 A k�ary semi�algebraic query Q over � is
a partial function on the set of semi�algebraic databases over �� satisfying the following
conditions�

�
 for each semi�algebraic database D over � on which Q is de�ned� Q�D� is a semi�
algebraic subset of Rk� and

�
 there is an algorithm taking representations of semi�algebraic databases as input�
and returning real formulas as output� satisfying the following conditions�

�a� for each semi�algebraic database D over �� and for each representation � of
D� the algorithm terminates on input � if and only if Q is de�ned on D� and

�b� for each semi�algebraic database D on which Q is de�ned� and for each repre�
sentation � of D� the output of the algorithm on � is a real formula de�ning
Q�D�
 �

The second condition in De�nition �
� indicates in which sense semi�algebraic queries
are computable


Example ��� Let � � fR� S g be the schema de�ned in Example �
�
 The following
are examples of semi�algebraic queries over ��

�
 �Compute the projection onto the x�axis of the semi�algebraic set associated with
R� is a unary semi�algebraic query


�
 �Find the intersection of the semi�algebraic sets associated with R and S� is a
binary semi�algebraic query


�
 �Decide whether the semi�algebraic set associated with R is topologically con�
nected� is a null�ary� semi�algebraic query


�
 �Compute the convex hull� of the semi�linear set associated with S� is a binary
semi�algebraic query


�The null�ary semi�algebraic sets� � and f��g� can be interpreted as the Boolean values false and
true� respectively�

�The convex hull of a set S is the smallest convex set containing S�

�



�
 �Decide whether the semi�algebraic set associated with R is a circle� is a null�ary
semi�algebraic query


	
 �Decide whether there is a point in the semi�algebraic set associated with R and
a point in the semi�linear set associated with S at distance � from each other� is
a null�ary semi�algebraic query


�
 For the query to follow� we consider� besides R and S� a third relation scheme T
of arity �
 �Decide whether each of the relations R� S� and T a is singleton such
that the triple of points �u� v� w�� with u � R� v � S� and w � T � is a positively
oriented orthonormal basis� of R�� is a null�ary semi�algebraic query




 �Compute the left�most points of the semi�algebraic set associated with R� is a
binary semi�algebraic query


�
 �Decide whether the semi�linear set associated with S contain the point ��� ��� is
a null�ary semi�algebraic query
 �

In analogy to De�nition �
�� we de�ne geometric queries


De�nition ��� Let � be a relational schema
 A k�ary geometric query Q over � in Rn

is a partial function on the set of geometric databases over �� satisfying the following
conditions�

�
 for each geometric database D over � on which Q is de�ned� Q�D� is a semi�
algebraic subset of �Rn�k� and

�
 Q is computable in the sense of De�nition �
� �where �semi�algebraic� is replaced
by �geometric��
 �

Example ��� Consider again the queries in Example �
�
 Assume that we work in the
plane� i
e
� in R�


� Query � is not an example of a geometric query


� Queries �� �� 	� �� and � are examples of null�ary geometric queries


� Queries �� �� and 
 are examples of unary geometric queries
 �

�A basis of Rn is an �n����tuple of points �o� e�� � � � � en� such that the vectors ��oe� through ��oen are
linearly independent� A basis is orthogonal if the vectors ��oe� through ��oen are pairwise orthogonal� A
basis is orthonormal if it is orthogonal and the vectors ��oe� through ��oen have unit length� A basis is
positively oriented if it has the same orientation as the standard basis of Rn� which is the case if the
determinant of the n�n matrix consisting of the components of the vectors ��oe� through ��oen is positive�
it is negatively oriented otherwise�

��



Since geometric databases can be identi�ed with certain kinds of semi�algebraic data�
bases� a comparison of De�nitions �
� and �
� reveals that geometric queries can be
identi�ed with certain kinds of semi�algebraic queries


In the geometric database model� the result of many natural queries does not depend on
the particular coordinates assigned to points by the canonical coordinate system in the
space considered
 More precisely� natural geometric queries preserve coordinate system
transitions
 The coordinate transitions that must be considered� of course� depend
on the geometry of the space� which can be described by a group of transformations
�permutations� of space
 Therefore� we adopt the following general notion of genericity�
originally proposed by Paredaens� Van den Bussche� and Van Gucht ����


De�nition ��� Let � be a relational schema and let Q be a geometric query over �
in Rn� and let G be a group of transformations of Rn
 Then Q is called G�generic if�
for any two geometric databases D and D� over � in Rn for which D� � g�D� for some
transformation g in G� we have that Q�D�� � g�Q�D��
 �

In a�ne geometry� for instance� G is the group of a�nities� i
e
� compositions of linear
transformations and translations� and the corresponding class of queries is called the
a�ne�generic queries
 In two�dimensional a�ne geometry� it would make no sense to
ask for all points in the database lying in the unit disk� as this is not an a�ne�generic
query
 �Points can be moved in and out of the unit disk by applying a translation� which
is an a�ne transformation�
 It would make sense� however� to ask for all straight lines
contained in the database� as this query is a�ne�generic� collinearity is preserved under
a�nities


Besides a�ne genericity� there are several other notions of genericity that correspond
to sensible geometry
 We summarize some of them below�

� Similarity genericity� with respect to the group of similarities� i
e
� compositions
of isometries �see below� and scalings
 This genericity notion corresponds to Eu�
clidean geometry


� Isometry genericity� with respect to the isometries� i
e
� compositions of transla�
tions� rotations� and re�ections
 This genericity notion corresponds to the frag�
ment of Euclidean geometry where absolute rather than relative measures are
important


� Direct�isometry genericity� with respect to the direct isometries� i
e
� compositions
of translations and rotations
 This genericity notion corresponds to the fragment
of the previous geometry where also orientation is important
 In this geometry�
two objects are considered isomorphic if one can be mapped to the other by a rigid
motion
�

�A rigid motion is a transformation that can be speci�ed as a composition of translations and
rotations 
���

��



� Translation genericity� with respect to the translations
 This genericity notion
corresponds to the fragment of the previous geometry where the relative position
of objects �e
g
� in the two�dimensional case� above or left of� is important


Example ��� Consider again the queries in Example �
�


� Queries �� �� and � are a�ne�generic geometric queries


Query � is a�ne�generic� because a�ne transformations are permutations� and the
concept of intersection of a pair of sets is preserved under permutations


Query � is a�ne�generic� because a�ne transformations are homeomorphisms�
which preserve topological connectedness ���


To see that Query � is a�ne�generic� let U and V be an arbitrary pair of sets in
the plane for which there exists an a�nity g such that g�U� � V 
 We need to
show that g�convexhull�U�� � convexhull�V �
 We show that g�convexhull�U�� �
convexhull�V �
 �The reverse inclusion holds because g�� is also an a�nity
� Let p
be an arbitrary point in convexhull�U�
 Then p � ��p� � ��p� � ��p�� with p�� p��
and p� points in U � �� � �� �� � �� and �� � �� and �� � �� � �� � �
 Since g is
an a�nity� there exist real numbers a� b� c� d� e� and f with ad� bc 	� � such that�
for each point q � �x� y�� g�q� � �ax� by� e� cx� dy� f�
 From this information�
it is a simple algebraic exercise to determine that g�p� � convexhull�V �


