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Abstract We introduce a new abstract model of database query processing, finite
cursor machines, that incorporates certain data streaming aspects. The model de-
scribes quite faithfully what happens in so-called “one-pass” and “two-pass query
processing”. Technically, the model is described in the framework of abstract state
machines. Our main results are upper and lower bounds for processing relational
algebra queries in this model, specifically, queries of the semijoin fragment of the
relational algebra.
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1 Introduction

We introduce and analyze finite cursor machines, an abstract model of database query
processing.! Data elements are viewed as “indivisible” abstract objects with a vocab-
ulary of arbitrary, but fixed, functions. Relational databases consist of finitely many
finite relations over the data elements. Relations are considered as tables whose rows

IThe model was first presented in a talk at the ASM 2004 workshop [30].
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are the tuples in the relation. Finite cursor machines can operate in a finite number of
modes using an internal memory in which they can store bit strings. They access each
relation through finitely many cursors, each of which can read one row of a table at
any time. The answer to a query, which is also a relation, can be given through a suit-
able output mechanism. The model incorporates certain “streaming” or “sequential
processing” aspects by imposing two restrictions: First, the cursors can only move
on the tables sequentially in one direction. Thus once the last cursor has left a row
of a table, this row can never be accessed again during the computation. Second,
the internal memory is limited. For our lower bounds, it will be sufficient to put an
o(n) restriction on the internal memory size, where n is the size (that is, the number
of entries) of the input database. For the upper bounds, no internal memory will be
needed. The model is clearly inspired by the abstract state machine (ASM) method-
ology [16], and indeed we will formally define our model using this methodology.
As ASMs are more general than classical automata on strings, they are a better ba-
sis to study computational models. The ability to deal with abstract indivisible data
elements is important because this is common in database modeling. Furthermore,
Gurevich has shown that every sequential algorithm can be modeled as an ASM in a
natural way [17].

Algorithms and lower bounds in various data stream models have received con-
siderable attention in recent years both in the theory community (e.g., [1, 2, 5, 6,
13, 14, 19, 26]) and the database systems community (e.g., [3, 4, 7, 12, 15, 21, 27]).
Note that our model is fairly powerful; for example, the multiple cursors can easily
be used to perform multiple sequential scans of the input data. But more than that;
by moving several cursors asynchronously over the same table, entries in different,
possibly far apart, regions of the table can be read and processed simultaneously.
This way, different regions of the same or of different tables can “communicate” with
each other without requiring any internal memory, which makes it difficult to use
communication complexity to establish lower bounds. The model is also powerful in
that it allows arbitrary functions to access and process data elements. This feature
is very convenient to model “built in” standard operations on data types like inte-
gers, floating point numbers, or strings, which may all be part of the universe of data
elements.

Despite these powerful features, the model is weak in many respects. We show
that a finite cursor machine with internal memory size o(n) cannot even test whether
two sets A and B, given as lists, are disjoint, even if besides the lists A and B, also
their reversals are given as input. However, if two sets A and B are given as sorted
lists, a machine can easily compute the intersection. Aggarwal et al. [1] have already
made a convincing case for combining streaming computations with sorting, and we
will consider an extension of the model with a sorting primitive.

Our main results are concerned with evaluating relational algebra queries in
the finite cursor machine model. Relational algebra forms the core of the standard
query language SQL and is thus of fundamental importance for databases. We prove
that, when all sorted versions of the database relations are provided as input, every
operator of the relational algebra can be computed, except for the join. The lat-
ter exception, however, is only because the output size of a join can be quadratic,
while finite cursor machines by their very definition can output only a linear num-
ber of different tuples. A semijoin is a projection of a join between two relations
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to the columns of one of the two relations (note that the projection prevents the
result of a semijoin from getting larger than the relations to which the semijoin
operation is applied). The semijoin algebra is then a natural fragment of the rela-
tional algebra that may be viewed as a generalization of acyclic conjunctive queries
[9, 22, 23, 31]. When sorted versions of the database relations are provided as in-
put, semijoins can be computed by finite cursor machines. Consequently, every query
in the semijoin fragment of the relational algebra can be computed by a query plan
composed of finite cursor machines and sorting operations. This is interesting be-
cause it models quite faithfully what is called “one-pass” and “two-pass processing”
in database systems [11]. The question then arises: are intermediate sorting operations
really needed? Equivalently, can every semijoin-algebra query already be computed
by a single machine on sorted inputs? We answer this question negatively in a very
strong way, and this is our main technical result: Just a composition of two semijoins
R x (S x T) with R and T unary relations and S a binary relation is not computable
by a finite cursor machine with internal memory size o(n) working on sorted inputs.
This result is quite sharp, as we will indicate.

The paper is structured as follows: After fixing some notation in Sect. 2, the notion
of finite cursor machines is introduced in Sect. 3. The power of O(1)-FCMs and of
o(n)-FCMs is investigated in Sects. 4 and 5. Some concluding remarks and open
questions can be found in Sect. 6.

2 Preliminaries

Throughout the paper we fix an arbitrary, typically infinite, universe E of “data el-
ements” equipped with a vocabulary 2 of predicates, including at least the equality
predicate. We also fix a database schema S a finite set of relation names, where each
relation name has an associated arity, which is a natural number. A database D with
schema S assigns to each R € S a finite, nonempty set D(R) of k-tuples of data ele-
ments, where k is the arity of R. In database terminology the tuples are often called
rows. The size of database D is defined as the total number of rows in D. Analogously,
a list instance with schema S assigns to each R € S a finite list of k-tuples of data
elements, where k is the arity of R.

A query is a mapping Q from databases to relations, such that the relation Q(D)
is the answer of the query Q to database D. The relational algebra is a basic lan-
guage used in database theory to express exactly those queries that can be composed
from the actual database relations by applying a sequence of the following opera-
tions: union, intersection, difference, projection, selection, and join. The meaning of
the first three operations should be clear. The projection operator 7;, .. ;, (R) returns
the projection of a relation R to its components iy, ..., ix. For a relation R with arity
n and for a quantifier-free formula 6 (x) over 2 with variables among {x1, ..., x,},
the selection operator oyp(R) returns those tuples from R that satisfy 6. Finally,
for relations R and S with respective arities n and m, and for a quantifier-free for-
mula 0(x, y) over Q2 with variables among {x1, ..., X, Y1, ..., Ym}, the join operator
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R <p S is defined as {(a,b) :@a € R, b € S, 6(a, b) holds}. A natural sub-language
of the relational algebra is the so-called semijoin algebra where, instead of ordi-
nary joins, only semijoin operations of the form R xg S are allowed, defined as
{@eR:3beS:6(,b) holds}).

To formally introduce our computation model, we need some basic notions from
mathematical logic such as (many-sorted) vocabularies, structures, terms, and atomic
formulas.

3 Finite Cursor Machines

In this section we formally define finite cursor machines using the methodology of
Abstract State Machines (ASMs). Intuitively, an ASM can be thought of as a tran-
sition system whose states are described by many-sorted first-order structures (or
algebras).” Transitions change the interpretation of some of the symbols—those in
the dynamic part of the vocabulary—and leave the remaining symbols—those in the
static part of the vocabulary—unchanged. Transitions are described by a finite collec-
tion of simple update rules, which are “fired” simultaneously (if they are inconsistent,
no update is carried out). A crucial property of the sequential ASM model, which we
consider here, is that in each transition only a limited part of the state is changed.
The detailed definition of sequential ASMs is given in the Lipari guide [16], but our
presentation will be largely self-contained.
We now describe the formal model of finite cursor machines.

The Vocabulary The static vocabulary of a finite cursor machine (FCM) consists of
two parts, Yo (providing the background structure) and Ys (providing the particular
input).

Yo consists of three sorts: Element, Bitstring, and Mode. Furthermore, Yy may
contain an arbitrary number of functions and predicates, as long as the output sort of
each function is Bitstring. In particular, Y contains all the predicates from 2 (recall
beginning of Sect. 2), taken as predicates on the sort Element. Finally, Y contains
an arbitrary but finite number of constant symbols of sort Mode, called modes. The
modes init, accept, and reject are always in Y.

Ys provides the input. For each relation name R € S, there is a sort Rowg in
Ys. Moreover, if the arity of R is k, we have function symbols attribute’k: Rowgr —
Element fori =1, ..., k. Furthermore, we have a constant symbol L g of sort Rowg.
Finally, we have a function symbol nextg: Rowg — Rowpg in YTg.

