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1 Introduction

Declarative networking [18] is an approach by which distributed computations
and networking protocols, as occurring in cloud computing, are modeled and pro-
grammed using formalisms based on Datalog. Recently, declarative networking
formalisms are enjoying attention from the database theory community, so that now
a number of models and languages are available with a formally defined semantics
and initial investigations on their expressive power [1, 5, 8, 15, 20].

A major hurdle in using declarative methods for cloud computing is the nonde-
terminism inherent to such systems. This nondeterminism is typically due to the
asynchronous communication between the compute nodes in a cluster or network.
Accordingly, one of the challenges is to design distributed programs so that the same
outputs can eventually be produced on the same inputs, no matter how messages
between nodes have been delayed or received in different orders. When a program
has this property, we say it is eventually consistent [4, 16, 17, 24]. Of course, even-
tual consistency is undecidable in general, and there is much recent interest in finding
ways to guarantee it [1, 4].

In the present paper, we view eventual consistency as a confluence notion. On any
fixed input, let J be the union of all outputs that can be produced during any possible
execution of the distributed program. Then in our definition of eventual consistency,
we require that for any two different outputs J1 ⊆ J and J2 ⊆ J resulting from
two (partial) executions on the same input, the same output J can be produced in an
extension of either partial execution. So, intuitively, the prior execution of the pro-
gram will not prevent outputs from being produced if those outputs can be produced
with another execution (on the same input).

In this paper, we consider clusters of compute nodes modeled as relational
transducers, an established formal model for data-centric agents [3, 12–14, 23]. In
particular, we consider relational transducers where the rules used by the nodes to
send messages, to update their state relations, and to produce output, are unions of
conjunctive queries with negation. This setting yields a clear model of declarative
networking, given the affinity between conjunctive queries and Datalog. We thus
believe our results also apply to other declarative networking formalisms, although
in this paper we have not yet worked out these applications.

Our first main result is the identification of a number of syntactic restrictions
on the rules used in the transducers, not so that eventual consistency always holds,
but so that checking it becomes decidable. Informally, the restrictions comprise the
following.

– The cluster must be recursion-free: the different rules among all local programs
cannot be mutually recursive through positive subgoals. Recursive dependencies
through negative subgoals are still allowed.

– The local programs must be inflationary: deletions from state relations are
forbidden.

– The rules are message-positive: negation on message relations is forbidden.
– The state-update rules must satisfy a known restriction which we call “message-

boundedness”. This restriction is already established in the verification of
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relational transducers: it was first identified under the name “input-boundedness”
by Spielmann [23] and was investigated further by Deutsch et al. [13, 14].

– Finally, the message-sending rules must be “static” in the sense that they cannot
depend on state relations; they can still depend on input relations and on received
messages.

The last two restrictions are the most fundamental; in fact, even if just the last restric-
tion is dropped and all the others are kept in place, the problem is already back to
undecidable. The first three restrictions can probably be slightly relaxed without los-
ing decidability, and indeed we just see our work as a step in the right direction.
Eventual consistency is not an easy problem to analyze.

The second result of our paper is an analysis of the expressive power of clus-
ters of relational transducers satisfying our above five restrictions; let us call such
clusters “simple”. Specifically, we show that simple clusters can compute exactly
all distributed queries expressible by unions of conjunctive queries with negation,
or equivalently, the existential fragment of first-order logic, without any further
restrictions. So, this result shows that simple clusters form indeed a rather weak
computational model, but not as weak as to be totally useless.

Related Work The work most closely related to ours is that by Deutsch et al. on
verification of communicating data-driven Web services [14]. The main differences
between our works are the following. (i) In their setting, message buffers are ordered
queues; in our setting, message buffers are unordered multisets. Unordered buffers
model the asynchronous communication typical in cloud computing [17] where mes-
sages can be delivered out of order. (ii) In their setting, to obtain decidability, message
buffers are bounded and lossy; in our setting, they are unbounded and not lossy.
(iii) In their setting, transducers are less severely restricted than in our setting. (iv) In
their setting, clusters of transducers are verified for properties expressed in (first-
order) linear temporal logic;1 in our setting, we are really focusing on the property of
eventual consistency. It is actually not obvious whether eventual consistency (in the
way we define it formally) is a linear-time temporal property, and if it is, whether it
is expressible in first-order linear temporal logic.

This paper extends our conference paper [9] by detailing all proofs, and by fully
characterizing the computational complexity of the decision problem. There is also
follow-up work investigating another formalization of eventual consistency [6]; more
discussion is provided in Section 8.

Organization We start in Section 2 by giving preliminaries about common database
constructs, relational transducers, and their networks. Section 3 formalizes conflu-
ence for networks, along with syntactic restrictions leading to so-called “simple”
networks; related (un)decidability results are also presented. Section 4 shows that

1Deutsch et al. can also verify branching-time temporal properties, but only when transducer states are
propositional.
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confluence of a simple network with multiple nodes can be reduced to confluence
of a simple single-node network. Next, Section 5 establishes a small model prop-
erty for simple single-node networks. This is used in Section 6 to give a procedure
for deciding whether a simple single-node network is not confluent, along with a
NEXPTIME-completeness result for the complexity.

The expressiveness of simple networks, not necessarily single-node, is analyzed
in Section 7. We conclude in Section 8.

2 Preliminaries

2.1 Database Concepts

We first recall some basic notions from database theory [2]. A database schema is
a finite set D of pairs (R, k) where R is a relation name and k ∈ N is the asso-
ciated arity of R. A relation name is allowed to occur only once in a database
schema. We often write a pair (R, k) ∈ D as R(k). An arity of zero is also called
nullary.

We assume some infinite universe dom of atomic data values. A factf is a pair
(R, ā), often denoted as R(ā), where R is a relation name—also called predicate –
and ā is a tuple of values over dom. A database instance I over a database schema
D is a finite set of facts such that for each R(a1, . . . , ak) ∈ I we have R(k) ∈ D. Let
Z be a subset of relation names in D. We write I |Z to denote the restriction of I to
the facts whose predicate is a relation name in Z. For a function h : dom → dom
we define h(I) = {R(h(a1), . . . , h(ak))|R(a1, . . . , ak) ∈ I }. The active domain of
I, denoted adom(I) ⊆ dom, is the set of atomic data values that occur in I. We also
use this notation for facts.

