Database Query Processing
using Finite Cursor Machines

Jan Van den Bussche
Hasselt University

joint work with Martin Grohe, Yuri Gurevich, Dirk Leinders,
Nicole Schweikardt, Jerzy Tyszkiewicz

Streaming/Sequential access to data
E.g. 2-pass database query processing:
1. sort the relations
2. do relational algebra by synchronized scans
E.g. information retrieval:
e inverted files
e do AND, OR, NOT by synchronized scans

= relational algebra by information retrieval?

E.g. data stream model of computation:

e sequential access only

e limited # of passes

e limited memory

e sorting

Finite cursor machines (FCM)
Works on relational database (lists, not sets)
Fixed # of cursors on each relation
Cursors are 1-way
Fixed # of registers, store bitstrings

Built-in bitstring functions on data elements & bitstrings

Finite state control

Abstract State Machine (ASM)

Example
Sliding window join R Xy S
Window on R = 50, window on S = 30
Use 50 cursors on R, 30 on S

6 can be arbitrary

Computational completeness and restrictions

e Use bitstring functions for encoding data elements,
concatenation

e Single scan loads entire DB in one bitstring

e Arbitrary computable bitstring function at the end
= impose limitations on length of bitstrings in registers:

e O(1)-machines: do not store anything in registers

e o(n)-machines: registers cannot store entire DB

Positive results: O(1)-machines;
Negative results: o(n)-machines

Relational algebra

o, ™, U are easy

X in general impossible: quadratic size, but linear time

Even checking RN S # () is impossible

Proof for O(1)-machines: a1 < a} <ap <ab <- - <ap<aj

e Ramsey’'s theorem to reduce built-in predicates to < only
e R={ay,...,an}, S={ap,...,a}}

e Fooling argument (can check only constant # of pairs)

Difference operator also impossible

Proof for o(n)-machines

For I C {1,...,n} define
Al :={a; |ie 3 u{d |i¢ I}
Then A/NnA/ =0 & J=col.

= instance D(I): (R = A!,§ = Acol)
with R sorted ascending, S sorted descending

There are 2" such instances
. . (k
Machine has k cursors, set v ;= (2) +1

Machine can check at most v — 1 blocks

R | 81 [NE3N Bv-1| B
S Bv | Bv-1 - Bl

2" /v instances do not check some fixed block

2" /(v - 2"~1/V) of those are equal outside that block

ON /(y.2n=1/v. (nk.2ro(n))kY) of those are in same state each time
a cursor leaves the block in R or S

= take I and J out of those

Machine cannot distinguish instance (R = A!,S = AY) from
instances D(I) and D(J)

Sorted inputs
Difference operator, testing emptiness of X, become easy

Semijoin x avoids quadratic output problem

Every semijoin algebra query can be computed by a
query plan composed of FCM'’s and sorting operations

= problem of avoiding intermediate sorting

Intermediate sorting

(R(A,B) — S(A,B)) x T(B,C)
e Stupid:
sortg(sorty p(R) —sorty p(S)) x sortg(T)
e Smarter:
(sortp A(R) —sortp 4(S)) x sortp(T)
Can intermediate sorting always be avoided?

Note: FCM'’s are closed under composition

= Is every semijoin algebra query computable by a single FCM
on sorted inputs?

Ascending order only, O(1)-machines

Palindrome problem: given a word structure w over {0, 1},
equipped with a fully nested matching, is w a palindrome?

/TN

®<0<O<O<«<0<0<O<O<«0® <0

Expressible in semijoin algebra

Ascending order only: not solvable by O(1)-machine
[Proof: multihead finite automata]

Ascending & descending order: solvable by O(1)-machine

Strongest negative result

“"RST-query” = R(A)x (S(A,B) x T(B))

Nonemptiness of RST-query is not solvable
by an o(n)-machine on sorted inputs
in ascending & descending orders

e built-in functions arbitrary
e ‘'simplest possible counterexample”

Proof: similar to checking RNS # 0

Further remarks
FCM’s on sorted inputs can do:

e Mmore relational algebra than just semijoin algebra

e Mmore queries than relational algebra with counting

Open problem: Can query plans composed of FCM's and
sorting operators compute all boolean relational algebra
(= first-order logic) queries?

We conjecture no, and for O(1)-case, nonuniform parameterized
complexity theory seems to agree with us

Unlikely that FO is in time nlogn

Conclusion

Theoretical computation model inspired by classical database
query processing

New twist on streaming model

Fixed # of cursors, registers, can be relaxed

Semijoin algebra as natural “linear” fragment of
relational algebra