� Query � is a similarity�generic query that is not a�ne�generic


Query � is similarity�generic� because similarities are de�ned to be exactly those
transformations that preserve shape
 Hence� if U and V are sets such that g�U� �
V � with g a similarity� then either U and V are both circles� or neither of them
are circles


Query � is not a�ne�generic� however
 To see this� let U � f�x� y� j x� � y� � �g
and V � f�x� y� j �x� � y� � �g
 Clearly� U is a circle and V is an ellipse that is
not a circle� yet the a�nity g�x� y� � �x� �y� maps U to V 


� Query 	 is an isometry�generic query that is not similarity�generic


Query 	 is isometry�generic� because isometries are de�ned to be exactly those
transformations that preserve distance
 Hence� if U � �U�� U�� and V � �V�� V��
are geometric databases such that g�U� � V � with g an isometry� then either U
and V both satisfy the distance condition in the query� or neither of them does


Query 	 is not similarity�generic� however
 To see this� let U and V be the
databases �f��� ��g� f��� ��g� and �f��� ��g� f��� ��g� respectively
 Clearly� U satis�
�es the condition of the query and V does not� yet the similarity g�x� y� � ��x� �y�
maps U to V 


� Query � is a direct�isometry�generic query that is not isometry�generic


To see that Query � is a direct�isometry�generic query� let U � �U�� U�� U�� and
V � �V�� V�� V�� be two geometric databases� and let g be a direct isometry such

��



that g�U� � V 
 If U satis�es the condition of the query� then U can be inter�
preted as a positively oriented orthonormal basis
 Since direct isometries preserve
distance� orthogonality� and orientation� V also satis�es the condition of the query


To see that Query � is not isometry�generic� let U � �f��� ��g� f��� ��g� f��� ��g�
and V � �f��� ��g� f��� ��g� f������g�
 Clearly� U is mapped to V by the re�ection�

with respect to the x�axis
 Since U represents the standard basis� it satis�es the
condition of the query
 However� V represents a negatively oriented basis� and�
therefore� does not satisfy the condition of the query


� Query 
 is a translation�generic query that is not direct�isometry�generic


Query 
 is translation�generic� because translations preserve the concept of �being
to the left of
�

The query is not direct�isometry�generic� however
 To see this� let U � f��� ��� ��� ��g
and V � f��� ��� ���� ��g
 The re�ection with respect to the origin� maps U to V 

However� the leftmost point of U � which is ��� ��� is not mapped by this rotation
to the leftmost point of V � which is ���� ��


� Query � is a geometric query that is not translation�generic


To see that Query � is not translation�generic� let U � f��� ��g and V � f��� ��g

Clearly� the translation g�x� y� � �x��� y� maps U to V � However� the origin ��� ��
is in U � but not in V 
 �

� Complete languages for semi�algebraic queries

In this section� we consider the query languages FO�R� and FO�R� � while and show
that the latter language expresses exactly all semi�algebraic queries
 For a wide variety
of geometries� we then show how the semantics of programs in this language can be
modi�ed so as to be guaranteed generic� yielding query languages expressing exactly all
generic geometric queries of the type considered


��� Semi�algebraic queries

Let � be a relational schema
 A �rst�order formula ��x�� � � � � xk� in the language of
the real numbers augmented with the relation names of � de�nes on each semi�algebraic
database D over � a subset ��D� of Rk in the standard manner
 Since ��D� is obviously
semi�algebraic� � thus de�nes a k�ary semi�algebraic query over �
 The basic query
language obtained by all such formulas � is denoted by FO�R�


�Re�ections are isometries�
�Re�ections with respect to a point are rotations around that point over an angle of ����� and�

therefore� are rigid motions�

��



Example ��� Consider again the queries introduced in Example �
�


Each of these queries� except for the connectivity query �Query ��� is expressible in
FO�R�
�

� Query � is expressed as f�x� j �
y�R�x� y�g


� Query � is expressed as f�x� y� j R�x� y� � S �x� y�g


� Query � is expressed as

f�x� y� j ��x����y����x����y����x����y������������������S�x�� y�� � S�x�� y�� � S�x�� y�� �
�� � � � �� � � � �� � � � �� � �� � �� � � �
x � ��x� � ��x� � ��x� � y � ��y� � ��y� � ��y��g�

i
e
� a point �x� y� is in the convex hull of S if it can be written as a convex
combination of three points �x�� y��� �x�� y��� and �x�� y�� in S


� Query � is expressed as

�
a��
b��
r��r � � � ��x���y��R�x� y�� �x� a�� � �y � b�� � r����

� Query 	 is expressed as

�
x���
y���
x���
y���R�x�� y�� � S�x�� y�� � �x� � x��
� � �y� � y��

� � ���

� Query � is expressed as

��a�����a�����a�����a�����b����b���a��a�� � a��a�� � �

� ��x���y��R�x� y� � S�a��x� a��y � b�� a��x� a��y � b�����

Note that the variables a��� a��� a��� a��� b�� b�� are used to represent the rigid
motion that maps the point �x� y� to the point �a��x� a��y� b�� a��x� a��y� b��

The formula then expresses that the sets R and S can be mapped to each other
by a direct isometry� i
e
� a rigid motion


� Query 
 is expressed as f�x� y� j R�x� y� � 
�
x���
y���R�x�� y�� � x� � x�g


� Query � is expressed as S��� ��
 �

We can extend FO�R� into a full��edged programming language� which we denote by
FO�R� � while


A program over � is a �nite sequence of statements and while�loops
 Each statement
has the form R �� f�x�� � � � � xk� j ��x�� � � � � xk�g� with R a relation variable of arity k
and � a �rst�order formula in the language of the real numbers augmented with the
relation names of � and the previously introduced relation variables
 Each while�loop

�By the combined results of Grumbach and Su 
�� and of Benedikt� Dong� Libkin� and Wong 
��� the
connectivity query is not expressible in FO
R�� From results by Schwartz and Sharir 
���� it follows�
however� that this query is computable�

��



has the form while � do P � where P is a program and � is a �rst�order sentence in the
language of the real numbers augmented with the relation names of � and the previously
introduced relation variables


Semantically� a program in the query language FO�R��while expresses a semi�algebraic
query in the obvious way as soon as one of its relation variables has been designated as
the output variable
 Of course� since while�loops need not terminate� this query will in
general not be totally de�ned �as is the case with FO�R� queries�


As announced� we can show that FO�R��while is complete for the semi�algebraic queries


Theorem ��� Every semi�algebraic query is expressible in FO�R� � while�

Proof� Let Q be a k�ary semi�algebraic query over a schema �
 Let K be the maximum
of k and the arities of relation names of �
 Then every relation in a semi�algebraic
database over � can be de�ned by a quanti�er�free real formula using only the variables
x�� 
 