A query Q over input database schema D and output database schema D′ is a
partial function mapping database instances over D to database instances over D′. A
special but common kind of query are those where the output database schema con-
tains just one relation. A query Q is called generic if for all input instances I and all
permutations h of dom, the query Q is also defined on the isomorphic instance h(I)
and Q(h(I )) = h(Q(I )). We recall that a generic query Q is domain-preserving, in
the sense that adom(Q(I )) ⊆ adom(I) for all input instances I. We use the word
“query” in this text to mean generic query.

2.2 Multisets

A multiset m over a universe U is a function that maps each element e of U to a
natural number m(e) that represents the number of times that e occurs in m. The set
operators ∩, ∪, and \ can be defined for multisets in a natural way. For two multisets
m1 and m2, we write m1 ' m2 to denote that m1(e) ≤ m2(e) for each e ∈ U .
For a multiset m, we write set(m) to denote the collapse of m to a set in which we
put only the elements of U with multiplicity at least 1. Lastly, when m is given by
a more complicated expression, we will write num(e, m) to denote the count of e
in m.
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2.3 Unions of Conjunctive Queries

We now recall the query language unions of conjunctive queries with (safe) negation,
abbreviated UCQ¬. This language is equivalent to the existential fragment of first-
order logic [2]. It will be convenient to use a slightly unconventional formalization
of conjunctive queries.

We assume an infinite universe var of variables. We will use typewriter font for
variables. An atom is of the form R(u1, . . . ,uk) where ui ∈ var for each i ∈
{1, . . . , k}. A literal is an atom, or an atom with “¬” prepended; these literals are
respectively called positive and negative.

A conjunctive query (or simply rule) ϕ is a four-tuple (headϕ, posϕ, negϕ, nonϕ)
where headϕ is an atom, and posϕ and negϕ are sets of atoms, and nonϕ is a set of
nonequalities of the form (u )= v) with u,v ∈ var. Note that negϕ is a set of atoms,
and not negative literals. We call headϕ, posϕ , and negϕ respectively the “head
atom”, the “positive body atoms”, and the “negative body atoms”. Let var(ϕ) denote
all variables that occur in ϕ. Let f ree(ϕ) denote all free variables of ϕ (occurring
in the head), and let us abbreviate bound(ϕ) = var(ϕ)\ f ree(ϕ). Bound variables
can be thought of as being existentially quantified. As a safety restriction, we require
that all variables of headϕ , bnegϕ and nonϕ occur in posϕ . Note that nonequalities
can be simulated by applying negation to an equality relation = that would have to
be provided in every context where the rule is used, but for technical convenience we
will immediately consider )= to be a primitive in our language.

A rule ϕ may be written in the conventional syntax. For example, if headϕ =
T (u,v), posϕ = {R(u,v)}, negϕ = {S(v)}, and nonϕ = {u )= v}, then we may
write ϕ as

T (u,v) ← R(u,v), ¬S(v), u )= v.

The ordering of atoms and nonequalities in the body is immaterial. We will often
refer to the literals of the body more directly, by prepending the symbol “¬” to the
negative body atoms. For the previous example, the body literals are R(u,v) and
¬S(v).

A rule ϕ is said to be over a database schema D if for each atom R(u1, . . . ,uk) ∈
{headϕ} ∪ posϕ ∪ negϕ we have R(k) ∈ D. A valuation for ϕ is a total function
V : var(ϕ) → dom. The application of V to an atom R(u1, . . . ,uk) of ϕ, denoted
V (R(u1, . . . ,uk)), results in the fact R(a1, . . . , ak) with ai = V (ui) for each i ∈
{1, . . . , k}. We will also use this notation for applying V to a set of atoms, which
results in a set of facts. Let I be a database instance over D. The valuation V is said
to be satisfying for ϕ on I if V (posϕ) ⊆ I , V (negϕ) ∩ I = ∅, and V (u) )= V (v) for
each (u )= v) ∈ nonϕ . In that case, ϕ is said to derive the fact V (headϕ). The result
of ϕ applied to I, denoted ϕ(I), is defined as the set of facts derived by all possible
satisfying valuations for ϕ on I. Note that rules can only define generic queries.

A union of conjunctive queries is a finite setΦ of conjunctive queries that all have
the same predicate and arity for the head atom. The resulting language is denoted as
UCQ¬, and Φ will also be called a UCQ¬,-program. Let I be a database instance.
The result of Φ applied to I, denoted Φ(I), is defined as

⋃
ϕ∈Φ ϕ(I). If Φ = ∅ then

always Φ(I) = ∅.
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2.4 Distributed Databases and Queries

We now formalize how input data is distributed across a network and define a notion
of queries over this data. A network N is a finite, nonempty set of nodes, which
are values in dom. A distributed database schema E is a pair (N , η) where N is a
network, and η is a function that maps each x ∈ N to an ordinary database schema.
A distributed database instance H over schema E is a function that assigns to each
node x ∈ N an ordinary database instance over the local schema η(x).

Let F be another distributed database schema over the same network as E . A
distributed query Q over input schema E and output schema F is a function that
maps instances over E to instances over F .

2.5 Transducers

The computation on a single node of a network is formalized by means of rela-
tional transducers [3, 8, 12–14, 23, 25]. First, a transducer schema Υ is a tuple
(Υin, Υout, Υmsg, Υmem, Υsys) of database schemas, called respectively “input”, “out-
put”, “message”, “memory”, and “system”. A relation name can occur in at most one
database schema of Υ . We fix Υsys to always contain two unary relations Id and
All. A transducer state for Υ is a database instance over Υin ∪ Υout ∪ Υmem ∪ Υsys.

An relational transducer Π over Υ is a collection of queries, where each query
has the input schema Υin ∪ Υout ∪ Υmsg ∪ Υmem ∪ Υsys:

– for each R(k) ∈ Υout there is a query QR
out having output schema {R(k)};

– for each R(k) ∈ Υmem there are queries QR
ins and QR

del both having output schema
{R(k)};

– for each R(k) ∈ Υmsg there is a query QR
snd having output schema {R(k+1)};

These queries will form the internal mechanism that a node uses to update its local
storage and to send messages. The reason for the incremented arity in the message
queries is that the extra component will be used to indicate the addressee, as will be
explained in the next section.

Let Π be a transducer over schema Υ . A local transition of Π is a 4-tuple
(I, Ircv, J, Jsnd), also denoted as I, Ircv → J, Jsnd, where I and J are transducer
states for Υ , Ircv is an instance over Υmsg and Jsnd is an instance over Υmsg but where
each fact has one extra component, such that (denoting I ′ = I ∪ Ircv):

J |Υin,Υsys = I |Υin,Υsys;
J |Υout = I |Υout ∪

⋃

R(k)∈Υout

QR
out(I

′);

J |Υmem =
⋃

R(k)∈Υmem

(I |R ∪ R+(I ′))\R−(I ′)

Jsnd =
⋃

R(k)∈Υmsg

QR
snd(I

′),
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where, following the presentation in [25],

R+(I ′) = QR
ins(I

′)\QR
del(I

′); and,

R−(I ′) = QR
del(I

′)\QR
ins(I

′).