The dynamic vocabulary Y s of an FCM M contains only constant symbols. This
vocabulary always contains the symbol mode of sort Mode. Furthermore, there can
be a finite number of symbols of sort Bitstring, called registers. Moreover, for each
relation name R in the database schema, there are a finite number of symbols of sort
Rowg, called cursors on R.

2Beware that “state” refers here to what for Turing machines is typically called “configuration”; the term
“mode” is used for what for Turing machines is typically called “state”.
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The Initial State Our intention is that FCMs will work on databases. Database re-
lations, however, are sets, while FCMs expect lists of tuples as inputs. Therefore,
formally, the input to a machine is an enumeration of a database, which is a list in-
stance consisting of enumerations of the database relations, where an enumeration of
a relation is simply a listing of all tuples in some order. An FCM M that is set to run
on an enumeration of a database D then starts with the following structure M over
the vocabulary Yo U Ts U Ys: The interpretation of Element is E; the interpretation
of Bitstring is the set of all finite bitstrings; and the interpretation of Mode is simply
given by the set of modes themselves. For technical reasons, we must assume that
E contains an element L. For each R € S, the sort Rowg is interpreted by the set
D(R) U {Lg}; the function attributeiR is defined by (x1, ..., x) — x;j,and Lg > L;
finally, the function nextr maps each row to its successor in the list, and maps the last
row to L. The dynamic symbol mode initially is interpreted by the constant init;
every register contains the empty bitstring; and every cursor on a relation R contains
the first row of R.

The Program of an FCM A program for the machine M is now a program as de-
fined as a basic sequential program in the sense of ASM theory, with the important
restriction that all basic updates concerning a cursor ¢ on R must be of the form
c:=nextgr(c).

Thus, basic update rules of the following three forms are rules: mode :=t¢, r :=t,
and ¢ :=nextr(c), where t is a term over Yo U Ys U Ty, and r is a register and c is
a cursor on R. The semantics of these rules is the obvious one: Update the dynamic
constant by the value of the term. Update rules rq, ..., r, can be combined to a new
rule parry ... r, endpar, the semantics of which is: Fire rules rq, ..., r,, in parallel;
if they are inconsistent do nothing. Furthermore, if r; and r, are rules and ¢ is an
atomic formula over Yo U Y5 U Yy, then also if ¢ then r| else rp endif is a rule.
The semantics is obvious.

Now, an FCM program is just a single rule. (Since finitely many rules can be
combined to one using the par. .. end construction, one rule is enough.)

The Computation of an FCM  Starting with the initial state, successively apply the
(single rule of the FCM’s) program until mode is equal to accept or to reject. Accord-
ingly, we say that M terminates and accepts, respectively, rejects its input.

Given that inputs are enumerations of databases, we must be careful to define the
result of a computation on a database. We agree that an FCM accepts a database D
if it accepts every enumeration of D. This already allows us to use FCMs to compute
decision queries. In the next paragraph we will see how FCMs can output lists of
tuples. We then say that an FCM M computes a query Q if on each database D, the
output of M on any enumeration of D is an enumeration of the relation Q (D). Note
that later we will also consider FCMs working only on sorted versions of database
relations: in that case there is no ambiguity.

Producing Output We can extend the basic model so that the machine can output a
list of tuples. To this end, we expand the dynamic vocabulary T, with a finite number

of constant symbols of sort Element, called output registers, and with a constant of
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sort Mode, called the output mode. We expand the static vocabulary Y with a number
of functions with output sort Element, called output functions. These output functions
can only be used to update the output registers. The output registers can be updated
following the normal rules of ASMs. The output registers, however, cannot be used
as an argument to a static function.

In each state of the finite cursor machine, when the output mode is equal to the
special value out, the tuple consisting of the values in the output registers (in some
predefined order) is output; when the output mode is different from out, no tuple is
output. In the initial state each output register contains the value L and the output
mode is equal to init. We denote the output of a machine M working on a database D
by M (D).

Space Restrictions For considering FCMs whose bitstring registers are restricted in
size, we use the following notation: Let M be a finite cursor machine and F a class
of functions from N to N. Then we say that M is an F-machine (or, an F-FCM) if
there is a function f € F such that, on each database enumeration D of size n, the
machine only stores bitstrings of length f(n) in its registers. We are mostly interested
in O(1)-FCMs and o(n)-FCMs. Note that the latter are quite powerful. For example,
such machines can easily store the positions of the cursors. On the other hand, O (1)-
machines are equivalent to FCMs that do not use registers at all (because bitstrings
of constant length could also be simulated by finitely many modes).

Example 3.1 Consider a query Q defined on a ternary relation R over N that returns
the sum of the first and second attribute of each row with a third attribute at least
100. Let E be the set of natural numbers N. Consider a static vocabulary containing
at least the predicate “> 100” and the output function + on N. Then an FCM can
compute query Q with a single cursor and a single output register. The following
FCM program computes Q.

if outputmode = out then
par
outputmode := init
c:=nextgr(c)
endpar
else
if attribute% (¢) > 100 then
par
outputmode := out
out = attribute}e (c) + attribute%e (c)

endpar
else
c:=nextr(c)
endif

endif
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3.1 Discussion of the Model

Storing Bitstrings Instead of Data Elements ~An important question about our model
is the strict separation between data elements and bitstrings. Indeed, data elements are
abstract entities, and our background structure may contain arbitrary functions and
predicates, mixing data elements and bitstrings, with the important restriction that
the output of a function is always a bitstring. At first sight, a simpler way to arrive at
our model would be without bitstrings, simply considering an arbitrary structure on
the universe of data elements. Let us call this variation of our model the “universal
model”.

Note that the universal model can easily become computationally complete. It
suffices that finite strings of data elements can somehow be represented by other
data elements, and that the background structure supplies the necessary manipulation
functions for that purpose. Simple examples are the natural numbers with standard
arithmetic, or the strings over some finite alphabet with concatenation. Thus, if we
would want to prove complexity lower bounds in the universal model, while retaining
the abstract nature of data elements and operations on them, it would be necessary
to formulate certain logical restrictions on the available functions and predicates on
the data elements. Finding interesting such restrictions is not clear to us. In the model
with bitstrings, however, one can simply impose restrictions on the length of the
bitstrings stored in registers, and that is precisely what we will do. Of course, the
unlimited model with bitstrings can also be computationally complete. It suffices that
the background structure provides a coding of data elements by bitstrings.

Element Registers The above discussion notwithstanding, it might still be interest-
ing to allow for registers that can remember certain data elements that have been
seen by the cursors, but without arbitrary operations on them. Formally, we would
expand the dynamic vocabulary Yjs with a finite number of constant symbols of
sort Element, called element registers. It is easy to see, however, that such element
registers can already be simulated by using additional cursors, and thus do not add
anything to the basic model.

Running Time and Output Size A crucial property of FCMs is that all cursors are
one-way. In particular, an FCM can perform only a linear number of steps where a
cursor is advanced. As a consequence, an FCM with output can output only a linear
number of different tuples. On the other hand, if the background structure is not
restricted in any way, arbitrary computations on the register contents can occur in
between cursor advancements. As a matter of fact, in this paper we will present a
number of positive results and a number of negative results. For the positive results,
registers will never be needed, and in particular, FCMs run in linear time. For the
negative results, arbitrary computations on the registers will be allowed.

Look-ahead Note that the terms in the program of an FCM can contain nested appli-
cations of the function nextg, such as nextg (nextg(c)). In some sense, such nestings
of depth up to d correspond to a look-ahead where the machine can access the current
cursor position as well as the next d positions. It is, however, straightforward to see

@ Springer



Theory Comput Syst

that every k-cursor FCM with look-ahead < d can be simulated by a (k x d)-cursor
FCM with look-ahead 0. Thus, throughout the remainder of this paper we will w.l.o.g.
restrict attention to FCMs that have look-ahead 0, i.e., to FCMs where the function
nextg never occurs in if-conditions or in update rules of the form mode :=t orr :=1.

The Number of Cursors In principle we could allow more than constantly many cur-
sors, which would enable us to store that many data elements. We stick with the con-
stant version for the sake of technical simplicity, and also because our upper bounds
only need a constant number of cursors. Note, however, that our main lower bound
result can be extended to a fairly big number of cursors (cf. Remark 5.10).

4 The Power of O (1)-Machines

We start with a few simple observations on the database query processing capabilities
of FCMs, with or without sorting, and show that sorting is really needed.

