Database Query Processing using Finite Cursor Machines

Jan Van den Bussche Hasselt University

joint work with Martin Grohe, Yuri Gurevich, Dirk Leinders, Nicole Schweikardt, Jerzy Tyszkiewicz

Streaming/Sequential access to data

- E.g. 2-pass database query processing:
 - 1. sort the relations
- 2. do relational algebra by synchronized scans
- E.g. information retrieval:
 - inverted files
 - do AND, OR, NOT by synchronized scans
- ⇒ relational algebra by information retrieval?

E.g. data stream model of computation:

- sequential access only
- limited # of passes
- limited memory
- sorting

Finite cursor machines (FCM)

Works on relational database (lists, not sets)

Fixed # of cursors on each relation

Cursors are 1-way

Fixed # of registers, store bitstrings

Built-in bitstring functions on data elements & bitstrings

Finite state control

Abstract State Machine (ASM)

Example

Sliding window join $R \bowtie_{\theta} S$

Window on R = 50, window on S = 30

Use 50 cursors on R, 30 on S

 θ can be arbitrary

Computational completeness and restrictions

- Use bitstring functions for encoding data elements, concatenation
- Single scan loads entire DB in one bitstring
- Arbitrary computable bitstring function at the end
- ⇒ impose limitations on length of bitstrings in registers:
 - \bullet O(1)-machines: do not store anything in registers
 - \bullet o(n)-machines: registers cannot store entire DB

Positive results: O(1)-machines;

Negative results: o(n)-machines

Relational algebra

 σ , π , \cup are easy

⋈ in general impossible: quadratic size, but linear time

Even checking $R \cap S \neq \emptyset$ is impossible

Proof for O(1)-machines: $a_1 < a_1' < a_2 < a_2' < \cdots < a_n < a_n'$

- Ramsey's theorem to reduce built-in predicates to < only
- $R = \{a_1, \dots, a_n\}, S = \{a'_n, \dots, a'_1\}$
- Fooling argument (can check only constant # of pairs)

Difference operator also impossible

Proof for o(n)-machines

For $I \subset \{1, \ldots, n\}$ define

$$A^{I} := \{a_i \mid i \in I\} \cup \{a'_i \mid i \notin I\}$$

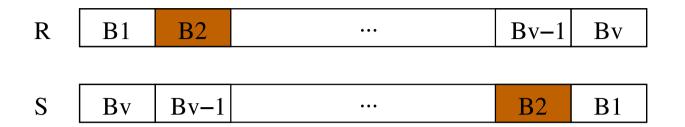
Then $A^I \cap A^J = \emptyset \Leftrightarrow J = \operatorname{co} I$.

 \Rightarrow instance D(I): $(R = A^I, S = A^{\operatorname{co} I})$ with R sorted ascending, S sorted descending

There are 2^n such instances

Machine has k cursors, set $v := \binom{k}{2} + 1$

Machine can check at most v-1 blocks



 $2^n/v$ instances do not check some fixed block

 $2^{n}/(v\cdot 2^{n-n/v})$ of those are equal outside that block

 $2^n/(v\cdot 2^{n-n/v}\cdot (n^k\cdot 2^{r\cdot o(n)})^k)$ of those are in same state each time a cursor leaves the block in R or S

 \Rightarrow take I and J out of those

Machine cannot distinguish instance $(R=A^I,S=A^{{\rm co}J})$ from instances D(I) and D(J)

Sorted inputs

Difference operator, testing emptiness of ⋈, become easy

Semijoin ⋉ avoids quadratic output problem

Every **semijoin algebra query** can be computed by a **query plan** composed of **FCM's** and **sorting** operations

⇒ problem of avoiding intermediate sorting

Intermediate sorting

$$(R(A,B) - S(A,B)) \ltimes T(B,C)$$

• Stupid:

$$\operatorname{sort}_B(\operatorname{sort}_{A,B}(R) - \operatorname{sort}_{A,B}(S)) \ltimes \operatorname{sort}_B(T)$$

• Smarter:

$$(\operatorname{sort}_{B,A}(R) - \operatorname{sort}_{B,A}(S)) \ltimes \operatorname{sort}_{B}(T)$$

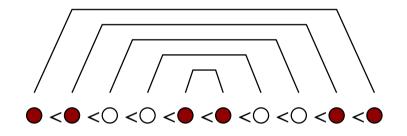
Can intermediate sorting always be avoided?

Note: FCM's are closed under composition

⇒ Is every semijoin algebra query computable by a single FCM on sorted inputs?

Ascending order only, O(1)-machines

Palindrome problem: given a word structure w over $\{0,1\}$, equipped with a fully nested matching, is w a palindrome?



Expressible in semijoin algebra

Ascending order only: **not** solvable by O(1)-machine [Proof: multihead finite automata]

Ascending & descending order: solvable by O(1)-machine

Strongest negative result

"
$$RST$$
-query" = $R(A) \ltimes (S(A, B) \ltimes T(B))$

Nonemptiness of RST-query is not solvable by an o(n)-machine on sorted inputs in ascending & descending orders

- built-in functions arbitrary
- "simplest possible counterexample"

Proof: similar to checking $R \cap S \neq \emptyset$

Further remarks

FCM's on sorted inputs can do:

- more relational algebra than just semijoin algebra
- more queries than relational algebra with counting

Open problem: Can query plans composed of FCM's and sorting operators compute **all** boolean relational algebra (= first-order logic) queries?

We conjecture no, and for O(1)-case, nonuniform parameterized complexity theory seems to agree with us

Unlikely that FO is in time $n \log n$

Conclusion

Theoretical computation model inspired by classical database query processing

New twist on streaming model

Fixed # of cursors, registers, can be relaxed

Semijoin algebra as natural "linear" fragment of relational algebra