Intuitively, on the receipt of message facts Ircv, a local transition updates the old trans-
ducer state I to new transducer state J and sends the facts in Jsnd. When compared to
I, in J potentially more output facts are produced; and the update semantics for each
memory relation R adds the facts produced by insertion query QR

ins, removes the facts
produced by deletion query QR

del, and there is no-op semantics in case a fact is both
added and removed at the same time [23]. Output facts can not be removed. Note
that local transitions are deterministic in the following sense: if I, Ircv → J, Jsnd and
I, Ircv → J ′, J ′snd then J = J ′ and Jsnd = J ′snd.

For the current paper, we immediately restrict attention to transducers whose
queries are specified with UCQ¬. This results in a rule-based formalism to express
the computations, following the idea behind declarative networking [18].

2.6 Derivation Trees

We want to formally describe how a fact is derived by a transducer, i.e., we want
to make visible what rules and valuations are used. To explain a fact, in some cases
it suffices to give a so-called derivation pair (ϕ, V ), consisting of a rule ϕ and a
satisfying valuation. In other cases, we want to explain all facts that are recursively
needed by the satisfying valuation, i.e., the facts V (posϕ). For this purpose, we use
derivation trees, and this is formalized below.

Let Π be a transducer over a schema Υ . A (full) derivation tree T of & is a tuple
(nodesT , edgesT , ruleT , valT , litT ) where

– nodesT and edgesT are respectively the nodes and parent-child edges that
together form a tree;

– ruleT is a function that maps each internal node x ∈ nodesT to a rule ruleT (x)
of Π ;

– valT is a function that maps each internal node x ∈ nodesT to a valuation
valT (x) for ruleT (x) such that the nonequalities are satisfied; and,

– litT is a function that maps each non-root node x ∈ nodesT to a literal litT (x)
in the body of ruleT (y) where y is the parent of x,

subject to the additional constraints:

– for each internal node x ∈ nodesT , for each literal l in the body of rule
ruleT (x), there is precisely one child y of x such that litT (y) = l;

– for each non-root node x ∈ nodesT , if litT (x) is an input literal, or if litT (x)
is negative, then x must be a leaf; and,

– for all non-root internal nodes x ∈ nodesT , having a parent y, applying valuation
valT (x) to the head of rule ruleT (x) results in the same fact as applying the
parent valuation valT (y) to the (positive) atom inside literal litT (x).
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For each internal node x of T , we write f actT (x) to denote the fact valT (x)(a),
where a is the head of ruleT (x). For a leaf node y with parent x, we write f actT (y)
to denote the fact valT (x)(a), where a is the atom inside the literal litT (y). We
write intT to denote the set of internal nodes of T .

From nodesT and edgesT we can always uniquely identify the root node of T ,
which we denote as rootT . Let f be a fact over a relation R(k) ∈ Υout∪Υmsg∪Υmem.
A derivation tree T is said to be for fact f if applying valuation valT (rootT ) to the
head of rule ruleT (rootT ) results in the fact f .

2.6.1 Schedulings

To relate derivation trees to runs, we use the concept of schedulings. Formally, a
scheduling for a derivation tree T is a function κ that assigns to each internal node x
of T a nonzero natural number κ(x), subject to the constraint that nodes always get
strictly lower numbers than their ancestors. Intuitively, κ(x) represents the transition
number of a run in which the rule ruleT (x) should fire under valuation valT (x).

The canonical scheduling of T , denoted κT , is the (unique) scheduling for which
there is at least one internal node x such that κT (x) = 1, and for all parent-child edges
(x, y) we have κT (x) = κT (y) + 1. Intuitively, the canonical scheduling executes
the derivations of T as tightly as possible at the beginning of a run.

2.7 Transducer Networks

We now formalize a network of compute nodes. A transducer network N is a triple
(N , Υ,Π) where N is a network, Υ is a function that maps each node x ∈ N to a
transducer schema, and Π is a function that maps each node x ∈ N to a transducer
over the schema Υ (x). For technical convenience, we assume that all transducer
schemas use the same message relations. This is not really a restriction because the
transducers are not obliged to use all message relations. We make no further assump-
tions about how names for input, output and memory relations might be shared by
several nodes.

2.7.1 Distributed Schemas

Naturally, we can define the distributed input database schema inN for N that maps
each node x to the input schema of Υ (x). The distributed schemas outN and memN

can be defined similarly.

2.7.2 Operational Semantics

Any distributed database instance over inN can be given as input to N . Let H be
such an instance. Let Υmsg denote the shared message schema of N . A configuration
of N on H is a pair ρ = (s, b) of functions s and b where for each x ∈ N ,

– letting D1 = Υ (x)in and D2 = Υ (x)sys , function s maps x to a transducer state
s(x) for Υ (x) such that s(x)|D1 = H(x) and s(x)|D2 = {Id(x)} ∪ {All(y)|y ∈
N }; and,

– b maps x to a finite multiset of facts over the shared message schema of N .
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We call s the state function and b the buffer function. Intuitively, the instance H is
used to initialize each node, and for each x ∈ N , the system relations Id and All
provide the local transducer Π(x) the identity of the node x it is running on and
the identities of the other nodes. Next, the buffer function maps each x ∈ N to the
multiset of messages that have been sent to x but that have not yet been delivered to
x. A multiset allows us to represent duplicates of the same message (sent at different
times).

The start configuration of N on H, denoted start (N , H), is the unique configu-
ration ρ = (s, b) where for each x ∈ N , letting D = Υ (x)out ∪ Υ (x)mem, we have
s(x)|D = ∅ and b(x) = ∅.

We now describe the actual computation of the transducer network. A global tran-
sition of N on input H is a 4-tuple (ρ1, x, m, ρ2), also denoted as ρ1

x,m−→ ρ2, where
x ∈ N , and ρ1 = (s1, b1) and ρ2 = (s2, b2) are configurations of N on H such that

– m ' b1(x) and there exists a Jsnd such that

s1(x), set (m) → s2(x), Jsnd

is a local transition of transducer Π(x);
– for each y ∈ N \{x} we have s1(y) = s2(y);
– for y ∈ N \{x} we have b2(y) = b1(y) ∪ J

→y
snd (multiset union) and for x we

have b2(x) = (b1(x)\m) ∪ J→x
snd (multiset union and difference) where J→z

snd =
{R(ā)|R(z, ā) ∈ Jsnd} for each z ∈ N .