Let us first consider compositions of FCMs in the sense that one machine works
on the outputs of several machines working on a common database.

Proposition 4.1 Let My, ..., M, be FCMs working on a schema S, let S' be the
output schema consisting of the names and arities of the output lists of M1, ..., M,
and let My be an FCM working on schema S'. Then there exists an FCM M working
on schema S, such that M (D) = My(D’), for each database D with schema S and
the database D' that consists of the output relations M{(D), ..., M, (D).

The proof is obvious: Each row in a relation R; of database D’ is an output row
of a machine M; working on D. Therefore, each time My moves a cursor on R;, the
desired finite cursor machine M will simulate that part of the computation of M; on
D until M; outputs a next row.

Let us now consider the operators from relational algebra: Clearly, selection can
be implemented by an O (1)-FCM. Also, projection and union can easily be accom-
plished if either duplicate elimination is abandoned or the input is given in a suitable
order. Joins, however, are not computable by an FCM, simply because the output size
of a join can be quadratic, while FCMs can output only a linear number of different
tuples.

In stream data management research [4], one often restricts attention to sliding
window joins for a fixed window size w. This means that the join operator is suc-
cessively applied to portions of the data, each portion consisting of a number w of
consecutive rows of the input relations. The following example illustrates how an
O (1)-FCM can compute a sliding window join.

Example 4.2 Consider a sliding window join of binary relations R and S with con-
dition x, = y; where the windows slide simultaneously on either relation by the size
of the windows, say w (on both R and §). A finite cursor machine for this job has
w Cursors Cie on R, and w cursors ciS on §, for i =1,..., w. The machine begins
by advancing the ith cursor i — 1 times on each of the two relations. Then, all pairs
of cursors are considered, and joining tuples are output, using rules of the following
form for 1 <i, j < w:
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if mode = check; ;j and attribute%e (c%) = attributels (cé) then
par
outputmode := out
outy = attribute}e (c’k)
outy ;= attribute%e (c%)
outs = attributeé(cé)
outy = attribute% (cg)
mode := next-mode;_;
endpar
endif
Here, next-mode; ; is the mode in which the next pair of the w? pairs of tuples seen
by the cursors is joined. So, if neither i nor j equals w, then next-mode; j is either
check; j11 or checkiy1,1. Next — after mode was equal to check, ,, — all cursors
are advanced w times. This continues until the end of the relations. This machine has
a large number of similar rules, which could be automatically generated or executed
from a high-level description.
Of course, the general case with relations of arbitrary arity, and arbitrary join con-
dition 6 can be treated in the same way.

While we already noted that joins cannot be computed in general by an FCM sim-
ply because join outputs can be quadratic in size, we can actually show something
much stronger. Indeed, we can show that even checking whether the join is nonempty
(so that output size is not an issue) is impossible for FCMs. Specifically, we will
consider the problem whether two sets intersect, which is the simplest kind of join.
We will give two proofs: an elegant one for O (1)-machines, using a proof technique
that is simple to apply, and an intricate one for more general o(n)-machines (Theo-
rem 5.11). Note that the following result is valid for arbitrary (but fixed) background
structures.

Theorem 4.3 There is no O(1)-FCM that checks for two sets R and S whether
RNS#4Q.

Proof Let M be an O (1)-FCM that is supposed to check whether R NS # (3. Without
loss of generality, we assume that [E is totally ordered by a predicate < in Y. Us-
ing Ramsey’s theorem, we can find an infinite set V C [E over which the truth of the
atomic formulas in M’s program on tuples of data elements only depends on the way
these data elements compare w.r.t. < (details on this can be found, e.g., in Libkin’s
textbook [25, Sect. 13.3]). Now choose 2n elements in V, for n large enough, satis-
fyinga; <aj <--- <a, < a,, and consider the run of M on R = {ay, ..., a,} (listed
in that order) and S = {a;,, ..., ai }. We say that a cursor ¢ of M is on a position £ on
R if M has executed £ — 1 update rules ¢ := nextg(c); a cursor being on a position on
S is defined similarly. I.e., if a cursor c is on position £ on R (S), then ¢ sees element
ag (a),_, +1)- We say that a pair of cursors “checks” £ if in some state during the run,
one of the cursors is on position £ on R (i.e., the cursor sees element a,) and the other
cursor is on position n — £ + 1 on S (i.e., the cursor sees element a;). By the way
the lists are ordered, every pair of cursors can check only one £. Hence, some i is not
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checked. Now replace a; in S by a;, obtaining set S, and consider the run of M on R
and S’. Because the element a; has the same relative order as a; with respect to the
other elements in the lists, any tuple of elements will satisfy the same predicates as
the tuple obtained by replacing a; by a;. The run of M on R and S will thus be the
same as the run of M on R and S. The intersection of R and S, however, is empty,
while the intersection of R and S’ is not. So, M cannot exist. O

Of course, when the sets R and S are given as sorted lists, an FCM can easily
compute R N S by performing one simultaneous scan over the two lists. The same
holds for the difference R — S. Moreover, while the full join is still not computable
by an FCM working on sorted inputs, simply because the output size can be too
large, semijoins R X S now become also computable by FCMs on sorted inputs.
Specifically, this will be possible for a class of “allowed” join conditions 6§ which we
define next.

Definition 4.4 Recall the definition of a join condition 6(xy, ..., X, Y1,---, Ym)
from Sect. 2, and assume that the vocabulary €2 includes a total order < on [E. We say
that 6 is allowed if it is of the form ¢ A ¥, where ¢ is a conjunction of equalities, and
where v is a conjunction of at most two inequalities of the form x; < y; or x; > y;.
(As special cases, ¢ and/or ¥ can simply be true.)

When v is not of the form x; < y; A x; < y; (i.e., two “less than” predicates
between an x and a y), we call 8 A-allowed; otherwise 0 is called AD-allowed. In
this, the “A” stands for ascending and the “D” stands for descending.

In the following examples we will show how A-allowed semijoins can be com-
puted by O (1)-FCMs on sorted inputs. The AD-allowed case will be discussed in the
following section.

Example 4.5 Let R and S be binary relations and consider the semijoin R g S,
where 6 is the A-allowed join condition x; = y; A x2 > y;. The FCM computing this
semijoin works by doing a synchronized scan of R and § sorted on their respective
first columns. Suppose for a tuple 7 in R, a tuple 5 in S is found with r; =51, i.e., the
first component of 7 equals the first component of 5. Then, the FCM searches for the
minimum value for s/, of all tuples 5" in S with s| = s1(= ry); note that these tuples
occur in a contiguous region following s in S. We denote this minimum value by v.
Then, a cursor on R visits all tuples 7 with | = ry and outputs all of these tuples
having r) > v. Again, note that these tuples occur in a contiguous region following 7
in R. Then, the next tuple 7 in R is considered. And so on.

When 6 is the condition x; = y; A x2 < y2, the semijoin is computed using a
similar strategy, except that instead of the minimum value, here the maximum value
for s is searched and the tuples 7’ in R with r} < v are output.

Example 4.6 Let R and S be ternary relations and consider the semijoin R xg S,
where 6 is the A-allowed join condition x; = y; A x2 > y2 A x3 > y3. The FCM
computing this semijoin works on R and S sorted lexicographically on their respec-
tive first columns first, and on their second columns second. Again, the FCM first
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searches for a tuple 7 in R for which there exists a tuple 5 in S with r; = s1. Then,
the FCM searches the first tuple 5" in § with s{ > s1(=r) or s5 > r and searches
for the minimum value for 57 of all tuples 5" in the region starting at 5 and ending at
(not including) 5. We denote this minimum value by v. Then, a cursor on R visits all
tuples 7 with 7| = ry and r} = ra. Of these tuples the ones with r§ > v are output.

While visiting the tuples 7, three things can occur: (1) the end of R is reached;
(2) atuple 7" is found with 75 > r2; or (3) a tuple 7" is found with 7| > r1. In case (1),
the FCM stops. In case (2), the cursor that was positioned at 5 is moved forward to
search again for the first tuple 5" with 5| > s1(=ry) or s} > rJ. Also, the minimum
value v for 5§ of all tuples 5 in the region between 5 and the new 5’ is updated.
Note that this region grows. Again, a cursor on R visits all tuples 7 with r{ = r; and
ry =ry and the ones with 5 strictly greater than v are output. Finally, in case (3), the
FCM starts searching again for a tuple 5 with s; = r{'. And so on.