 
 � xK 


We next introduce a speci�c way of encoding such formulas as natural numbers in
such a way that that the encoding of a subterm or subformula occurring in another
term or formula comes before the encoding of that term or formula
 Notice that these
formulas� and the terms that can occur in them� are strings over the �nite alphabet
� � fa�� � � � � a�	Kg� where the alphabet symbols are shown in Table �
 Any string
�ai� � � � ain� over � can be encoded as a natural number enc�ai� � � � ain� � pi�� � � � pinn � where
pj is the j�th prime number
 Observe that if s is a substring of t� then enc�s� � enc�t�


a� �

a� �

a� �
a� �
a� �
a� �
a� �
a� 	

a� �

a�
 x�
���

a�	K xK

Table �� The alphabet � of formulas and terms


Now let R be a relation name of arity l in �
 We show that there is a program EncodeR
which� when applied to a database D� computes in the variable nR the encoding of a
real formula de�ning RD


To do so� we point out that programs in FO�R� � while have full computational power
on natural numbers
 Indeed� natural numbers can be stored in variables in the form
of unary singleton relations� and it is easy to simulate counter programs
 The program

��



n 
� 	� T 
� 	� F 
� 	�
Found 
� false�

while �Found do

n 
� n� ��

if n encodes x� then

T 
� T 
 f�n� a�� � � � � al� a�� j a�� � � � � al � Rg else
���

if n encodes xl then

T 
� T 
 f�n� a�� � � � � al� al� j a�� � � � � al � Rg else
if n encodes 	 then

T 
� T 
 f�n� a�� � � � � al� 	� j a�� � � � � al � Rg else
if n encodes � then

T 
� T 
 f�n� a�� � � � � al� �� j a�� � � � � al � Rg else
if n encodes �s� t� then

T 
� T 
 f�n� a�� � � � � al� c� d� j T �enc�s�� a�� � � � � al� c� � T �enc�t�� a�� � � � � al� d�g else
if n encodes �s� t� then
T 
� T 
 f�n� a�� � � � � al� cd� j T �enc�s�� a�� � � � � al� c� � T �enc�t�� a�� � � � � al� d�g else

if n encodes �s � t� then

F 
� F 
 f�n� a�� � � � � al� j ��c���d��T �enc�s�� a�� � � � � al� c� �
T �enc�t�� a�� � � � � al� d� � c � d�g else

if n encodes ���� then
F 
� F 
 f�n� a�� � � � � al� j �F �enc���� a�� � � � � al�g else

if n encodes �� � �� then

F 
� F 
 f�n� a�� � � � � al� j F �enc���� a�� � � � � al� � F �enc���� a�� � � � � al�g�
Found 
� n encodes a formula � ��a�� � � � ��al��F �n� a�� � � � � al�� R�a�� � � � � al��

od�

nR 
� n�

Figure �� The program EncodeR


EncodeR� shown in Figure �� builds up relations T �for term� and F �for formula�
 The
arity of T is l��� each tuple in T is of the form �t� a�� � � � � al� ��� where t is the encoding
of a term which only uses the variables x�� � � � � xl� where a�� � � � � al are real numbers� and
where � is the value of t evaluated under the valuation x� �� a�� � � � � xl �� al
 The arity
of F is l � �� each tuple in F is of the form �f� a�� � � � � al�� where f is the encoding of a
formula which only uses the variables x�� � � � � xl� and where f�a�� � � � � al� is true


The program EncodeR works� because encodings and decodings can be performed e�ec�
tively� and because terms and formulas are evaluated before the terms and formulas in
which they occur


We de�ne the program Encode as the composition of all programs EncodeR for all
relation names R of �


We next show that there exists a program Decode which� when applied to the encoding
f of a formula �� computes in a relation variable Dec the semi�algebraic subset of
Rk de�ned by �
 Thereto� it su�ces to modify the program EncodeR in Figure � as

�	



follows
 First� substitute the subscript k for the subscript l in EncodeR
 Next� the
statement assigning the variable Found in the body of the while�loop is replaced by
Found �� n � f 
 The last statement of the program is replaced by Dec �� f�a�� � � � � ak� j
F �n� a�� � � � � ak�g


Now� revisiting the k�ary computable query Q over �� denote the set of relation names of
� by fR�� � � � � Rrg
 Then there exists a counter program M such that� for each database
D on which Q is de�ned� if �nR�

� � � � � nRr� are the results of applying program Encode
to D� then M�nR�

� � � � � nRr� is the encoding of a quanti�er�free formula de�ning Q�D��
using the variables x�� � � � � xk
 If Q�D� is not de�ned� then M does not halt on this
input
 As already noted above� we can simulate M by a program P in FO�R� � while

Hence� query Q is expressed by the program

Encode� P � Decode
 �

Recently� a lot of attention has been devoted to semi�linear databases� which are essen�
tially stores of semi�linear sets� and languages to query these databases
 Semi�algebraic
queries on semi�linear databases returning semi�linear outputs are called semi�linear
queries
 To design languages for expressing semi�linear queries� it is natural to consider�
as a core language� the language FO�Rlin�� which is FO�R� restricted to formulas in
which only linear polynomials occur
 From re�examining the proof of Theorem �
�� the
following is readily derived


Corollary ��� Every semi�linear query is expressible in FO�Rlin� � while�

In fact� the proof is the same as that of Theorem �
�� with the exception that every
statement in that proof which refers to multiplication must be omitted


��� Geometric queries

We will assume that we work in the n�dimensional space Rn� n � �


Let � be a relational schema� and let G be a group of transformations of Rn
 Represen�
tations of geometric databases over � are essentially strings over some �nite alphabet
and hence can be compared lexicographically
 We can thus de�ne the following notions


De�nition ��� �
 Two geometric databases D and D� are called G�isomorphic if
D� � g�D� for some g in G


�
 The G�canonization of a geometric database D� denoted by canonG�D�� is the
geometric database D� which is G�isomorphic to D and has a representation that
occurs lexicographically �rst among the representations of geometric databases
G�isomorphic to D


�
 The G�type of D� denoted by TypeG�D�� equals fg � G j g�D� � canonG�D�g
 �

��



Clearly� if D and D� are G�isomorphic databases� then canonG�D� � canonG�D��


Canonization can be carried out e�ectively for a wide variety of transformation groups
G
 It su�ces for G to be identi�able with a semi�algebraic subset ofR�� for some �xed ��
such that the �graph� of G� the set f�g� x�� � � � � xn� x��� � � � � x

�
n� j g � G� g�x�� � � � � xn� �

�x��� � � � � x
�
n�g is a semi�algebraic subset of R�	�n
 If this is the case� we call G semi�

algebraic
 For semi�algebraic transformation groups G� we can compute a representation
of canonG�D� from a representation ofD by enumerating all representations of databases
D� until we �nd one for which �
g � G��g�D� � D�� is true
 This condition is a real
sentence� and� therefore� decidable by Tarski�s theorem


Example ��� Most naturally occurring transformation groups are semi�algebraic� in
particular� all transformation groups considered in Section � are