We call x the active node and m the delivered messages. Intuitively, in a global
transition, we select an arbitrary node x and allow it to receive some arbitrary sub-
multiset m from its message buffer. The messages in m are then delivered at node
x (as a set, i.e., without duplicates) and x performs a local transition, in which it
updates its memory and output relations, and possibly sends some new messages
addressed to specific nodes (possibly itself). The first component of each message
fact in Jsnd is regarded as the addressee, and this component is projected away dur-
ing the transfer of the message to the buffer of that addressee. Messages having
an addressee outside the network are lost. If m = ∅, we call this global transi-
tion a heartbeat transition and otherwise we call it a delivery transition. A heartbeat
transition corresponds to the real life situation in which a node does a computa-
tion step when a local timer goes off and no messages have been received from
the network.

A run R of a transducer network N on distributed input database instance H is a
finite sequence of global transitions ρi

ximi−→ ρi+1 for i = 1, 2, 3, . . . , n, with n ∈ N,
where ρ1 = start (N , H), and the ith transition with i ≥ 2 operates on the resulting
configuration of the previous transition i − 1. We write last (R) to denote the last
configuration reached by R.

Note that when a node changes its output or memory relations during one global
transition, then these changes are visible to that node only starting from the next
global transition in which that node is active. Also, several facts can be delivered
together during a transition, regardless of whether they were sent during different
earlier transitions or during the same earlier transition.
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We have not defined global transitions that are concurrent, i.e., global transitions
in which multiple nodes simultaneously receive messages from their own message
buffer and do a local transition. This can be simulated by multiple sequential global
transitions: let the nodes become active in some arbitrary order, and each active node
just reads its own message buffer. Because local transitions are deterministic, the
nodes will update their state and send messages in the same way as they would during
a concurrent transition.

2.7.3 Example

Here we give an example transducer network.

Example 1 Let N = {x, y} be a network of two nodes. We define a transducer
network N = (N , Υ,Π). There are no memory relations in this example.

First, define Υ (x)in = {A(1)}, Υ (x)out = {T (1)}, Υ (x)msg = {A(1)
msg, B

(2)
msg}, and

Υ (x)mem = ∅. Transducer Π(x) is given as

Amsg(y,u) ← A(u), All(y), ¬Id(y).

T (u) ← Bmsg(x,u), Id(x).

Next, define Υ (y)in = {B(2)}, Υ (y)out = {T (1)}, Υ (y)msg = Υ (x)msg (shared
messages), and Υ (y)mem = ∅. Transducer Π(y) is given as

Bmsg(y,u,v) ← B(u,v), All(y), ¬Id(y).

T (u) ← Amsg(u).

On any input distributed database instance H for N , node x sends its local A-facts
as Amsg-facts to y. Similarly, y sends its local B-facts as Bmsg-facts to x. For a received
Bmsg-fact, node x outputs the second component in relation T if the first component
is its identifier. Node y simply outputs all received Amsg-facts.

2.8 Encoding

We specify how a transducer network can be given as input to a decision procedure.
Let N be a transducer network. The encoding is a sequence of transducers (and their
schemas), one for each node of N . For each node, (i) the transducer schema is rep-
resented by a sequence of (relname,type)-pairs, where relname is a relation name and
the type indicates whether the relation is input, output, etc; and, (ii) the transducer
itself is given by a sequence of rules that are written in full, like in Example 1.2 We
assume that the transducer schema only mentions relations effectively used by the
rules. To represent the relation names and variables, binary numbers must be used,
so that the number of bits is logarithmic in the total number of relations and variables

2The components of the body atoms have to be specified in full, because we need to describe which
variables are used, and how they are potentially shared between atoms.
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respectively. Moreover, some small fixed alphabet of auxiliary characters needs to be
used, to represent the type of relations in the transducer schema, and to separate the
different components (schemas, transducers, rules, etc).

We write |N | to denote the size of the encoding of N .

3 Confluence

Let N = (N , Υ , Π) be a transducer network. Let H be an input distributed database
instance for N . By the asynchronous nature of message delivery, different runs of
N on H can deliver messages in different orders. So, if a transducer at some node
x ∈ N applies negation too quickly, without having seen some crucial messages, we
could accidentally produce a wrong output. Worse, output facts can never be retracted
once they are produced. Transducer networks where such problems are not possible
are called confluent.

Formally, we call N confluent on H if for any two runs R1 and R2 of N on H,
for every node x ∈ N , for every output fact f available at x in the last configuration
of R1, there exists an extension R′

2 of R2 such that f is available at x in the last
configuration of R′

2. To rephrase, if during one run some node can produce an output,
then for any run there exists an extension in which that fact can be produced on that
node too. Naturally, we call N confluent if N is confluent on all input distributed
database instances. If N is not confluent, we say that N is diffluent. Our definition
of confluence is a formalization of the notion of “eventual consistency” [4, 17], but
see also Section 8 for a discussion.

The transducer network given in Example 1 is confluent. Indeed, say, node x out-
puts a fact T (a) during a run. This means that x has received Bmsg(x, a), which was
sent by node y based on an input fact B(x, a). On the same input distributed database
instance, consider now any run where x has not yet output T (a). We can extend this
run as follows. We do a global transition with active node y, so that y sends its input
B-facts as Bmsg-facts to x. One of these messages is Bmsg(x, a). Then, in a following
global transition, we deliver Bmsg(x, a) to x, and x again outputs T (a). Similarly, we
can argue that if the node y outputs a T-fact in one run, then any other run on the
same input can be extended so that y outputs again this fact. Therefore the transducer
network is confluent.

By contrast, consider the following example of a transducer network that is
diffluent.

Example 2 Let N = {x, y} be a network. We define a transducer network N =
(N , Υ , Π) as follows. In this example, we do no deletions on memory relations, and
we will only explicitly specify the insertions.

First, define Υ (x)in = {A(1), B(1)}, Υ (x)out = ∅, Υ (x)msg = {A(1)
msg, B

(1)
msg},

and Υ (x)mem = ∅. The node x sends its local A- and B-facts to the other node y.
Transducer Π(x) is given as

Amsg(y,u) ← A(u), All(y), ¬Id(y).

Bmsg(y,u) ← B(u), All(y), ¬Id(y).
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Next, define Υ (y)in = ∅, Υ (y)out = {T (1)}, Υ (y)msg = Υ (x)msg (shared
messages), and Υ (y)mem = {B(1)}. Transducer Π(y) is given as:

B(u) ← Bmsg(u).