When 6 is the condition x; = y; A X2 > y2 A X3 < 3, the semijoin is computed
using a similar strategy, except that instead of the minimum value, here the maximum
value for s} is searched and the tuples 7’ in R with 7} < v are output.

Note that also semijoins where the condition 6 is a disjunction of allowed join
conditions can be computed by an FCM on sorted inputs by computing the semijoins
with condition ¢ for each allowed join condition ¢ in the disjunction 6 and then
computing the union of these results.

The easy observations above motivate us to extend FCMs with sorting, in the
spirit of “two-pass query processing” based on sorting [11]. Formally, assume that
E is totally ordered by a predicate < in Y. Then, when only considering sorting in
ascending order, a relation of arity p can be sorted “lexicographically” in p! different
ways: for any permutation p of {1,..., p}, let sort, denote the operation that sorts
a p-ary relation’s p(1)-th column first, p(2)-th column second, and p(p)-th column
last. By an FCM working on sorted inputs of a database D, we mean an FCM that
gets all possible sorted orders of all relations of D as input lists. In this section, we
only consider sorting in ascending order. In the next section we also consider sorting
in descending order: we agree that by an FCM working on sorted inputs, we always
mean that inputs are sorted in ascending order, unless we state otherwise. We then
summarize the above discussion as follows:

Proposition 4.7 Each operator of the semijoin algebra (i.e, union, intersection, dif-
ference, projection, selection, and semijoin with A-allowed join condition) can be
computed by an O (1)-FCM on sorted inputs.

Proof We only consider the semijoin operator with A-allowed join condition. The
other operators can easily be computed by an O (1)-FCM on sorted inputs.

Let R xg S be a semijoin with A-allowed join condition 6. Recall that 6 is of the
form ¢ A ¥. We consider three cases depending on whether ¥ consists of zero, one,
or two inequalities: (1) ¥ is true, (2) ¥ is either x,,1 < y,2 or xy1 >y, for some

1 2 . .
¥ and ¥<, and (3) ¢ is either Xyl > Vy2 /\xwzl < Yy2 Orxy1 >y, /\szl > Yy2 for

some wll, wlz, wzl and wzz. Let ¢ be /\lz=1 Xl = Vg2 Without loss of generality, we
assume that columns participating in an inequality do not participate in an equality.
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Le. in case (2), ¥/ &{p} | £=1,...,k} fori = 1,2, and in case (3) ¥i, ¥} & {¢} |
L=1,...,k}fori=1,2.

We describe how an FCM M computes R Xg S. In case (1), M works on relation
R (S) sorted on its <p11 -th ((p%—th) column first, wi—th ((p%—th) column second, and go,i -th
(go,%—th) column k-th. Then, M performs a synchronized scan to search a joining tuple
in S for each tuple in R.

In case (2), M works on R and S sorted as before. We first consider the subcase
where ¥/ is x,1 < y,2. The machine considers each tuple 7 in R in turn and searches
for the set of tuples s in S such that ¢ (7, s) is true. Note that these tuples occur in a
contiguous region in S and that the machine can mark this region using two cursors,
one pointing to the first such tuple and one pointing to the tuple right below the last
such tuple. The region is illustrated in Fig. 1. Then, M searches for the maximum
value for column 2 in this region. In Fig. 1, this value is denoted wmax. The ma-
chine now outputs all tuples in relation R with the same elements as 7 in columns
(pll, ey (p,l and with an element « in column ! less than way. In the subcase where
Y is Xyl > Yy2, the machine searches for the minimum value wm;, for column 1//2 in
the above region and outputs all tuples in relation R with the same elements as 7 in
columns goll, e go,} and with an element u in column wl greater than Wpip.

In case (3), M works on relation R (§) sorted on its (pll-th ((p%-th) column first,
<p£—th ((p%—th) column second, (p,l—th (go,%—th) column k-th, and finally on its wll—th
(wlz-th) column. We first consider the subcase where ¥ is Xyl > Yy2 AXyt < 2.
The machine considers each tuple 7 in R in turn and searches for the set of tuples
s in S such that ¢(7,s) is true and additionally, the 1//11-111’1 element of 7 is greater
than the wlz-th element of 5. Note that these tuples occur in a contiguous region in S,
which we will denote region(r), and that the machine can mark this region using two
cursors, one pointing to the first such tuple and one pointing to the tuple right below

S

Rl
<
R

]

Wmax

Fig. 1 Illustrating the algorithm in the proof of Proposition 4.7 (case (2))
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hS)
S
<
N
hS!
hS)
-

Winax

. . 4
\ Il Winax

Fig. 2 Tllustrating the algorithm in the proof of Proposition 4.7 (case (3))

the last such tuple. The region region(7) is shown as a light gray rectangle in Fig. 2.
Then, M searches for the maximum value for column ¢22 in this region. In Fig. 2,
this value is denoted wp,x. The machine now outputs all tuples in relation R with

the same elements as 7 in columns <p11, e (p,i, wll and with an element z in column
I less than wmgy. Note that the region region(7') of a tuple 7 following 7 and with
2 g g p g

the same elements as 7 in columns (pll, ey go,l will contain region(r). The region

region(7’) is shown as a dark gray rectangle in Fig. 2. The maximum value w},, for

column wzz in this region will therefore be a least as great as wmax. Hence, the cursor
pointing to that maximum value can be easily updated. The machine now outputs all

tuples in relation R with the same elements as 7 in columns gall, e <p,}, wll and with
an element 7’ in column v, less than w/,,,. The machine continues in this way. The
subcase where 1 is Xyl > Yy2 AXy1 > yya is handled similarly. U

Corollary 4.8 Every semijoin algebra query with A-allowed join conditions can be
computed by a query plan composed of O(1)-FCMs and sorting operations.

Proof From the expression tree of the given semijoin algebra expression we construct
a query plan as follows: we replace each selection, projection and union operator
by an FCM computing that operator; we replace each intersection, difference and
semijoin operator by an FCM computing that operator on sorted inputs; and finally,
we insert sorting operations so that the FCMs computing intersection, difference and
semijoin have access to all possible sorted orders. U

The following example illustrates the construction in the proof of Corollary 4.8.

Example 4.9 Consider the query Q := (0x; <y, (RUS)) Xy,—y, 0x, <y, T. The expres-
sion tree of Q is shown in Fig. 3 on the left. The query plan obtained by using the
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Fig. 3 On the left: expression
tree for query Q =

(Ox1 <y (RUS)) Xxy=y, // \\
Ox| >y, T . On the right: query

M,

Xazg=yy

plan computing Q, composed of Y=y sorty  sorty;  sorti;  sorty;
O (1)-FCMs and sorting / \ \ / \ /
operations
O1<2 01>2 M, ., M.,
U T My T
R S R S

construction in the proof of Corollary 4.8 is shown on the right of Fig. 3. Here, M,
is used to denote the O(1)-FCM computing the operator «.

The simple proof of Corollary 4.8 introduces a lot of intermediate sorting oper-
ations. In some cases, intermediate sorting can be avoided by choosing in the be-
ginning a particularly suitable ordering that can be used by all the operations in the
expression [29].

Example 4.10 Consider the query (R — S) Xy,—y, T, where R, S and T are binary
relations. Since the semijoin compares the second columns, it needs its inputs sorted
on second columns first. Hence, if R — S is computed on sort(2 1)(R) and sort(2,1)(S)
by some machine M, then the output of M can be piped directly to a machine M’
that computes the semijoin on that output and on sort(2 1)(7). By compositionality
(Proposition 4.1), we can then even compose M and M’ into a single FCM. A naive
way to compute the same query would be to compute R — § on sort(j 2)(R) and
sort(1,2)(S), thus requiring a re-sorting of the output.

The question then arises: can intermediate sorting operations always be avoided?
Equivalently, can every semijoin algebra query already be computed by a single ma-
chine on sorted inputs? We can answer this question negatively. Our proof applies a
known result from the classical topic of multihead automata, which is indeed to be
expected given the similarity between multihead automata and FCMs.

