UHASSEIT

Query languages for matrices and K-relations

Jan Van den Bussche
(Hasselt University, Belgium)

joint work with Robert Brijder, Floris Geerts (U.Antwerp),
Marc Gyssens, Timmy Weerwag

Relational databases

Database instance: relational structure

- assign domains to attributes
- compatible attributes have same domain
- assign sets of tuples to relation names

Database schema: $F($ name, friend $), B($ name, year $)$

Relational algebra

Union \cup
Difference -

Selection $\sigma_{P\left(A_{1}, \ldots, A_{k}\right)}$
e.g. $\sigma_{\text {year } \geq 2000}(B)$

Natural join \bowtie

Generalized projection $\pi_{f\left(A_{1}, \ldots, A_{k}\right)}$
e.g. $\pi_{\text {year }-2000(B)}$

Renaming $\rho_{A / B}$

Matrix databases

Data science

$$
A=\left(\begin{array}{lll}
5 & 2 & 0 \\
2 & 1 & 3
\end{array}\right) \quad B=\left(\begin{array}{l}
300 \\
250 \\
330
\end{array}\right)
$$

Matrix schema uses size symbols: $A(\alpha \times \beta), B(\beta \times 1)$

MATLANG

$$
1\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

MATLANG

1
diag

$$
\operatorname{diag}\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)
$$

MATLANG

1
diag
(conjugate) transpose
matrix multiplication
pointwise functions $f\left(M_{1}, \ldots, M_{k}\right)$
e.g. $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right) \circ\left(\begin{array}{ll}4 & 3 \\ 2 & 1\end{array}\right)=\left(\begin{array}{ll}4 & 6 \\ 6 & 4\end{array}\right)$ pointwise multiplication

Some simple MATLANG tricks

Let A be the adjacency matrix of a graph on n nodes

Number of nodes:

$$
N=1(A)^{*} \cdot 1(A)
$$

Degree vector, duplicated n times:

$$
D=A \cdot \mathbf{1}(A) \cdot \mathbf{1}(A)^{*}
$$

Google matrix:

$$
G_{i j}=d \frac{A}{D}+\frac{1-d}{N}
$$

Our proposal

$$
\frac{\text { relational algebra }}{\text { relational databases }}=\frac{\text { MATLANG }}{\text { matrix databases }}
$$

- What is the precise expressive power?
- How does it compare to relational database querying?

Matrix database as relational database

$$
\begin{aligned}
\left.A=\begin{array}{ccc}
7 & 8 & 9 \\
10 & 11 & 12
\end{array}\right) & B=\left(\begin{array}{l}
300 \\
250 \\
330
\end{array}\right) \\
A=\begin{array}{|ccc|}
\hline 1 & 1 & 7 \\
1 & 2 & 8 \\
1 & 3 & 9 \\
2 & 1 & 10 \\
2 & 2 & 11 \\
2 & 3 & 12 \\
\hline
\end{array} & B=\begin{array}{|cc|}
\hline 1 & 300 \\
2 & 250 \\
3 & 330 \\
\hline
\end{array}
\end{aligned}
$$

K-relations: generalization of the relational database model
Every tuple is annotated with a value from some fixed semiring K

(Positive) relational algebra on K-relations

Influential paper from 2007 [Green, Garvounarakis, Tannen]

Union: adds annotations

Natural join: multiplies annotations

Selection $\sigma_{A=B}$: sets annotations to 0 for non-qualifying tuples

Projection $\pi_{A_{1}, \ldots, A_{k}}$: sums annotations
Renaming

1: sets annotations to 1

Theorem

ARA(3): Annotation-Relation Algebra, width ≤ 3

Assume K is commutative

Matrix query, expressible in ARA(3) if and only expressible in MATLANG with only + and \circ as pointwise functions

Analogue to classical result by Tarski and Givant:

Our result	Tarski and Givant
matrix queries	binary-relation queries
ARA (3)	FO (3)
MATLANG	classical algebra of binary relations

Expressiveness limitations of MATLANG

Not expressible in MATLANG:

- transitive closure of a graph
- testing for 4-clique

Adding matrix inverse to MATLANG

Akin to solving a system of linear equations
Expressible in MATLANG + inverse:

- PageRank vector of a graph:

$$
\frac{1-d}{n}\left(I-d \frac{A}{D}\right)^{-1} \cdot \mathbf{1}
$$

(by definition)

- transitive closure: let $B=A /(n+1)$

$$
\sum_{k=0}^{\infty} B^{k}=(I-B)^{-1}
$$

- number of connected components, testing bipartiteness

Eigenvectors

Eigen-decomposition, another workhorse in data analysis
Diagonizable $A=B \cdot \wedge \cdot B^{-1}$ where B is a basis of eigenvectors of A
\wedge has the eigenvalues on the diagonal
Define: eigen $(A):=B$, nondeterministic!
Theorem: Inverse is expressible in MATLANG + eigen
Open problem: Show a graph query that is:

- deterministically expressible in MATLANG + eigen
- not in MATLANG + inverse

References

Brijder, Geerts, Van den Bussche, Weerwag On the expressive power of query languages for matrices, ICDT 2018

- Full version in TODS
- Research highlight, SIGMOD Record

Brijder, Gyssens, Van den Bussche On matrices and K-relations, to appear

Floris Geerts On the expressive power of linear algebra on graphs, ICDT 2019

Related work: LaraDB, SQL, in-database machine learning, etc.