T (u) ← Amsg(u), ¬B(u).

Now we show why N is diffluent. Let H be the following instance over inN :
H(x) = {A(1), B(1)} and H(y) = ∅. There are two quite different runs possible,
that we describe next. Suppose that both runs start with a global transition with active
node x. This causes x to send both Amsg(1) and Bmsg(1) to y. For the first run, in the
second transition we deliver only Amsg(1) to y, which causes y to output T (1). For
the second run, in the second transition we deliver only Bmsg(1) to y, which causes
y to only create the memory fact B(1). Now, the output fact T (1) can not be created
in any extension of the second run because each time we deliver Amsg(1) to y, the
presence of B(1) prevents T (1) from being created. These two runs show that N is
not confluent.

3.1 Decision Problem

Since output facts can not be retracted once they are produced, it seems useful to
know if a transducer network could be diffluent. Formally, we have the following
diffluence decision problem: given a transducer network N , decide if N is diffluent
(for some input). One can expect this problem to be undecidable in general. For
this reason, we consider possible syntactical restrictions on transducer networks in
Section 3.2, and Section 3.3 investigates their effect on decidability.

3.2 Syntactical Restrictions

We introduce several syntactical restrictions on individual transducers and on trans-
ducer networks as a whole.

Let Π be a transducer over a schema Υ . For an individual rule ϕ of Π, we consider
the following possible restrictions:

– We say that ϕ is message-positive if there are no message atoms in negϕ . This
seems to be a natural constraint in our model because message delivery is
asynchronous.

– We say that ϕ is static if posϕ and negϕ do not contain output or memory atoms.
– We say that ϕ is message-bounded if bound(ϕ) ⊆ A and bound(ϕ) ∩ B = ∅,

where A and B are respectively the set of variables of ϕ occurring in positive mes-
sage atoms, and the set of variables of ϕ occurring in output or memory atoms.
In words: every bound variable occurs in a positive message atom, and does not
occur in output or memory atoms (positive or negative). This is an application of
the more general notion of “input-boundedness” [13, 14, 23].3

3We have replaced the term “input-boundedness” by “message-boundedness” because the word “input”
has a different meaning in our text, namely, as the input that a transducer is locally initialized with.
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We consider the following restrictions for transducer Π :

– We say that Π is recursion-free if there are no cycles in the positive dependency
graph of Π , which is the graph having as vertices the relations of Υout ∪ Υmsg ∪
Υmem and there is an edge from relation R to relation S if S occurs positively in a
rule for R in Π .

– We say that Π is inflationary if there are no rules for the deletion queries of
memory relations. This means thatΠ can not delete memory facts once they are
produced.

We call Π simple (for lack of a better name) if

– Π is recursion-free and inflationary;
– all send rules are message-positive and static;4 and,
– all insertion rules for output and memory relations are message-positive and

message-bounded.

Because input facts are never changed, note that static send rules always produce
the same result on receipt of the same messages, independently of what output or
memory facts might have been derived. Also, if Π is inflationary, memory and out-
put relations basically behave in the same way. However, we preserve the difference
between these two kinds of relations to retain the connection to the unrestricted trans-
ducer model and because memory relations are useful as a separate construct, namely,
as relations used for computation but that don’t belong to the final result.

Let N be a transducer network. We present a restriction that we can impose on N
as a whole. Note that messages are the only way to introduce a dependency between
different nodes of N . Now, we say that N is globally recursion-free if there are no
cycles in the positive message dependency graph of N , which is the graph having as
vertices the (shared) message relations of N and there is an edge from relation R to
relation S if S occurs positively in a rule for R in some transducer of N .

We call N simple if

– all transducers of N are simple; and,
– N is globally recursion-free.

The networks of Examples 1 and 2 are simple transducer networks.

3.3 Results on Decidability

One of the difficulties of the diffluence decision problem is that we need to verify a
property of an infinite state system. Intuitively, there are infinitely many inputs and
even for a fixed input there are infinitely many configurations because there is no
bound on the size of the message buffer. As the following two propositions show,
diffluence for transducer networks is undecidable, even under several restrictions:

4The restrictions considered by Deutsch et al. [13] for “input-rules”, which are closely related to our send
rules, are a bit less restrictive. Roughly speaking, they still allow the use of nullary output and memory
facts. It seems plausible that our results can be similarly extended.
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Proposition 1 Diffluence is undecidable for transducer networks that are simple,
except that send rules do not have to be static.

Proof Inspired by the proof technique of Deutsch et al. [14], we reduce the the finite
implication problem for functional and inclusion dependencies [10] to the diffluence
decision problem. We sketch the proof; the technical details are in Appendix A.1.
An instance of the finite implication problem is a triple (D,Σ, σ ), where D is
a database schema, Σ is a set of functional and inclusion dependencies over D,
and σ is a functional or inclusion dependency over D. We call (D,Σ, σ ) valid if
I |= Σ implies I |= σ for each instance I over D.5 We have to check validity
of (D,Σ, σ ).

For the instance (D,Σ, σ ), we construct a single-node transducer network N that
is simple except that send rules are not static, and so that N is diffluent iff (D,Σ, σ )
is not valid. Let Π denote the single transducer of N . We let the input schema of
Π contain D. Transducer Π sends a special marker message to itself, and when the
marker is received, Π checks whether the input over D satisfies Σ and σ . For each
violated dependency τ ∈ Σ ∪ {σ }, transducer Π sends a violτ ()-message to itself.
Non-static send rules are needed for checking the inclusion dependencies.

Upon receiving violσ (), the transducer can do something diffluent, by blocking a
rule for output relation T as was done in Example 2, so that an incoming Amsg(a)-fact
is ignored when memory fact B(a) was previously created. But when some violτ ()
message with τ ∈ Σ is received, we can repair the inconsistencies. Concretely, we
fill a nullary memory relation repair, that is tested positively in another output rule
for relation T. This second rule for T can henceforth output all received Amsg-facts.

Now, if (D,Σ, σ ) is not valid, there is an instance I over D such that I |= Σ
and I ! σ . Instance I can be extended to an input J for N , and we make two runs
as follows. In the first run, an output T (a) is produced by first delivering some fact
Amsg(a) and by postponing the marker message (to postpone the dependency check-
ing). In the second run, we do the converse, i.e., we deliver the marker first. Then,
dependency σ turns out to be violated, and upon delivery of violσ (), we can block
the output. No repairs are possible because only σ is violated.