Specifically, the monochromatic 2-cycle query about a binary relation E and a
unary relation C asks whether the directed graph formed by the edges in E consists
of a disjoint union of 2-cycles where the two nodes on each cycle either both belong
to C or both do not belong to C. Note that this query is indeed expressible in the
semijoin algebra as “Is e; U ex U e3 empty?”, where

ej . =E—(E X E),

=y

x1=)2
e =FE x E,
xX2=y1
X752
e3:=(E x C) x ((m(E)Um(E))—C).
X1=V1 X2=Y1
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Here, expression e selects the edges that do not have a reverse edge; expression
ey selects the edges that have a follow-up edge; and expression e3 selects the edges

whose end points have different colors. The semijoin E X x,=y; E is an abbreviation
1772

for the union of the allowed semijoins E X x»=y; E and E X x=y; E.
X1=x2 X1>x2

Before proving that the monochromatic 2-cycle query cannot be computed by an
O (1)-FCM on sorted inputs, we recall the result on multihead automata as a lemma.

One-way multihead deterministic finite state automata are devices with a finite
state control, a single read-only tape with a right endmarker $ and a finite number of
reading heads which move on the tape from left to right. Computation on an input
word w starts in a designated state go with all reading heads adjusted on the first
symbol of w. Depending on the internal state and the symbols read by the heads, the
automaton changes state and moves zero or more heads to the right. An input word w
is accepted if a final state is reached when all heads are adjusted on the endmarker $.
A one-way multihead deterministic finite state automaton with k heads is denoted by
1DFA(k). A one-way multihead deterministic sensing finite state automaton, denoted
by IDSeFA(k), is a 1DFA(k) that has the ability to detect when heads are on the same
position. Formal definitions have been given by Rosenberg [28].

For natural numbers n and f, consider the following formal languages over the
alphabet {a, b}:

Ly = {wibwab...bwsbw'b. .. bwsbw |
Vi=1,..., f:w,w]€{a, b} and |w;| = |w]| =n}

pl = {wlbwzb...bwfbw}b...bw’zbw’l eLl|Vi=1,..., f:wR =w}}.

1

We recall the following result:

Lemma 4.11 (Hromkovi¢ [20]) Let M be a one-way, k-head, sensing DFA, and let
f > (g) Then for sufficiently large n, if M accepts all strings in Pnf , then M also

accepts a string in L,{ — P,,f .

Actually, we will need a slight strengthening of the above Lemma, which can be
proven in exactly the same way as Lemma 4.11. To make this paper self-contained
and also for easy reference, we still provide a polished proof below. The strengthening
deals with oblivious right-to-left heads that can only move from right to left on the
input tape sensing other heads, but cannot read the symbols on the tape.

Lemma 4.12 Let M be a one-way, k-head, sensing DFA with oblivious right-to-left
heads, and let f > (S) Then for sufficiently large n, if M accepts all strings in Pnf ,

then M also accepts a string in L,{ — Pﬁf .

Proof On any string in P,f , consider the sequence of “prominent” configurations
of M, where a prominent configuration is a halting one, or one in which a left-to-
right head has just left a w; or a w; and is now on a b. If s is the number of internal
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states of the automaton, there are at most s - (2f (n + 1))* different configurations.
Any given run of M has at most 2 fk prominent configurations, so there are at most

2fk

p) = (s- 2f(n+ 1))

different sequences of prominent configurations. As there are 2/” different strings
in Pnf , there is a set G of at least 2/ /p(n) different strings in P,,f with the same
sequence of prominent configurations.

On any wibwab...bw rbwb...bwsbw( € P/, we say that M “checks” region
i €f{l,..., f}if at some point during the run, there is a left-to-right head in w;, and

another left-to-right head in wiR . Every pair of left-to-right heads can check at most

one i, so since f > (g), at least one i is not checked.

In our set G, the non-checked i is the same for all strings, because they have the
same sequence of prominent configurations. If we group the strings in G further on
their parts outside w; and wiR, there are at most 2(/ =D different groups, so there is
a subset H of G of at least 2"/ p(n) different strings that agree outside w; and wl.R.
For sufficiently large n, we have 2"/ p(n) > 2.

We have arrived at two strings in P,‘,f of the form

yi = wibwyb..bw;b..bw,bwRb. bwRb. bwRbwk,

y2 = wibwb..bw!b..bw,bwrb. bwRb. bwXbwk

with w; # w;, and with the same sequence of prominent configurations. But then M

will also accept the following string y € L 5 — P,f :

wibwyb .. .bw;b...bw,bwRb .. bwRb .. bwRbwk.

R

Indeed, while a left-to-right head of M is in w;, no left-to-right head is in w;* and

i
thus the run behaves as on y;; while a left-to-right head of M is in w;R, no left-to-
right head is in w; and thus the run behaves as on y,. Since y; and y, have the same
sequence of prominent configurations, y has that sequence as well and hence y is

accepted. (]
We are now able to prove:

Theorem 4.13 The monochromatic 2-cycle query is not computable by an O(1)-
FCM on sorted inputs.

Proof Note that as a corollary of Lemma 4.12, we have that there is no 1DSeFA(k)
with oblivious right-to-left heads that recognizes the language P := {w € {0, 1}* |
w=w™} of palindromes.

Now let M be an O (1)-FCM that is supposed to solve the monochromatic 2-cycle
query. Again using Ramsey’s theorem, we can find an infinite set V C E over which
the truth of the atomic formulas in M’s program on tuples of data elements only
depends on the way these data elements compare w.r.t. < (see Theorem 4.3). Hence,
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there is an O(1)-FCM M’ with only the predicate < in the conditions of its if-then-
else rules that is equivalent to M over V. We now come to the reduction. Given a
string w = w1 - - - w, over {0, 1}, we choose n values a; < --- < a, € V. Then define
relation E as {(a;,ay—i+1) | 1 <i <n} and define relation C as {a; | w; = 1}. It is
clear that w is a palindrome if and only if £ and C form a positive instance to the
monochromatic 2-cycle query. Also note that for this particular relation E, a cursor
on sorty 1 E can be simulated by a cursor on sort; » E by simply switching the roles
of the first and second component. We can thus assume that M’ has no cursors on
sorty 1 E. From FCM M’ we can construct a 1DSeFA(k) with oblivious right-to-left
heads that would recognize P as follows:

e cach cursor on sort; 2 E corresponds to a pair consisting of a “normal” left-to-right
head and an oblivious right-to-left head;

e cach cursor on sort; C corresponds to a normal head;

e cach time a cursor on sort] » E is advanced, the normal head of the corresponding
pair of heads is moved one position to the right and the oblivious head is moved
one position to the left;

e cach time a cursor on sort; C is advanced, the corresponding head is moved to the
next 1 on the input tape;

e the finite state of the automaton keeps track of the mode of the finite cursor ma-
chine, together with the relative positions of all heads. Note that for example the
element in the second component of a tuple in sort; 2 E seen by cursor c is lower
than the element seen by cursor ¢’ on sort; C if and only if the oblivious right-to-left
head corresponding to c is on a position in w before the normal head corresponding
toc’;

e conditions in if-then-else rules of M’ are evaluated by examining the finite state of
the automaton.

We conclude that FCM M cannot exist. O

An important remark is that the above proof only works if the set C is only given in
ascending order. In practice, however, one might as well consider sorting operations
in descending order, or, for relations of higher arity, arbitrary mixes of ascending and
descending orders on different columns. Indeed, that is the general format of sorting
operations in the database language SQL. We thus extend our scope to sorting in
descending order, and to much more powerful o(n)-machines, in the next section.

5 Descending Orders and the Power of o(n)-Machines

We already know that the computation of semijoin algebra queries by FCMs and
sortings in ascending order only requires intermediate sortings. So, the next ques-
tion is whether the use of descending orders can avoid intermediate sorting. We will
answer this question negatively, and will do this even for o(n)-machines (whereas
Theorem 4.13 is proven only for O (1)-machines).

Formally, on a p-ary relation, we now have sorting operations sort, ¢, where p is
as before, and f:{1,..., p} = {, \\J indicates ascending or descending. To distin-
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guish from the terminology of the previous section, we talk about an FCM working
on AD-sorted inputs to make clear that both ascending and descending orders are
available.

Before we show our main technical result, we remark that the availability of sorted
inputs using descending order allows O (1)-machines to compute more relational al-
gebra queries. Indeed, we can extract such a query from the proof of Theorem 4.13.
We have seen a special case of the monochromatic 2-cycle query there and we showed
that it cannot be computed by an O(1)-FCM working on ascendingly sorted in-
puts. It is easy to see that special case can be computed by an O (1)-FCM working
on both ascendingly and descendingly sorted inputs. Specifically, the ‘“Palindrome”
query about a binary relation R and a unary relation C asks whether R is of the
form {(a;,an—i+1) |i=1,...,n} witha; <--- <a,,and C C {ay, ..., a,} such that
ai € C & ay—i4+1 € C. We can express this query in the relational algebra (using the
order predicate in selections). We thus have:

Proposition 5.1 The “Palindrome” query cannot be solved by an O(1)-FCM on
sorted inputs, but can be solved by an O (1)-FCM on AD-sorted inputs.