The group of a�nities is semi�algebraic
 An a�nity is a composition of a linear trans�
formation� which can be described by a regular n� n matrix� and a translation� which
can be described by an n�dimensional vector
 If n � �� we can identify the group of
a�nities with the semi�algebraic set

f�a��� a��� a��� a��� b�� b�� j a��a�� � a��a�� 	� �g�

whence the graph of this group equals

f�a��� a��� a��� a��� b�� b�� x� y� x�� y�� j a��a�� � a��a�� 	� � �
x� � a��x� a��y � b� � y� � a��x � a��y � b�g�

which is clearly a semi�algebraic set


The group of similarities is semi�algebraic
 If n � �� the graph of this group equals

f�k� a� b� c� d� x� y� x�� y�� j k� � � � a� � b� 	� � �
x� � ax� by � c � y� � kbx � kay � dg�

which is clearly a semi�algebraic set


The group of isometries is semi�algebraic
 For n � �� we only need to re�ne the case for
similarities by insisting that a� � b� � �


The group of direct isometries is semi�algebraic
 For n � �� we only need to re�ne the
case for similarities by insisting that a� � b� � � and k � �


The group of translations is semi�algebraic
 For n � �� we only need to re�ne the case
for similarities by insisting that a � �� b � �� and k � �
 �

We are now ready to de�ne a modi�ed semantics of programs� in conjunction with
some semi�algebraic group G
 If P is a program expressing a geometric query and D a
database� then we de�ne

PG�D� ��
�
fg���P �canonG�D��� j g � TypeG�D�g�

We can show the following


�




Theorem ��� The partial function mapping D to PG�D� for each geometric database D
is a G�generic geometric query �in particular� it is computable�� Moreover� if P already
expresses a G�generic query then PG�D� � P �D� for each geometric database D�

Proof� We �rst prove that the mapping PG is a G�generic geometric query
 The
computability of PG follows from the arguments made above
 We can thus concentrate
on the G�genericity
 Let D and D� be geometric databases such that D� � g�D� for some
transformation g in G
 We have to prove that PG�D�� � g�PG�D��


Since D� � g�D�� and also canonG�D�� � canonG�D�� we have furthermore that

TypeG�D
�� � TypeG�D� � g���

where composition must be interpreted element�wise
 Thus we can deduce that

g�PG�D�� � g
��

fh���P �canonG�D��� j h � TypeG�D�g
�

�
�
fg � h���P �canonG�D��� j h � TypeG�D�g

�
�
f�h � g������P �canonG�D��� j h � TypeG�D�g

�
�
fh����P �canonG�D��� j h� � TypeG�D

��g

� PG�D���

If P itself is G�generic� then� for each g in TypeG�D��

g���P �canonG�D��� � g���P �g�D��� � g�� � g�P �D�� � P �D��

whence PG � P 
 �

According to Theorem �
	� we can produce complete� generic� geometric query languages
for a wide variety of geometries
 Notice that all these languages are syntactically identi�
cal to FO�R��while� and are thus very arti�cial
 In Section 	� we provide more natural
languages which are sound and complete for the various classes of computable geometric
queries
 Some of the groundwork to establish these results will be laid in the following
section


� First�order geometric query languages

In this section� we �rst propose a family of �rst�order query languages� FO���� parame�
terized by sets � of so�called point predicates
 We then proceed by identifying several
members of this family and showing that each of these is sound and complete for a
natural genericity class of geometric queries expressible in FO�R�


We recall that the domain of a geometric database in dimension n is Rn� i
e
� the
geometric space itself� the elements of which we naturally call points
 In the logic�based
query languages we will de�ne next� the variables stand for points �as opposed to real

��



numbers�
 Thus the predicates used in these languages are evaluated over the set of
points of Rn �as opposed to the set of real numbers� and will therefore be referred to as
point predicates


Apart from relation names� we consider the following point predicates�
�

� between�p�� p�� p��� which is true if either p� lies on the closed line segment be�
tween p� and p�� or if p�� p�� and p� coincide�

� equidistance�p�� p�� p�� p��� which is true if the distance between p� and p� equals
the distance between p� and p��

� unitdistance�p�� p��� which is true if the distance between p� and p� equals ��

� positive�o� p�� � � � � pn�� which is true if �o� p�� � � � � pn�� is a positively oriented basis
of Rn�

oriented�

� smalleri�p�� p��� � � i � n� which is true if the i�th component of p� is smaller
than the i�th component of p�


Now� let � be a �nite set of point predicates such as the ones above� and let � be a
relational schema
 A �rst�order formula

��bv�� � � � � bvk� over the relation names of � and the predicate names in � de�nes on each
geometric database D over � a subset ��D� of �Rn�k in the standard manner
�� Notice
that variables now range over Rn instead of R� i
e
� over points instead of coordinates

If the predicates in � can be de�ned by real formulas �in terms of the coordinates of the
points involved� � is equivalent to an FO�R��formula � over the schema � corresponding
to � �cf
 Section ��
 Hence� ��D� will be semi�algebraic and thus � de�nes a k�ary
geometric query over �
 The query language obtained is denoted by FO���


We observe that all point predicates considered above are de�nable by real formulas
 To
illustrate this� we assume that we work in the plane
 Furthermore� the �rst and second
coordinates of a point p will be denoted by p� and p�� respectively


�
 The real formula

�
����
����p
�
� � ��p

�
� � ��p

�
� � p�� � ��p

�
� � ��p

�
� � �� � � � �� � � � �� � �� � ��

de�nes the predicate between�p�� p�� p��


�
 The real formula �p���p
�
��

���p���p
�
��

� � �p���p
�
��

���p���p
�
��

� de�nes the predicate
equidistance�p�� p�� p�� p��


�
 The real formula �p���p
�
��

���p���p
�
��

� � � de�nes the predicate unitdistance�p�� p��


�	The predicates between and equidistance were introduced by Tarski 
����
��We use �hatted� symbols to denote point variables�

��



�
 The real formula �p�� � o���p�� � o��� �p�� � o���p�� � o�� � � de�nes the predicate
positive�o� p�� p��


�
 The real formulas p�� � p�� and p�� � p�� de�ne the predicates smaller��p�� p�� and
smaller��p�� p��� respectively


Example ��� Consider again the queries in Example �
�


Query � can be expressed in FO�between� as

fbv j �
bv���
bv���
bv���S�bv�� � S�bv�� � S�bv�� � triangle�bv� bv�� bv�� bv���g�
where triangle�bv� bv�� bv�� bv�� states of the point bv that is in the triangle spanned by the
points bv�� bv�� and bv�
 The predicate triangle�bv� bv�� bv�� bv�� is an abbreviation for the
formula

�
bp��between�bv�� bp� bv�� � between�bv�� bv� bp���
Query � can be expressed in FO�between� equidistance� as

�
bc��
bu��
bv���bp��R�bp�� equidistance�bc� bp� bu� bv��� �

We intend to show that� for each of the sets � of point predicates listed in Table �� the
language FO��� captures precisely all geometric queries expressible in FO�R� that are
generic with respect to the corresponding genericity notion


Genericity notion Point predicate set �

A
ne genericity fbetweeng
Similarity genericity fbetween� equidistanceg
Isometry genericity fbetween� equidistance�unitdistanceg
Direct�isometry genericity fbetween� equidistance�unitdistance�positiveg
Translation genericity fbetween� equidistance�unitdistance�positive�

smaller�� � � � � smallerng

Table �� Point predicate sets for various geometric genericity notions


We �rst consider the language FO�between�
 We are going to show that FO�R��formulas
can be simulated by FO�between� formulas that are parameterized by a basis� in a way
that we shall make precise in Lemma �
�


It is well�known �e
g
� ����� that there exists a formula in the language �between�
which de�nes the predicate basis�bz
� bz�� � � � � bzn� which is true for the points o� e�� � � � � en
if �o� e�� � � � � en� is a basis of Rn


In a basis �o� e�� � � � � en�� we associate to any real number 	 the point p on the line
oe� for which ��op � 	��oe�� i
e
� the point on the �rst coordinate axis with coordinate 	

Conversely� each point p on the line oe� is associated to the real number 	 for which
��op � 	��oe�
 We shall denote this real number 	 as ��op
��oe�


��



It is also well�known �e
g
� ����� that the arithmetic operations on these numbers are
�rst�order�expressible in the language �between�
 Therefore� we may assume the ex�
istence of the point predicates less�bz
� bz�� � � � � bzn� bx� by�� plus�bz
� bz�� � � � � bzn� bx� by� bz�� and
times�bz
� bz�� � � � � bzn� bx� by� bz�� such that

� less�o� e�� � � � � en� p� q� is true if �o� e�� � � � � en� is a basis� p and q are points on the
line oe�� and ��op
��oe� � ��oq
��oe��

� plus�o� e�� � � � � en� p� q� r� is true if �o� e�� � � � � en� is a basis� p� q� and r are points
on the line oe�� and ��op
��oe� ���oq
��oe� � ��or
��oe�� and

� times�o� e�� � � � � en� p� q� r� is true if �o� e�� � � � � en� is a basis� p� q� and r are points
on the line oe�� and ��op
��oe� ���oq
��oe� � ��or
��oe�


We also need the predicate coordinates�bz
� bz�� � � � � bzn� bu� bu�� � � � � bun� that is true for the
points o� e�� � � � � en� p� p�� � � � � pn if �o� e�� � � � � en� is a basis of Rn� p�� � � � � pn are points on
the line oe�� and

��op �
��op�
��oe�

��oe� � � � ��
��opn
��oe�

��oen�

In other words� one can think of the points p� through pn on the line oe� as representing
the coordinates of the point p
 In subsequent results� the coordinates predicate will be
used to associate points with their respective coordinates
 As shown in ���� �Chapter �	�
pages �	� �	��� the predicate coordinates can be de�ned by an FO�between� formula


Finally� we observe that the predicate collinear�bx� by� bz�� which is true for the points p�
q� and r if p� q� and r are collinear� can be expressed as

between�bx� by� bz� � between�by� bx� bz� � between�bz� by� bx��
Using the predicates introduced above� we can simulate FO�R� formulas by FO�between�
formulas that are parameterized by a basis� in the following sense


Lemma ��� Let � be a relational schema� For each FO�R� formula ��x�� � � � � xm�
over �� there exists an FO�between� formula b��bz
� bz�� � � � � bzn� bx�� � � � � bxm� over �� withbz
� bz�� � � � � bzn� bx�� � � � � bxm free point variables� such that� for each geometric database D
over � in Rn� for each basis �o� e�� � � � � en� of Rn� and for all points p�� � � � � pm on the
line oe��

D j� b��o� e�� � � � � en� p�� � � � pm�
if and only if

��D� j� �

���op�
��oe�

� � � � �
���opm
��oe�

�
�

where � is the unique a�nity of Rn mapping the basis �o� e�� � � � � en� into the standard
basis of Rn�

��



Proof� Without loss of generality� we may assume that every atomic subformula of � is
either of the form x � y� x � y � z� x � y � z� x � �� or x � �� where x� y and z are
real variables� or a relational atom in which only real variables occur
 We now prove
Lemma �
� by structural induction


�
 If � is x � y� then b� is less�bz
� bz�� � � � � bzn� bx� by�

�
 If � is x � y � z� then b� is plus�bz
� bz�� � � � � bzn� bx� by� bz�

�
 If � is x� y � z� then b� is times�bz
� bz�� � � � � bzn� bx� by� bz�

�
 If � is x � �� then b� is bx � bz


�
 If � is x � �� then b� is bx � bz�

	
 If � is a relational atom R�x��� � � � � x

�
n� � � � � x

m
� � � � � � x

m
n �� with R a relation name of

arity m in �� then

b� � �
bu�� � � � �
bum��R�bu�� � � � � bum� � m�
i��

coordinates�bz
� bz�� � � � � bzn� bui� bxi�� � � � � bxin���
To see that this translation is correct� we need to make some observations about
the coordinates predicate
 Given a point p in Rn and given points p�� � � � � pn on
the line oe�� we know that coordinates�o� e�� � � � � en� p� p�� � � � � pn� is true if and only
if

��op �
��op�
��oe�

��oe� � � � ��
��opn
��oe�

��oen�

Since a�nities preserve linear combinations of vectors� the above equality is equiv�
alent to

����op � �
��op�
��oe�

����oe�� � � � ��
��opn
��oe�

����oen��

Since � maps the basis �o� e�� � � � � en� to the standard basis of Rn� the above
equality is equivalent to

��p� �

���op�
��oe�

� � � � �
��opn
��oe�

�
�

Thus� given p��� � � � � p
�
n� � � � � p

m
� � � � � � p

m
n on the line oe�� we have that

D j� b��o� e�� � � � � en� p��� � � � � p�n� � � � � pm� � � � � � pmn �
if and only if

��D� j� R

����op��
��oe�

� � � � �

��
op�n
��oe�

� � � � �

���
opm�
��oe�

� � � � �

���
opmn
��oe�

�A �

�
 If � is 

� then b� is 
 b


��





 If � is 
 � �� then b� is b
 � b�

�
 If � is �
x�
�x� x�� � � � � xm�� then b� is

�
bx��collinear�bz
� bz�� bx� � b
�bz
� bz�� � � � � bzn� bx� bx�� � � � � bxm���
To see that this translation is correct� we observe that� given points p�� � � � � pm on
the line oe�� D j� b��o� e�� � � � � en� p�� � � � � pm� if and only if there exists a point p
on the line oe� such that D j� b
�o� e�� � � � � en� p� p�� � � � � pm�
 By induction� this
statement is equivalent to the existence of a point p on the line oe� such that

��D� j� 


� ��op
��oe�

�
��op�
��oe�

� � � � �
���opm
��oe�

�
�

Since each real number can be written as ��op
��oe� for some point p on the line oe��
the above statement is equivalent to

��D� j� �

���op�
��oe�

� � � � �
���opm
��oe�

�
�

This completes the proof of Lemma �
�
 �

To show that FO�R��expressible a�ne�generic queries are expressible in FO�between��
we must somehow eliminate the bases which parameterize the formulas in FO�between�
that simulate FO�R� formulas
 We shall use a�ne genericity to show that these bases
can be eliminated properly
 To do so� we will �rst prove a genericity result that holds
for geometric queries that are expressible by FO�R� formulas� and that is at the core of
the elimination of bases