Conversely, if N is not confluent on some input J, this can only be explained
by σ being violated and no dependency of Σ , so that the input of N gives rise
to an instance I over D for which I |= Σ and I ! σ . Hence, (D,Σ, σ ) is not
valid.

Proposition 2 Diffluence is undecidable for transducer networks that are simple,
except that messages may participate in cycles in the local positive dependency
graphs of individual transducers.

Proof Inspired by the proof technique of Deutsch et al. [14], we reduce the Post cor-
respondence problem [21] to the diffluence decision problem. We sketch the proof;

5We write I |= σ to denote that σ holds in I. We write I |= Σ to denote that I |= σ for each σ ∈ Σ .
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the technical details are in Appendix A.2. An instance of the Post correspondence
problem is a pair (U, V ) where U = u1, . . . , un and V = v1, . . . , vn are two
nonempty equal-length sequences of nonempty words over some alphabet with at
least two symbols. A match for U and V is a sequence E = e1, . . . , em of indices
in {1, . . . , n} such that the words ue1 . . . uem and ve1 . . . vem are equal. Sequence E
may contain the same index multiple times. The problem is to check whether a match
exists.

For the instance (U, V ), we construct a single-node transducer network N that
is simple except that messages canhave cyclic dependencies, and so that N is dif-
fluent iff (U, V ) has a match. Let Π denote the single transducer of N . First,
we provide Π with input relations to encode a word-structure: a binary relation R
represents a chain, and a binary relation L assigns a label to each element of the
chain.

The idea is to use messages to align the words of U and V to the input word-
structure, to discover a match for (U, V ). Concretely, we use messages of the form
align[i, k, l](a, b), with i ∈ {1, . . . , n}, k ∈ {1, . . . , |ui |} and l ∈ {1, . . . , |vi |},
expressing that we have already successfully aligned a sequence of (uj , vj )-pairs
with j ∈ {1, . . . , n} to the word-structure, where (ui, vi) is the last pair tried,
and the alignment of ui and vi has progressed partially up to respectively sym-
bols k and l, arriving at respectively elements a and b of the word-structure.
After a message align [i, |ui |, |vi |] (a, b) is sent, indicating that (ui, vi) is fully
aligned, we have sending rules to align a next pair (uj , vj ), by sending message
align[j, 1, 1](a′, b′), where a′ and b′ are the successor-elements of respectively
a and b on the word-structure. Adding unrestricted message recursion adds some
notion of “iteration” to the transducer model: because message relations are allowed
to participate in cycles, the alignment to the word-structure can repeatedly use the
same pair (ui, vi), allowing us to consider all candidate sequences E like above (but
restricted to the input word structure).

If there is indeed a match for (U, V ) then we can encode the resulting word
as an input word-structure for N . So, the above alignment process can eventually
send a message of the form align[j, |uj |, |vj |](a, a), i.e., we can align a sequence
of (ui, vi)-pairs fully to the word-structure, where the implied concatenation of U-
words ends at the same element of the word-structure as the implied concatenation
of V-words. Then we do something diffluent, like Example 2.

For the other direction, when N is diffluent on some input, we can attribute
that to the sending of a message align[j, |uj |, |vj |](a, a), whose derivation his-
tory reveals a match for (U, V ) against a valid word-structure contained in the input
of N .

By disallowing the syntactical liberties of the previous two propositions, we obtain
decidability:

Theorem 1 Diffluence for simple transducer networks is decidable in NEXPTIME;
the problem is NEXPTIME-complete.

Theorem 1 is proven in Sections 4, 5, and 6.
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4 Simulation on Single Node

Let N be a simple transducer network. We construct a simple single-node trans-
ducer network M that simulates N , and so that M is confluent iff N is confluent.
This will be made more precise below. The transformation can be done in PTIME

for reasonable encodings of a transducer network, and so |M| is polynomial in |N |
(cf. Section 2.8). The merit of this section lies in reducing the technical complexity
for the decidability result (Sections 5 and 6) and the expressivity analysis (Section 7).

First, Section 4.1 gives syntactical simplifications for single-node networks. Next,
Section 4.2 formalizes the notion of simulation and formulates the result. The
sections thereafter show the result: Sections 4.3 and 4.4 respectively define the trans-
ducer schema and transducer of M, and Section 4.5 shows that M satisfies the
desired properties.

4.1 Syntactical Simplifications

For a single-node transducer network M, we use the following syntactical simpli-
fications. It will be sufficient to view M as consisting of only a transducer schema
Υ and a transducer Π over Υ ; the actual node of M is immaterial. The schemas
inN , outM and memM (Section 2.7.1) are regarded as ordinary (non-distributed)
database schemas. Accordingly, an input for NB is an ordinary database instance I.
A configuration of M on I is a pair (s, b) where s is a transducer state ofΠ and b is
a multiset of facts over Υmsg. Because there is only a single node, sending rules ofΠ
have no explicit addressee variable in the head. Hence, schema Υsys will not be used.

4.2 Simulation Concept and Result

To formalize the notion of “simulation”, we introduce some auxiliary notations. Let
N denote the network of N . For a distributed database schema E over N , we view
each node x ∈ N as a namespace containing the relations E(x): we use symbol “x.R”
to denote relation R at x. Let 〈E〉 denote the (ordinary) database schema

{x.R(k)|x ∈ N , R(k) ∈ E(x)}.
For each distributed database instance H over E , let 〈H 〉 be the following ordinary
database instance over 〈E〉:

{x.R(ā)|x ∈ N , R(ā) ∈ H(x)}.
Let schN denote the database schema {x.Id(1)|x ∈ N } ∪ {Node(1)}. Let instN be
the following instance over schN :

{x.Id(x), Node(x)|x ∈ N }.
We abbreviate 〈E〉N = 〈E〉 ∪ schN and 〈H 〉N = 〈H 〉 ∪ instN . We say that an
instance I over 〈E〉N is well-formed if I is isomorphic to an instance J over 〈E〉N for
which J |schN = instN .6 An instance that is not well-formed is called ill-formed.

6I is isomorphic to J if there is an injective function f : dom → dom such that f (I) = J .



Theory Comput Syst

For a configuration ρ = (s, b) of N , we write out(ρ) to denote the following
distributed instance H ′ over outN : for each x ∈ N , instance H ′(x) consists of all
output facts in s(x). If N is a single-node network, we consider out (ρ) to be an
ordinary database instance.