Using descending sorting, we can also compute semijoins with AD-allowed join
conditions (recall Definition 4.4):

Proposition 5.2 Every semijoin operation with AD-allowed join condition can be
computed by an O (1)-FCM on AD-sorted inputs.

Proof We only consider the semijoin operator with AD-allowed join condition. We
have already showed in Proposition 4.7 that the other operators and the semijoin
operator with A-allowed join condition can be computed by an O (1)-FCM on sorted
inputs.

Let R xg S be a semijoin with AD-allowed join condition 6. Recall that 6 is of
the form ¢ A Y where V is Xyl < Vy2 /\)C¢,21 <Yy2 for some xpll, 1//12, 1/;21 and wzz. As
in case (3) of the proof of Proposition 4.7, M works on relation R (S) sorted on its
<p11—th ((plz—th) column first, cpé -th ((p%—th) column second, (p,l -th (ga,%—th) column k-th
(all ascending), and finally on its wll—th (wlz—th) column sorted desendingly. Now, M
computes similarly as in case (3) of the proof of Proposition 4.7. O

We illustrate the algorithm in the proof Proposition 5.2 with an example.

Example 5.3 Let R and S be binary relations and consider the semijoin R xg S,
where 6 is x1 < y; A x2 < y2. The FCM computing this semijoin works on R and S
sorted descendingly on their respective first columns. For each tuple 7 in R, the set of
tuples s in S with 51 > rq is a contiguous region starting from the first tuple in S until
right before the first tuple 5’ with s; < ri. The FCM then searches for the maximum
value for 55 of all tuples 5 in this region. We denote this maximum by v. A cursor
on R visits all tuples 7’ with r; = r| and outputs the ones with r}, < v.

While visiting the tuple 7, two things can occur: (1) the end of R is reached, or
(2) atuple 7" is found with r{ < ry. In case (1), the FCM stops. In case (2), the cursor
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that was positioned at 5 is moved forward to search again for the first tuple 5’ with
s1 < r{. Also, the maximum value v for sJ of all tuples 5" in the region between the
first tuple in S and the new 5’ is updated. Note that this region grows. The machine
continues in this way.

As a corollary, we have (cf. Corollary 4.8):

Corollary 5.4 Every semijoin algebra query with AD-allowed join conditions can be
computed by a query plan composed of O(1)-FCMs and ascending and descending
sorting operations.

Remark 5.5 We should note that our notion of allowed join condition (Definition 4.4)
probably does not exhaust all possible kinds of semijoins that can be computed on
AD-sorted inputs. It is indeed conceivable that certain predicates other than equalities
and inequalities might exist for which the sorting order of the inputs can still be
exploited for computing the semijoin by an FCM.

Moreover, it remains open to prove that semijoins with non-allowed join con-
ditions that involve only < are not computable by an FCM on AD-sorted inputs.
For example, we conjecture that R x us S, for ternary relations R and S, is not

X3<)3

computable by an FCM on AD-sorted inputs.
5.1 Intermediate Sorting Cannot Be Avoided

We now return to the issue of intermediate sorting and establish our main result.

The result will follow from two lemmas, which we state and prove first. In both
lemmas, FCMs will work on lists of tuples and their reversals. With respect to sorting,
the connection between a list and its reversal is clear: the reversal of an ascendingly
sorted list L is the list L sorted descendingly, and vice versa. The first lemma concerns
the inherent limitations of FCMs due to the one-way nature of the cursors. In order to
state it, we need to define a number of notions. First, for natural numbers v and n with
n a multiple of v2, divide the ordered set {1,...,n} evenly in v consecutive blocks,
denoted by By, ..., By. So, B; equals the set {(i — l)% + 1,...,1’%}. Then, further
subdivide each block B; evenly in v consecutive subblocks, denoted by Bil, e Bi”.
So, B{ equals the set {(i — )2 + (j — DS+ 1., (—DE+j5)

Furthermore, consider the following permutation of {1, ..., n}:

n n
Tpy: (—1)—=4+s—> @W—i)—+s
v v

forl<i<vand1<s< % So, m,,, maps subset B; to subset By_;+1, and 7,
b—ig1-
order but it does not reverse the blocks Bl./ inside B; in order. The permutation 16 4
is shown in Fig. 4.

Let M be a FCM with k cursors. Let v = (§) + 1 and let n be a multiple of v?.
Suppose M works on a set of lists and their reversals. The reversal of a list L is

maps subset BiJ to subset B The permutation 7, , reverses the blocks B; in
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- B
7] e e e

6
2 5
By By 2

Fig. 4 Permutation 16 4

denoted by T . Consider two distinguished lists L1 and L, of length n on which M

is working. In particular, for a clear understanding, let L be the list tll .. t,% and let

L; be the list 2. .. for some tuples ¢ ...t} 17 ... 12.
Consider the run of M on the lists and their reversals. We say that a cursor ¢ is on

position £ on list L if it has executed £ — 1 update rules ¢ := nexty (c). Le., if cursor

c is on position £ on L, then c sees tuple tgl. We use analogous notation for the lists

f, L,, and l<,_2 Le., if a cursor c is on position £ on ﬁ (resp. Lo, resp. E), then ¢

sees tuple t}i_ 041 (resp. tzz, resp. t,%_ ¢+1)- We say that a pair of cursors of M checks

block B; if at some state during the run either:

e one cursor in the pair is on a position in B; on L1 (i.e., the cursor sees a tuple tl},
for some ¢ € B;) and the other cursor in the pair is on a position in B,_;+1 on Ly
(i.e., the cursor sees a tuple t;%z’ for some ¢ € B;), or

e one cursor in the pair is on a position in By_; 4] on f] (i.e., the cursor sees a tuple
tel, for some ¢ € B;) and the other cursor in the pair is on a position in B; on Ly

(i.e., the cursor sees a tuple tﬁ ¢» for some £ € B;).

Note that each pair of cursors working on the lists L; and L, or on the lists l<,_1 and

2, can check at most one block. There are v blocks and at most (’2‘) < U Cursor pairs.
Hence, there is one block B;, that is not checked by any pair of cursors working on
Ly and L, or on i_l and fz We now define the notion of a pair of cursors checking
a subblock Bij , analogously to the notion of a pair of cursors checking a block B;.

We say that a pair of cursors of M checks subblock Bl.j if at some state during the run
either:

e one cursor in the pair is on a position in Bl.j on L (i.e., the cursor sees a tuple tzl,
j . .. .. . —j+1
for some ¢ € B/) and the other cursor in the pair is on a position in B’ /™" on I
(i.e., the cursor sees a tuple tﬁe, for some £ € B[.j), or
v—j+
; v—i+1 ;
tﬁl, for some ¢ € Bl.] ) and the other cursor in the pair is on a position in Bl{ _jppon

e one cursor in the pair is on a position in B on E (i.e., the cursor sees a tuple

L» (i.e., the cursor sees a tuple tﬁz, for some ¢ € Bi]).
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Note that each pair of cursors working either on L; and IZ or on L and L», can
check at most one subblock in Bj,. There are v subblocks in B;, and at most (’;) <v

cursor pairs. Hence, there is at least one subblock Bi{) % that is not checked by any pair

of cursors working either on L and fz oron L and L,. Note that, since the entire
block B;, is not checked by any pair or cursors working either on L and L or on

fl and i_ , the subblock Bl{)o is thus not checked by any pair of cursors (on L, l(4_ s
Ly, Iy).

We say that M checks subblock Bij if at least one pair of cursors of M checks

subblock B/
The above argument thus leads to the following:

Lemma 5.6 (Block-checking lemma) Let M be an FCM with k cursors working on
a set of lists and their reversals. Let v = (];) + 1 and let n be a multiple of v*. Let L,
and Ly be two distinguished length-n lists in terms of which the notion of “checking
a (sub)block” is defined. .

Then, there is at least one subblock Bij(f that M does not check.

The block-checking lemma is a building block in the proof of the next lemma,
from which our main result will be proved. In order to state the lemma, we need a
definition.