Lemma ��� Let G be a semi�algebraic group of transformations of Rn� Let � be a
relational schema� and let D be a geometric database over � in Rn� Let D be the
underlying semi�algebraic database over �� Let 
 be an FO�R� formula expressing a
G�generic geometric query over � in Rn� Then� for each g in G� 
�g�D�� � g�
�D���

Proof� Lemma �
� is non�trivial� because a semi�algebraic group of transformation
may �and� in general� will� contain transformations whose coordinates are not all real
algebraic
 If g is such a transformation� g�D� need not be semi�algebraic� whence the
de�nition of G�genericity cannot be applied to D� g� and 

 However� if all coordinates
of g are real algebraic� then g�D� is semi�algebraic� and 
�g�D�� � g�
�D��� by G�
genericity
 Hence� the following real sentence is true about the �eld of real algebraic
numbers�

��g � G��
�g�D�� � g�
�D���

Since Tarski ���� showed that the �eld of the real algebraic numbers and the �eld of the
real numbers are elementary equivalent� it follows that this sentence is also true about
the �eld of the real numbers� whence the lemma holds
 �

We can now round o� our investigation of the language FO�between�


��



Proposition ��� The query language FO�between� expresses exactly all a�ne�generic
geometric queries expressible in FO�R��

Proof� First� we observe that queries expressed in FO�between� are indeed a�ne�
generic� since FO��� preserves arbitrary permutations of Rn� and since the ternary be�
tweenness relation on Rn is invariant under all a�ne transformations of Rn


Now� consider a k�ary a�ne�generic geometric query over the schema � inRn� expressed
by an FO�R� formula 
�x��� � � � � x

�
n� � � � � x

k
�� � � � � x

k
n� over �


By Lemma �
�� there exists an FO�between� formula

b
�bz
� bz�� � � � � bzn� bx��� � � � � bx�n� � � � � bxk�� � � � � bxkn�
over �� with bz
� bz�� � � � � bzn� bx��� � � � � bx�n� � � � � bxk�� � � � � bxkn free point variables� such that�
for each database D over �� for each basis �o� e�� � � � � en� of Rn� and for all points
p��� � � � � p

�
n� � � � � p

k
�� � � � � p

k
n on the line oe��

D j� b
�o� e�� � � � � en� p��� � � � � p�n� � � � � pk�� � � � � pkn�
if and only if

��D� j� 


����op��
��oe�

� � � � �

��
op�n
��oe�

� � � � �

��
opk�
��oe�

� � � � �

��
opkn
��oe�

�A �

where � is the unique a�nity of Rn mapping the basis �o� e�� � � � � en� into the standard
basis of Rn


Consider the following FO�between��formulas �� and ��

���bz
� bz�� � � � � bzn� bx��� � � � � bx�n� � � � � bxk�� � � � � bxkn� � basis�bz
� bz�� � � � � bzn� �
k�

i��

n�
j��

collinear�bz
� bz�� bxij� � b
�bz
� bz�� � � � � bzn� bx��� � � � � bx�n� � � � � bxk�� � � � � bxkn�� and

��bv�� � � � � bvk� � �
bz
��
bz�� � � � �
bzn��
bx��� � � � �
bxn� � � � � �
bx�k� � � � �
bxnk�
����bz
� bz�� � � � � bzn� bx��� � � � � bxn� � � � � � bx�k� � � � � bxnk� �
k�

i��

coordinates�bz
� bz�� � � � � bzn� bvi� bx�i � � � � � bxni ���
Formula � expresses a k�ary geometric query over � in Rn


To see the e�ect of this query� let D be a geometric database over � in Rn
 Let
�o� e�� � � � � en� be an arbitrary basis of Rn and let � be the a�nity mapping the basis
�o� e�� � � � � en� into the standard basis of Rn
 Consider the partial output of � obtained
by substituting o� e�� � � � � en for bz
� bz�� � � � � bzn� respectively

It follows from Lemma �
� that � simulates 
 �with points on the line oe� being used
to represent real numbers�� with the exception that the n components of a point in Rn

are its coordinates with respect to the standard basis� whereas in �� their representa�
tions refer to the basis �o� e�� � � � � en�
 Thus� the partial output of � considered equals
����
���D���
 Since there is a one�to�one correspondence between the a�nities and the

��



bases of Rn� it follows that ��D� �
S
� �

���
���D���� where � ranges over all a�nities
of Rn
 Since 
 expresses an a�ne�generic geometric query� it follows from Lemma �
�
that� for each a�nity � of Rn� ����
���D��� � 
�D�� whence ��D� � 
�D�
 �

This concludes the case of the language FO�between�
 It now turns out that the other
instances of Table � can be dealt with in almost the same way


Theorem ��� The query language FO��� expresses exactly all generic geometric queries
expressible in FO�R�� with � and the genericity type as listed in Table ��

Proof� The case where � � fbetweeng has been dealt with in Proposition �
�
 We
next show that Theorem �
� holds for the other instances in Table �


A straightforward veri�cation su�ces to see that FO��� is sound relative to the FO�R��
expressible geometric queries of the corresponding genericity type


The completeness proof is analogous to the proof of the completeness of FO�between�
relative to the a�ne�generic queries
 The only di�erence is that instead of working with
arbitrary bases of Rn� we need to work with bases appropriate for the genericity type
considered
 Thus we only need to know that there exists a formula in the language ���
which characterizes these bases


For the case that � � fbetween� equidistanceg� we need a formula in the language
�between� equidistance� characterizing Euclidean bases
 Such a formula is given in
���� �De�nition �	
�� page �	��
 We denote this formula by basisEuclid for further use


For the case that � � fbetween� equidistance�unitdistanceg� we need a formula in
the language �between� equidistance�unitdistance� that characterizes the Euclidean
bases of unit length
 The following is such a formula�

basisEuclid �bz
� bz�� � � � � bzn� � n�
i��

unitdistance�bz
� bzi��
We denote this formula by basisunit for further use


For the case that � � fbetween� equidistance�unitdistance�positiveg� we need a
formula in the language �between� equidistance�unitdistance�positive� character�
izing the Euclidean bases of unit length which are oriented in the same way as the
standard basis of Rn
 The following is such a formula�

basisunit�bz
� bz�� � � � � bzn� � positive�bz
� bz�� � � � � bzn��
We denote this formula by basispositive for further use


Finally� for the case that � � fbetween� equidistance� unitdistance� positive�
smaller�� � � � � smallerng� we need a formula in the language �between� equidistance�
unitdistance�positive� smaller�� � � � � smallern� characterizing the bases which can be
translated to the standard basis of Rn
 The following is such a formula�

basispositive�bz
� bz�� � � � � bzn� � n�
i��

smalleri�bz
� bzi��
This completes the proof of Theorem �
�
 �

�	



� Complete geometric query languages

In Section �
�� we showed that the language FO�R� � while� when given appropriate
semantics� is complete for various classes of geometric queries �see Theorem �
	�
 While
of interest� this result is unsatisfactory since FO�R� � while does not have a natural
geometric syntax
 In this section� we augment the languages FO��� from the previous
section with while�loops and show the more satisfactory result that the resulting lan�
guages FO��� � while� which do have a natural geometric syntax and semantics� are
complete for the corresponding classes of geometric queries