Now, we say that a single-node transducer network M simulates N if (i) inM =
〈inN 〉N ; (ii) outM = 〈outN 〉; and, (iii) for each input H for N , the following
holds:

– for every run R of N on H, there is a run S of M on 〈H 〉N such that
〈out (last (R))〉 = out (last (S)),

– for every run S of M on 〈H 〉N , there is a run R of N on H such that
〈out (last (R))〉 = out (last (S)).

We use inM = 〈inN 〉N instead of inM = 〈inN 〉 because M needs the identifiers
of the nodes to simulate message sending and the nodes’ comparisons of their identi-
fier to input values, and because we do not use values from dom directly in rules (cf.
Section 2.3).

Now we are ready to present the result:

Proposition 3 For each simple transducer network N , there exists a simple single-
node transducer network M such that (i) M simulates N , and (ii) M is confluent
iff N is confluent.

Note that the simulation property says nothing about confluence and vice versa.
The following subsections define M so that the desired properties are satisfied.

4.3 Transducer Schema

We define the single transducer schema Υ of M. Denote N = (N , Υ , Π). We write
DN

msg to denote the shared message schema of N . We define Υ as follows:

– Υin = 〈inN 〉N ;Υout = 〈outN 〉;Υmem = 〈memN 〉; and,
– Υmsg consists of (i) the relations R

(k+1)
→x for which x ∈ N and R(k) ∈ DN

msg, (ii)

a relation do(0)
x for each x ∈ N , (iii) relation error(0), and (iv) relation

adom(1).

Relations of the form dox allow us to explicitly simulate a transition of node x.
Next, a relation R→x is used to send R-facts specifically to node x. The latter rela-
tions have an incremented arity when compared to DN

msg, for the following reason.
Each transition of the transducer Π in M can simulate multiple nodes simul-
taneously, and these simulated nodes could send the same message to the same
addressee. But the transition of Π can only send a set of messages. So, by letting
Π additionally put the simulated sender node in each simulated message, we can
avoid that these distinct simulated sending events would all be collapsed. Lastly,
the relations error and adom allow Π to be confluent on ill-formed inputs; see
below.
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4.4 Transducer Rules

We now describe the single transducerΠ of M. Essentially, the UCQ¬ queries ofΠ
are unions of modified UCQ¬ queries of the original transducers in N . Some extra
rules deal with ill-formed inputs.

4.4.1 Output and Memory

We do the following for each node x ∈ N . Let T (k) be an output or memory relation
in Υ (x). All rules for relation T in Π(x) are message-positive and message-bounded.
An insertion rule ϕ for relation T in transducer Π(x) is modified to insertion rule ϕ′

for relation x.T in Π as follows:

– input, output and memory atoms R(ū) in ϕ become x.R(ū) in ϕ′, including the
head;

– atoms of the form Id(u) and All(u) in ϕ become respectively x.Id(u) and
Node(u) in ϕ′;

– (positive) message atoms R(ū) in ϕ become R→x(z, ū) in ϕ′ where z is a new
variable that is unique per message atom;

– the nonequalities in ϕ are the nonequalities in ϕ′;
– ϕ′ additionally contains the positive body atom dox().

Intuitively, because relation All always contains N on every node of N , it is
replaced by the shared relation Node in M. For a message atom R→x(z, ū), the new
variable z represents the extra sender-component (cf. Section 4.3). This component
is not used elsewhere in the rule and is basically projected away.

The resulting output and memory insertion rules are message-positive and
message-bounded. Because Π(x) is simple, there are no deletion rules for memory
relations, so we don’t have to translate these.

4.4.2 Messages

We do the following for each node x ∈ N . Let T (k) be a shared message relation of
N . All rules for relation T in Π(x) are message-positive and static. To let simulated
node x send messages in M, we add to Π all rules ϕ′y obtained by combining a
sending rule ϕ for T in Π(x) and a node y ∈ N . Intuitively, rule ϕ′y models the
sending of T-messages by x to the specific addressee y. Denote headϕ = T (n0, ū),
where n0 is the addressee variable. Let n1 be a new variable. Rule ϕ′y is obtained as
follows:

– the head T (n0, ū) of ϕ becomes the head T→y(n1, ū) in ϕ′y ;
– ϕ′y contains positive body atoms y.Id(n0) and x.Id(n1);
– input atoms R(ū) in ϕ become x.R(ū) in ϕ′y ;
– atoms of the form Id(u) and All(u), and message atoms, are transformed as in

the output and memory rules above;
– the nonequalities of ϕ are the nonequalities of ϕ′y ;
– ϕ′y additionally contains the positive body atom dox().
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Variable n0 is not removed because it might occur on several places in ϕ, and by
adding the atom y.Id(n0), we fix the addressee y. Variable n1 represents the sender
x by addition of the body atom x.Id(n1), and n1 replaces n0 in the head.

Denote N = {x1, . . . , xn}. For each x ∈ N , we also add the following rule to Π ,
to send simulation messages for x:

dox() ← x1.Id(u1), . . . , xn.Id(un).

The above rule has the effect that a message doy() for any y ∈ N can only be sent
if all relations z.Id with z ∈ N are nonempty. And because the simulated output,
memory, and sending rules are guarded by message atoms of the form doy(), the
entire simulation requires that these relations z.Id are nonempty.

The above message rules of Π are all message-positive and static.

4.4.3 Ill-Formed Inputs

We indicate how M can be made confluent on ill-formed instances. First, using
message-positive and static send rules, it is possible to send a message error()
if the following constraints are violated: some relation x.Id contains two different
values; two relations x.Id and y.Id with x )= y share a value; relation Node is not
the union of all x.Id relations.

We also add new output rules that on receipt of error() can produce all possible
output facts in Υout. Technically, this is done by adding rules to send all values a
from the input active domain as an adom(a)-message, and the additional output rules
combine these values upon delivery when error() is also jointly delivered.

4.4.4 Check Simple

We verify that Π is simple: (i) Π is inflationary by construction; (ii) Π is recursion-
free because the transducers of N are recursion-free and because there are no cycles
in the positive message dependency graph of N ; and, (iii) the desired constraints on
output, memory and sending rules hold, as remarked above. Moreover, becauseΠ is
the only transducer of M andΠ is recursion-free, there are no cycles in the positive
message dependency graph of M, and thus M is simple.

4.5 Simulation and Confluence Equivalence

We now show that (i) M simulates N and (ii) M is confluent iff N is confluent.
First we need some additional concepts and notations. Let ρ = (s, b) be a config-
uration of N on input H and let σ = (s′, b′) be a configuration of M on input
〈H 〉N . We say that σ and ρ are output-equivalent if for each x ∈ N and each out-
put relation R at x, we have R(ā) ∈ s(x) iff x.R(ā) ∈ s′. The notions of input-,
memory-, and system-equivalence can be similarly defined, where the latter is about
relations Id and All. By definition of 〈H 〉N , configuration σ is always input- and
system-equivalent to ρ.