Definition 5.7 (Binary (n, v)-collection with respect to (L1, L7)) Let n and v be
natural numbers such that z is a multiple of v2. Let S be a database schema and let L;
and L, be two distinguished relation names in S. A collection £ of list instances with
schema S is called a binary (n, v)-collection with respect to (L1, L) if L is of the
form {L,(I) | I € {1,...,n}} for which there exist elements xp, ..., X, xi, ey Xy
Y1s--.»Yn,and yi, ..., y, with x; #x] and y; # y/ fori =1,...,n such that:

e the lists L1 and L5 in list instance L, (1) have length n; and
o the i-th element of list L in list instance L, (/) is

x; ifiel,
xi’ ifielf,
where the complement /¢ is taken with respect to {1, ..., n}; and

e the 7, ,(i)-th element of list L, in list instance L, (1) is
yi ifiel,
y; ifi elf,

o the lists other than L and L; in L, (/) do not depend on /. In particular, they are
the same in every instance L, (1) of £. And finally,

e the length of the lists other than L; and L; in L, (1) is bounded by an for some
fixed o, independent of n.
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We call a binary (n, v)-collection with respect to (L1, L) “binary” because for
any i = 1,...,n and for any list instance L,, (/) in the collection, on the i-th position
of L (and L) in L, (1), there can only be two elements.

Lemma 5.8 (Fooling lemma) Let M be a o(n)-FCM with k cursors. Let v =
(]5) + 1 and let n be a sufficiently large multiple of v*. If {L,(I) | I C{1,...,n}}
is a binary (n,v)-collection with respect to (L1, Ly), then there exist I,J C
{1,...,n} with I # J such that the run of M working on the list instance containing:

e the list L1 of L, (1),

e the list Ly of L, (J),

e the lists other than Ly and Ly of L,,(I), and
e all reversals of the aforementioned lists

ends in exactly the same way as the run of M on the lists in L, (I) and their reversals.

Proof Without loss of generality, we can assume that M accepts or rejects the input
only when all cursors are positioned at the end of their lists.

Let r be the number of registers and let m be the number of modes occurring in
M’s program.

The proof now consists of two arguments: a counting argument and a fooling
argument. The counting argument gives us two instances L, (1) and L, (J) with I #
J such that the runs of M on the lists in both instances and their reversals are very
“similar”. In the fooling argument, it is shown that the instances L, (1) and L, (J)
can be combined into an instance Ley (in the way defined in the statement of this
lemma) such that the run of M on the lists in L¢rr and their reversals ends in exactly
the same way as the run of M on the lists in L, (/) and their reversals.

In the rest of this proof, when considering the run of M on an instance L, we im-
plicitly mean the run of M on the lists in L and their reversals.

A. Counting argument Consider the set 7 of 2" instances {L, (/) | I € {1,...,n}}.
According to the block-checking Lemma 5.6, where block-checking is defined in
terms of the lists L and L;, on each instance L, (/) there is at least one subblock
Bl:/ that M does not check. Because there are only v? such possible subblocks and
2" different instances in Z, there exists a set Zo C Z of cardinality at least 2" /v and
2 indices ig and jo, such that M does not check subblock Bi{) % on any instance in Zy.

At this point it is useful to introduce the following terminology. By “block
Bl{)o on Li”, we refer to the positions in Bi{)" of list L1 and to the positions in
BV
By “block B;{? on L;”, however, we refer to the positions in Bl{(lio T of list L, and to

of list .1, i.e., “block Bl.jo0 on L;” contains elements x¢ or x, where ¢ € Bij:.

.. . — 1 . . 13 i 2 M
the positions in Bl.'f) JFL of Tist I(T , 1.e., “block Bl.joO on L,” contains elements y, ¢

or yj’rn A where £ € Bl{)‘). Note that this terminology is consistent with the way we
have defined the notion of “checking a block”.
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Now we apply an averaging argument to fix all input tuples outside the critical
block Bijoo. We divide Z into equivalence classes induced by the following equiva-
lence relation:

L.()=L,(J) & I-B=J—BP

. i n— .
Since Bijo0 has 5‘—2 elements, there are at most 2° »? equivalence classes. Thus,

since Zp has at least 2"/ v? elements, there exists an equivalence class Z1 € Zy of
n /.2
cardinality at least % — on/v? /v?, such that for any L, (I) and L,(J) in 7y,

we have I — Bijoo =J - Bl.](?. Note that for larger and larger n, 2"/ v? /v? becomes
arbitrarily large.

Let L, (1) be an element of Z;. Consider the run of M on L, (). Let ¢ be a cursor
and let M C’ be the state of M in the run on L,, (/) when cursor ¢ has just left block Bij0 0

on L oron Lj. Let M/ be the k-tuple consisting of these states M Z for all cursors c.
Note that a state of the machine is completely determined by the machine’s current
mode (one out of m possible values), the positions of each of the k cursors (where
each cursor can be in one out of at most wn possible positions), and the contents
of the r bitstring registers (each of which has length o(n)). Hence, there are only
m - (an) - 27°0) different states for M. The tuple M/ can thus have only

(m . (om)k . 2r»o(n))k — 2klogm+k2 logan+k-r-o(n)

different values. .,
Since Z; has at least 22 / v?2 elements, there exists a set 7, C 7| of cardinality at

/v 2 _ 2v’i2—210gv—klogm—k2 logan—k-r-o(n)

least

, such that for any L, (1)

oklogm-+k2 logan-+k-r-o(n)
and L, (J) in Z,, we have M! = M. For large enough n, we have at least two
different instances L, (/) and L,,(J) in Z,.

We recall the crucial properties of L, (1) and L, (J):

1. M does not check block Bi’;’ onL,(I),noron L, (J);
2. L,(I) and L, (J) differ on L and L, only in block Bl{;’; and
3. For each cursor ¢, when ¢ has just left block Bl{;’ (on Li or Ly) in the run on

L, (1), the machine M is in the same state as when ¢ has just left block Bl{;’ in the
run on L, (J).

B. Fooling argument Let V), V), ... be the sequence of states in the run of M on
L, (1) and let Wy, W, ... be the sequence of states in the run of M on L, (J). Let tCI
and #/ be the points in time when the cursor ¢ of M has just left block Bijo0 in the run
on L, (/) and L, (J), respectively. Because of Property 3 above, V,: equals W, for
each cursor c. Note that the start states 1y and W) are equal. ‘ ‘
Now consider instance L containing the list L of L, (1), the list L, of L, (J),
the lists other than L and L, of L, (I), and all reversals of the aforementioned
lists. Consider M running on L. As long as there are no cursors in block Bijoo on L
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and on L, the machine M running on Ley will go through the same sequence of
states as on L, (/). Indeed, M has not yet seen any difference between Le on the
one hand, and L, (/ ) on the other hand. At some point, however, there may be some

cursor ¢ in block Bl‘{)o.

e If this is on L or f, no cursor on Ly or l<,_2 will enter block Bijo0 as long as c is
in this block (Property 1). Therefore, M will go through some successive states V;
(i.e., M thinks it is working on L,, (1)) until ¢ has just left block Bijoo. At that point,
M is in state V,; =W ,, (Property 3) and the machine now again goes through the
same sequence of states as on L, (I) (Property 2).

e Ifthisison L or L, we are in a similar situation: No cursor on L or i_l will enter
block BZ:IOO as long as c is in this block (Property 1). Therefore, M will go through
some successive states W; (i.e., M thinks it is working on L, (J)) until ¢ has just
left block Bijo 9. At that point, M is in state Vi1 =W,s (Property 3) and the machine
now again goes through the same sequence of states as on L, (1) (Property 2).

Hence, in the run of M on Ly, each time a cursor ¢ has just left block Blt’oo, the

machine is in state V;s. Let d be the last cursor that leaves block Bt{:’. When d has

just left this block, M is in state V, 1 After the last cursor has left block Bi{) 0 the run
of M on'LeIT finishes exactly as the run of M on L, (1) after the last cursor has left
block Bijoo . This completes the proof of Lemma 5.8. (|

We can now prove:

Theorem 5.9 The query RST := “Is R Xy —y, (S Xy,=y, T) nonempty?”, where R
and T are unary and S is binary, is not computable by any o(n)-FCM working on
AD-sorted inputs.