Let � be a �nite set of point predicates� and let � be a relational schema
 Syntactically�
a program over � in the query language FO��� �while is a �nite sequence of statements
and while�loops
 Each statement has the form

R �� f�bv�� � � � � bvk� j ��bv�� � � � � bvk�g�
with R a relation variable of arity k and � a �rst�order formula in the language ���
augmented with the relation names of � and the previously introduced relation variables

Each while�loop has the form while � do P � where P is a program and � is a �rst�order
sentence in the language ��� augmented with the relation names of � and the previously
introduced relation variables


Semantically� a program in the query language FO��� � while expresses a geometric
query in the obvious way as soon as one of its relation variables has been designated as
the output variable


Theorem ��� The query language FO����while expresses exactly all generic geometric
queries� with � and the genericity type as listed in Table ��

Proof� To simplify the exposition� we restrict ourselves to geometric queries in the
plane� i
e
� in R�
 Furthermore� we will assume that � � fRg and that R is a unary
relation
 Finally� we only consider unary geometric queries� so the output is also a unary
relation
 �Such queries can be thought of as mapping point sets in the plane to points
sets in the plane
� The proof we shall give can easily be generalized� however
 Indeed�
if we work in a higher�dimensional space� we only have to adjust each formula occurring
in the proof to this case
 If we have multiple input relations� of potentially di�erent
arities� we only have to encode each of them separately
 �The encoding algorithm will
need to consider the arity of an input relation
� Finally� if the output is k�ary� we only
have to use an adapted version of the decoding algorithm described below


We only develop the proof for the case where � � fbetweeng
 For the other cases� it
su�ces to modify this proof as explained in the proof of Theorem �
�


It is clear that queries expressed in FO�between� � while are a�ne�generic


We thus have to show that every unary geometric query Q over � in R� can be ex�
pressed by a program in FO�between� � while
 The proof strategy we follow is that of
Theorem �
�� using insights gained from proving Theorem �
	� and adopting techniques
developed in the proof of Theorem �
�
 We �rst provide a sketch of this strategy�

��



�
 Encode� Given a geometric databaseD over �� we compute in FO�between��while
the natural number n such that n � enc�s�� where s is the �rst string over �
�de�ned as in the proof of Theorem �
�� with K � �� encoding the quanti�er free
FO�R� formula de�ning canonG�D�� where G is the group of a�nities in the plane

We also compute TypeG�D�


�
 Compute� LetM be the counter machine that computes the query Q
 We simulate
in FO�between� � while the e�ect of running M on n


�
 Decode� In the case where the computation terminates with as output a nat�
ural number m that encodes a valid FO�R� formula� we compute� again using
an FO�between� � while program� its corresponding point set
 This point set
corresponds to Q�canonG�D��
 Since Q is a�ne�generic� we have� for each g
in TypeG�D�� that Q�canonG�D�� � Q�g�D�� � g�Q�D��
 Therefore� to com�
pute Q�D�� an FO�between� expression must be constructed which computesS
g�TypeG�D
 g

���Q�canonG�D���


To accomplish this strategy� we need to realize that� unlike in FO�R��while� we have no
direct access to real numbers in FO�between��while
 However� as should be clear from
the techniques developed in the proofs of Theorem �
� and preceding auxiliary results�
we can represent such real numbers relative to an arbitrary basis of the plane


We now elaborate on each of the steps in our strategy


�
 Encode� The encoding program� shown in Figure �� builds up relations T �for
term� and F �for formula�
 The arity of T is �n � �� � l � � � � �where n � ��
the dimension of the plane� and l � �� n times the arity of R�� each tuple in T
is of the form �o� e�� e�� t� p�� p�� ��� where �o� e�� e�� is a basis of the plane� and
t� p�� p�� and � are points on the line oe� �of which we think as real numbers�

More speci�cally� t is the encoding of a term which only uses the variables x� and
x�� and � represents the value of t evaluated under the valuation x� �� p� and
x� �� p�
 The arity of F is �n � �� � l � � � 	
 Each tuple in F is of the form
�o� e�� e�� f� p�� p��� where �o� e�� e�� is a basis of the plane� and f � p� and p� are
points on the line oe� �of which we think as real numbers�
 More speci�cally� f is
the encoding of a formula which only uses the variables x� and x�� and f�p�� p��
is true


In this program� the statement n �� � is an abbreviation for the statement

n �� f�bz
� bz�� bz�� bn� j basis�bz
� bz�� bz�� � bn � bz
g�
and the statement n �� n� � is an abbreviation for the statement

n �� f�bz
� bz�� bz�� bn�� j �
bn��n�bz
� bz�� bz�� bn� � plus�bz
� bz�� bz�� bn� bz�� bn���g�
The translations of the statements occurring under the various if�statements is
straightforward
 For example� the statement

T �� T � f�o� e�� e�� n� p�� p�� p�� j p�� p� � oe�g

�




n 
� 	� T 
� 	� F 
� 	�
Found 
� false �

while �Found do

n 
� n� ��

if n encodes x� then

T 
� T 
 f�o� e�� e�� n� p�� p�� p�� j p�� p� � oe�g else
if n encodes x� then

T 
� T 
 f�o� e�� e�� n� p�� p�� p�� j p�� p� � oe�g else
if n encodes 	 then

T 
� T 
 f�o� e�� e�� n� p�� p�� o� j p�� p� � oe�g else
if n encodes � then

T 
� T 
 f�o� e�� e�� n� p�� p�� e�� j p�� p� � oe�g else
if n encodes �s� t� then

T 
� T 
 f�o� e�� e�� n� p�� p�� c� d� j T �o� e�� e�� enc�s�� p�� p�� c� �
T �o� e�� e�� enc�t�� p�� p�� d�g else

if n encodes �s� t� then

T 
� T 
 f�o� e�� e�� n� p�� p�� cd� j T �o� e�� e�� enc�s�� p�� p�� c� �
T �o� e�� e�� enc�t�� p�� p�� d�g else

if n encodes �s � t� then

F 
� F 
 f�o� e�� e�� n� p�� p�� j ��c���d��T �o� e�� e�� enc�s�� p�� p�� c� �
T �o� e�� e�� enc�t�� p�� p�� d� � c � d�g else

if n encodes ���� then
F 
� F 
 f�o� e�� e�� n� p�� p�� j �F �o� e�� e�� enc���� p�� p��g else

if n encodes �� � �� then

F 
� F 
 f�o� e�� e�� n� p�� p�� j F �o� e�� e�� enc���� p�� p�� � F �o� e�� e�� enc���� p�� p��g�
Found 
� n encodes a formula which represents canonG�R��

od�

ncanonG�R
 
� n�

TypeG 
� fg � G j g�R� � canonG�R�g�

Figure �� The encoding program
 Points on the line oe� are identi�ed with real numbers


��



is an abbreviation for the statement

T �� f�bz
� bz�� bz��cm� bx� by� bv� j T �bz
� bz�� bz��cm� bx� by� bv� �
�n�bz
� bz�� bz��cm� � collinear�bz
� bz�� bx� � collinear�bz
� bz�� by� � bx � bv�g�

