
Database Query Processing

using Finite Cursor Machines

Jan Van den Bussche

Hasselt University

joint work with Martin Grohe, Yuri Gurevich, Dirk Leinders,

Nicole Schweikardt, Jerzy Tyszkiewicz

Streaming/Sequential access to data

E.g. 2-pass database query processing:

1. sort the relations

2. do relational algebra by synchronized scans

E.g. information retrieval:

• inverted files

• do AND, OR, NOT by synchronized scans

⇒ relational algebra by information retrieval?

E.g. data stream model of computation:

• sequential access only

• limited # of passes

• limited memory

• sorting

Finite cursor machines (FCM)

Works on relational database (lists, not sets)

Fixed # of cursors on each relation

Cursors are 1-way

Fixed # of registers, store bitstrings

Built-in bitstring functions on data elements & bitstrings

Finite state control

Abstract State Machine (ASM)

Example

Sliding window join R �θ S

Window on R = 50, window on S = 30

Use 50 cursors on R, 30 on S

θ can be arbitrary

Computational completeness and restrictions

• Use bitstring functions for encoding data elements,
concatenation

• Single scan loads entire DB in one bitstring

• Arbitrary computable bitstring function at the end

⇒ impose limitations on length of bitstrings in registers:

• O(1)-machines: do not store anything in registers

• o(n)-machines: registers cannot store entire DB

Positive results: O(1)-machines;

Negative results: o(n)-machines

Relational algebra

σ, π, ∪ are easy

� in general impossible: quadratic size, but linear time

Even checking R ∩ S �= ∅ is impossible

Proof for O(1)-machines: a1 < a′1 < a2 < a′2 < · · · < an < a′n

• Ramsey’s theorem to reduce built-in predicates to < only

• R = {a1, . . . , an}, S = {a′n, . . . , a′1}

• Fooling argument (can check only constant # of pairs)

Difference operator also impossible

Proof for o(n)-machines

For I ⊂ {1, . . . , n} define

AI := {ai | i ∈ I} ∪ {a′i | i /∈ I}
Then AI ∩ AJ = ∅ ⇔ J = coI.

⇒ instance D(I): (R = AI, S = AcoI)

with R sorted ascending, S sorted descending

There are 2n such instances

Machine has k cursors, set v :=
(
k
2

)
+ 1

Machine can check at most v − 1 blocks

... B1

B1 B2 Bv−1 Bv

B2Bv−1Bv

R

S

...

2n/v instances do not check some fixed block

2n/(v · 2n−n/v) of those are equal outside that block

2n/(v ·2n−n/v ·(nk ·2r·o(n))k) of those are in same state each time

a cursor leaves the block in R or S

⇒ take I and J out of those

Machine cannot distinguish instance (R = AI, S = AcoJ) from

instances D(I) and D(J)

Sorted inputs

Difference operator, testing emptiness of �, become easy

Semijoin � avoids quadratic output problem

Every semijoin algebra query can be computed by a

query plan composed of FCM’s and sorting operations

⇒ problem of avoiding intermediate sorting

Intermediate sorting

(R(A, B) − S(A, B)) � T(B, C)

• Stupid:

sortB(sortA,B(R) − sortA,B(S)) � sortB(T)

• Smarter:

(sortB,A(R) − sortB,A(S)) � sortB(T)

Can intermediate sorting always be avoided?

Note: FCM’s are closed under composition

⇒ Is every semijoin algebra query computable by a single FCM
on sorted inputs?

Ascending order only, O(1)-machines

Palindrome problem: given a word structure w over {0,1},
equipped with a fully nested matching, is w a palindrome?

<< < < < < < < <

Expressible in semijoin algebra

Ascending order only: not solvable by O(1)-machine

[Proof: multihead finite automata]

Ascending & descending order: solvable by O(1)-machine

Strongest negative result

“RST -query” = R(A) � (S(A, B) � T(B))

Nonemptiness of RST -query is not solvable

by an o(n)-machine on sorted inputs

in ascending & descending orders

• built-in functions arbitrary

• “simplest possible counterexample”

Proof: similar to checking R ∩ S �= ∅

Further remarks

FCM’s on sorted inputs can do:

• more relational algebra than just semijoin algebra

• more queries than relational algebra with counting

Open problem: Can query plans composed of FCM’s and
sorting operators compute all boolean relational algebra
(= first-order logic) queries?

We conjecture no, and for O(1)-case, nonuniform parameterized
complexity theory seems to agree with us

Unlikely that FO is in time n logn

Conclusion

Theoretical computation model inspired by classical database

query processing

New twist on streaming model

Fixed # of cursors, registers, can be relaxed

Semijoin algebra as natural “linear” fragment of

relational algebra