Proof Let M be an o(n)-FCM computing RST on AD-sorted inputs. Let k be the total

number of cursors of M. Let v = (];) + 1 and let n be a multiple of v>. Choose 4n

values in E satisfying a; <a) <ay <a) <--- <a, <a, <by <b| <---<b, <by,.
We fix the binary relation S of size 2n as follows:

S:={(ae, bre): Lefl,..,n)} U (ap byt el, .. n}},

where m = m,, ,,. Furthermore, for all sets 7, J C {1, ..., n}, we define unary relations
R(I) and T (J) of size n as follows:

R(I):=f{ag:Lel}Ufa,: LY,

T(J):=1{by: L€ J}U{b}Z e JY,
where /¢ denotes {1,...,n} — I. By D(/, J), we denote the database consisting of
the relations R(/), S, and T'(J). It is easy to see that the nested semijoin of R(/), S,

and 7'(J) is empty if, and only if, (z (/)N J) U (w(1)* N J¢) = @. (Note that 7 ([€) =
7 (I)¢.) Therefore, for each I, the query RST returns false on database D(Z, w (1)),

@ Springer



Theory Comput Syst

which we will denote by D(7) for short. Furthermore, we observe:
the query RST on D(7, 7 (J)°) returns frue if, and only if, I # J. (%)

Now, for I € {l1,...,n}, consider the list instance L, (/) containing the lists
sort «(R(1)), sort »(T (zr (I)°)), and all sorted versions of . It is clear that the collec-
tion {L,(I) | I € {1,...,n}} of these list instances is a binary (n, v)-collection with
respect to (R, T'). (In Definition 5.7, take x; = a;, x; = a;, y; = by, and y, =b] ..)

Now, we apply Lemma 5.8. We thus obtain I,J C {1,...,n} with 1 # J
such that the run of M on the list instance L containing the lists sort /(R(I )),
sort /(T(n(J )")), all sorted versions of S, and all reversals of the aforementioned
lists—in particular the lists sort\ (R([)) and sort\ (7 (7r (J)“))—ends in exactly the
same way as the run of M on the list instance L, (1)’ containing the lists in L, (I) and
their reversals—in particular the lists sorts (R(I )) and sort\ (T(JT(I )C)). Note that
list instances L, (I)" and L contain all possible sorted orders of all relations of D(/)
and D(Z, w (J)©), respectively. Therefore, if M computes the RST query correctly on
AD-sorted inputs, M returns false on L, (I) and frue on L (cf. (x)). The runs of M
on both list instances, however, end in the same way. We conclude that M cannot
exist. U

Remark 5.10 (a) An analysis of the proof of Lemma 5.8 shows that we can make the
following, more precise statement: Let k,m,r,s : N — N such that

k(n)6 - (logm(n)) - r(n) - max(s(n),logn) = o(n).

Then for sufficiently large n, there is no FCM with at most k(n) cursors, m(n) modes,
and r(n) registers each holding bitstrings of length at most s(n) that, for all unary
relations R, T and binary relations S of size n decides if R Xy =y, (S Xy,=y, T) is
nonempty. (In the statement of Lemma 5.8, k, m, r are constant.) This is interesting in
particular because we can use a substantial number of cursors, polynomially related
to the input size, to store data elements and still obtain the lower bound result.

(b) Note that Theorem 5.9 is sharp in terms of arity: if S would have been unary
(and R and T of arbitrary arities), then the corresponding RST query would have
been computable on sorted inputs.

(¢) Furthermore, Theorem 5.9 is also sharp in terms of register bitlength: Assume
data elements are natural numbers, and focus on databases with elements from 1 to
O (n). If the background provides functions for setting and checking the i-th bit of a
bitstring, the query RST is easily computed by an O (n)-FCM.

Using Lemma 5.8 we can also show the following strengthening of Theorem 4.3:

Theorem 5.11 There is no o(n)-FCM working on enumerations of unary relations
R and S and their reversals, that checks whether R N S # (.

Proof Let M be an o(n)-FCM that checks whether R N S # . Let k be the total
number of cursors of M. Let v be (];) + 1 and let n be a multiple of v2. Choose 2n

pairwise distinct values a1, a}, a2, a), ..., ay, a, from EE.
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For all sets 1, J C {1,...,n}, we define unary relations R(/) and S(J) of size n
as follows:

R(I):={ag:Lel}U{a,:LelY,
S(J):={ag:LeJ}yU{a,: L e JY,

where the complements /¢ and J¢ are taken with respect to {1,...,n}. By D({, J),
we denote the database consisting of the relations R(/) and S(J). It is easy to see
that the intersection of R(/) and S(J) is empty if, and only if, J = I°. Therefore, for
each I, the intersection test fails (returns false on) for instance D(/, I¢), which we
will denote by D(7) for short. Furthermore, we observe:

the intersection test fails on D(/, J) if, and only if, J = I€. (*x)

Now, for I C {1, ..., n}, consider the list instance L, (/) containing the following
enumerations R(/)_, and S(/¢), of R(I) and S(I¢), respectively: The i-th element
of Ris a; if i € I and a] if i € I¢; the 7, ,,(i)-th element of S; is a; if i € I and
a; if i € I¢. (The subscripts — and 7 denote that the elements occur in the order of
increasing indices and this latter order permuted by 7, respectively.) It is clear that the
collection {L,,(I) | I C {1, ..., n}} of these list instances is a binary (n, v)-collection
with respect to (R, S). (In Definition 5.7, take x; = y; = a;, x; = y] = a.)

Now, we apply Lemma 5.8. We thus obtain 1, J C {1, ..., n} with I # J such that
the run of M on the list instance L containing the lists R(/)_,, S(J€),, and their
reversals ends in exactly the same way as the run of M on the list instance L, (1)’
containing the lists in L,, (I) and their reversals. If M computes the query RN S # #?
correctly, M returns false on L, (I)" and true on L (cf. (x)). The runs of M on both
list instances, however, end in the same way. We conclude that M cannot exist. [

Note that Theorems 5.9 and 5.11 are valid for arbitrary background structures.

6 Concluding Remarks

A natural question arising from Corollary 4.8 is whether finite cursor machines with
sorting are capable of computing relational algebra queries beyond the semijoin alge-
bra. The answer is affirmative:

Proposition 6.1 The boolean query over a binary relation R that asks if R =
m1(R) x m2(R) can be computed by an O(1)-FCM working on sort(1 2y, ~(R)

and sort,1),( 7, ) (R).

Proof The list sort(1 2y, », - (R) can be viewed as a list of subsets of 72(R), num-
bered by the elements of 71 (R). The query asks whether all these subsets are in fact
equal to 72 (R). Using an auxiliary cursor over sort( 1),( », ~ (R), we check this for
the first subset in the list. Then, using two cursors over sort(j 2y (», = (R), we check
whether the second subset equals the first, the third equals the second, and so on. [l
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Note that, using an Ehrenfeucht-game argument, one can indeed prove that the
query from Proposition 6.1 is not expressible in the semijoin algebra [24].
We have not been able to solve the following:

Open Problem 6.2 Is there a boolean relational algebra query that cannot be com-
puted by any composition of O(1)-FCMs (or even o(n)-FCMs) and sorting opera-
tions?

Under a plausible assumption from parameterized complexity theory [8, 10] we
can answer the O (1)-version of this problem affirmatively for FCMs with a decidable
background structure.

There are, however, many queries that are not definable in relational algebra, but
computable by FCMs with sorting. By their sequential nature, FCMs can easily com-
pare cardinalities of relations, check whether a directed graph is regular, or do modu-
lar counting—and all these tasks are not definable in relational algebra. One might be
tempted to conjecture, however, that FCMs with sorting cannot go beyond relational
algebra with counting and aggregation, but this is false:

Proposition 6.3 On a ternary relation G and two unary relations S and T, the
boolean query “Check that G = 71 2(G) X (w1(G) U m2(G)), that w1 2(G) is de-
terministic, and that T is reachable from S by a path in 71 2(G) viewed as a directed
graph” is not expressible in relational algebra with counting and aggregation, but
computable by an O (1)-FCM working on sorted inputs.

Proof (a) If this query was expressible in relational algebra with counting and ag-
gregation, then deterministic reachability would be expressible, too. However, since
deterministic reachability is a non-local query, it is not expressible in first-order with
counting and aggregation (see [18]).

(b) A finite cursor machine that solves this query can proceed as follows: The first
check follows by Proposition 6.1; the determinism check is easy. The path can now
be found using a cursor sorted on the third column of G, which gives us n copies of
the graph 1 2(G). (]

Finally, we recall the open problem already mentioned in Remark 5.5: can the
semijoin R X x g S be computed by an FCM on AD-sorted inputs?
Xz< '2
X3<y3
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