In the statement

Found �� n encodes a formula which represents canonG�R��

the part where we need to verify that the formula represents canonG�R� is an
abbreviation for the sentence

�	bz	��	bz���	bz����ba�����ba�����ba�����ba�����bb����bb����bm��basis�z	� z�� z�� �
collinear �bz	� bz��ba��� � collinear �bz	� bz��ba��� � collinear �bz	� bz��ba��� � collinear �bz	� bz��ba��� �
collinear �bz	� bz��bb�� � collinear �bz	� bz��bb�� � ba��ba�� � ba��ba�� 
� � � n�bz	� bz�� bz�� bm� �
�	x���	y���F �bz	� bz�� bz�� bm� bx�� by��� ��bv���bx���by��R�bv� �
coordinates�bz	� bz�� bv� bx� by� � bx� � ba��bx� ba��by �bb� � by� � ba��bx� ba��by �bb�����

Here� again� the subformulas ba��ba�� � ba��ba�� 	� �� bx� � ba��bx � ba��by � bb�� andby� � ba��bx�ba��by�bb� can be seen as formulas in the language �between�� expressed
using the predicates plus and times


Finally� the right�hand side of the statement

TypeG �� fg � G j g�R� � canonG�R�g

is an abbreviation for

f�bz	� bz�� bz��ba���ba���ba���ba���bb��bb�� j ��bm��basis�z	� z�� z�� �
collinear �bz	� bz��ba��� � collinear �bz	� bz��ba��� � collinear �bz	� bz��ba��� � collinear �bz	� bz��ba��� �
collinear �bz	� bz��bb�� � collinear �bz	� bz��bb�� � ba��ba�� � ba��ba�� 
� � � n�bz	� bz�� bz�� bm� �
�	x���	y���F �bz	� bz�� bz�� bm� bx�� by��� ��bv���bx���by��R�bv� �
coordinates�bz	� bz�� bv� bx� by� � bx� � ba��bx� ba��by �bb� � by� � ba��bx� ba��by �bb����g�

A crucial aspect of this encoding program is that its while�loop terminates
 The
termination condition is determined by the last statement in the loop� i
e
� the
statement

Found �� n encodes a formula which represents canonG�R��

We �rst observe that the relation n represents a unique natural number� in the
sense that� if �o��� e

�
�� e

�
�� n�� and �o��� e

�
�� e

�
�� n�� are both in n� then �o��� e

�
�� e

�
�� and

�o��� e
�
�� e

�
�� are both bases of the plane� and

���
o�n�


���
o�e�� �

���
o�n�


���
o�e��


Let D be the input to our query Q
 We claim that the algorithm �nds in ncanonG�R


the encoding of the formula that represents canonG�D� eventually� and thus sets
Found to true


To see this� consider the following property of the F relation
 Let b � �o� e�� e��
be a basis of the plane and let nb be the point on the line oe� representing the
natural number n
 Now consider the point set

F n
b
� fbv j �
bx��
by��F �o� e�� e�� nb� bx� by� � coordinates�o� e�� e�� bv� bx� by��g�

��



Then� for each pair of bases b� and b� of the plane� and for each natural number
n� ��F n

b�
� � F n

b�
� where � is the unique a�ne transformation mapping basis b� to

basis b�
 This implies that� if there exists an a�ne transformation g such that
g�D� � F n

b�
� then there exists an a�ne transformation h such that h�D� � F n

b�
�

e
g
� h � � � g
 This property entails that the while�loop terminates and that
the program computes in ncanonG�R
 the encoding of the formula that represents
canonG�D�


�
 Compute� In this phase� we simulate in FO�between� � while the counter ma�
chine M corresponding to the given query Q
 The input to this program will be
ncanonG�R

 Let m be the output variable of this program
 Either the program will
diverge or else it will report its answer in m
 We may assume� without loss of
generality� that� if the program halts� the contents of m is a natural number repre�
senting a valid formula
 In this case� this natural number necessarily corresponds
to a formula representing the point set Q�canonG�D��


�
 Decode� We �nally describe the program that decodes the result inm in the correct
output of Q� i
e
� the point set Q�D�
 This program is the same as the encode
program in Figure �� except that the last line in the while�loop is replaced by the
statement

Found �� n � ncanonG�R
�

Furthermore� the last two statements in the encode program are replaced by an
assignment to the unary relation variable Result of the query

f�bv� j ��bz	���bz����bz����ba�����ba�����ba�����ba�����bb����bb����bm���bx���by���bx����by��
�TypeG�bz	� bz�� bz��ba���ba���ba���ba���bb��bb�� � n�bz	� bz�� bz�� bm� � coordinates�bz	� bz�� bv� bx� by� �bx� � ba��bx� ba��by �bb� � by� � ba��bx� ba��by �bb� � F �bz	� bz�� bz�� bm� bx�� by���g�

This completes the proof of Theorem 	
�
 �

� Extension to models with non�spatial data

In the model we have been using so far� a database can contain semi�algebraic sets
only
 Practical spatial database models support� in addition to purely spatial data� also
non�spatial data without geometrical interpretation� such as the data stored in classical
relational databases
 For example� for a road� one typically does not only want to store
its appearance on a map as a curve �a semi�algebraic set�� but also its name or number

In this section� we brie�y outline how our completeness results can be carried over to
this setting


It is not di�cult to extend the semi�algebraic database model to incorporate non�spatial
data ����
 Each relation name R of the schema then has a composite arity �m� k�� m is
the non�spatial arity of R� and k is the spatial arity of R
 In a semi�algebraic database
D� RD then is a subset of Um � Rk� where U is the universe of non�spatial values�

��



such that �i� �������m�R
D� is �nite� and �ii�� for each tuple �v�� � � � � vm� in �������m�R

D��
the set f�a�� � � � � ak� j �v�� � � � � vm� a�� � � � � ak� � RDg must be a semi�algebraic subset of
Rk
 A representation of RD is now no longer simply a real formula de�ning it� but a
�nite �m � ���ary relation� where m is the non�spatial arity of R� consisting of tuples
�v�� � � � � vm� ��� where �v�� � � � � vm� is in �������m�R

D� and � is a real formula de�ning
f�a�� � � � � ak� j �v�� � � � � vm� a�� � � � � ak� � RDg
 It is now straightforward to also extend
the geometric database model to incorporate non�spatial data


These extended models �t neatly in the model for the language EQL described by
Chandra and Harel ���
 This language is an extension of the well�known QL� a complete
language for generic queries on classical relational databases
 The extension supports
the appearance of fully interpreted data values in relations
 In our application of this
model� these interpreted data values are real formulas


The key construct of EQL is an operator for going from an i�ary relation to the i�th
interpreted data value
 In a direct combination of the languages QL and FO�R��while�
this construct can be expressed
 The QL component of the combined language deals
with the projection of the relations on the ordinary data columns� and the FO�R��while
component deals with the spatial projection


Based on this observation� it can be veri�ed that the combined language� QL��FO�R��
while�� expresses exactly all queries on semi�algebraic databases extended with non�
spatial data
 Similarly� it can be shown that the combined languages QL � �FO��� �
while� express exactly all generic queries on geometric databases extended with non�
spatial data� where � and the genericity type is as listed in Table �
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