We say that σ is message-equivalent to ρ if for each x ∈ N , for each fact R(ā),
the cardinality of R(ā) in b(x) equals the number of messages of the form R→x(z, ā)
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in b′ (each may have a different sender component). Similarly, we say that σ has its
messages included in ρ when for each x ∈ N the number of messages of the form
R→x(z, ā) in b′ is less than or equal to the cardinality of R(ā) in b(x).

Claims 4.1 and 4.2 show that M simulates N , but they are phrased slightly more
general for later use in the confluence equivalence:

Claim 4.1 Every run R of N on an input H can be converted to a run S of M on
〈H 〉N such that last (S) and last (R) are output-, memory-, and message-equivalent.

Proof Let n be the number of transitions in R, and let x1, . . . , xn be the active nodes
in order. Run S will consist of n + 1 transitions: for each i = 1, . . . , n, we deliver
doxi () in transition i + 1 of S (and no other doy-messages). We start S by doing one
heartbeat transition, so that at least dox1() is sent. This message is delivered in the
second transition of S, to simulate the behaviour of node x1. By input- and system-
equivalence of the second configuration of S and the first configuration of R, the
third configuration of S and the second configuration of R are output-, memory-, and
message-equivalent. We can now repeat the same for nodes x2, x3, etc. Moreover,
the message-equivalence allows us to deliver k messages of the form R→x(z, ā) in a
transition of S when the corresponding transition in R would deliver k instances of
(the same) message R(ā) to an active node x.

Claim 4.2 Let H be an input for N . Every run S of M on 〈H 〉N can be converted
to a run R of N on H such that last (R) and last (S) are output- and memory-
equivalent, and last (S) has its messages included in last (R).

Proof First, some transitions of S might deliver a message of the form R→x(z, ā)
without jointly delivering dox(). Because node x is only simulated when dox() is
delivered, message R→x(z, ā) is effectively lost. So, we can refrain from delivering
R→x(z, ā) in this case, without compromising future message deliveries. After doing
this modification for all deliveries of S, we also drop any resulting (or preexisting)
heartbeat transitions except the first transition, because they do not simulate nodes.7

This results in a new run S ′ such that last (S) and last (S)′ have the same output and
memory facts, and such that the buffer of last (S) is included in the buffer of last (S ′)
when ignoring the dox-messages.

Next, some transitions i of S ′ might deliver two messages dox() and doy() with
x )= y. Such a transition i simulates multiple nodes in parallel. But in M, the sim-
ulated rules of each node x are guarded by dox(), and these rules can only access
relations of x itself. Hence, transition i can be converted to a sequence of transi-
tions in which only one node is simulated at a time (in some arbitrary order), and
in which each node receives the same messages that it received in i. This results in
a new run S ′′, where last (S ′) and last (S ′′) are exactly the same when ignoring the
dox-messages.

7This does not compromise the supply of dox -messages because they are sent in each transition.
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Starting from the second transition, run S ′′ simulates precisely one node in each
transition. In the opposite fashion as in Claim 4.1, we can now convert S ′′ to a run R
of N on input H so that last (S ′′) and last (R) are output-, memory-, and message-
equivalent. Note that last (S) and last (R) are output- and memory-equivalent, and
last (S) has its messages included in last (R).

Now we are ready for the actual confluence equivalence between N and M,
where each direction is shown in a separate claim:

Claim 4.3 If M is confluent then N is confluent.

Proof Let H be an input for N . Let R1 and R2 be two runs of N on H, where
last (R1) contains an output fact R(ā) at some node x ∈ N . We have to show that
R2 can be extended to a run R′

2 such that last (R′
2) also contains fact R(ā) at x.

Using Claim 4.1, we can make two runs S1 and S2 of M on 〈H 〉N such that for each
i ∈ {1, 2}, configurations last (Si ) and last (Ri ) are output-, memory-, and message-
equivalent. In particular, last (S1) contains output fact x.R(ā). By confluence of M,
run S2 can be extended to a run S ′2 such that last (S2) also contains x.R(ā). Lastly,
extension S ′2 gives rise to an extension R′

2 such that last (R′
2) is output- and memory-

equivalent to last (S ′2), and so last (R′
2) contains R(ā) at x: the proof is similar to that

of Claim 4.2, with the exception that the configurations in S ′2 have their messages
included in the corresponding configurations of R′

2. This is sufficient to guarantee
that R′

2 can mimick the behaviour of S ′2.

Claim B.1 If N is confluent then M is confluent.

Proof Let I be an input for M. We have to show that M is confluent on I.
First, suppose that I is ill-formed. If I does not contain a value for each relation

x.Id with x ∈ N then no output can ever be produced. Indeed, no message dox()
for any x ∈ N can be sent (and delivered), so no diffluence could arise because
the nodes are not simulated. Otherwise, if I contains a value for each relation x.Id,
because I is still ill-formed, it will be possible to send error(). Then any run can be
extended to produce all possible output facts, so potential inconsistencies can always
be corrected.

Now suppose that I is well-formed, which means there is an instance J isomorphic
to I with J |schN = instN (cf. Section 4.3). Because transducer rules of M only
express generic queries, it is sufficient to show that M is confluent on J. Let H be
the (unique) input for N for which 〈H 〉N = J . Let S1 and S2 be two runs of M on
J, where last (S1) contains an output fact x.R(ā). We have to show that there is an
extension of S2 for which the last configuration also contains x.R(ā).

First, applying Claim 4.2 to run S1, we can construct a run R1 of N on input H
such that last (S1) and last (R1) are output- and memory-equivalent. In particular,
output fact R(ā) is at node x in last (R1).

Next, suppose we can construct an extension S ′′2 of S2 and a run R′′
2 of N on input

H such that last (S ′′2 ) and last (R′′
2) are output-, memory-, and message-equivalent.

If by chance last (S ′′2 ) already contains x.R(ā) then we are ready. Otherwise, by
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output-equivalence of last (S ′′2 ) and last (R′′
2), fact R(ā) will not be at x in last (R′′

2).
But, by confluence of N , because R(ā) can be derived at x in R1 (see above), there
is an extension of R′′

2 to derive R(ā) at x. By message-equivalence of last (S ′′2 ) and
last (R′′

2), this extension can be simulated at the end of S ′′2 to derive x.R(ā), in a
similar vein as in the proof of Claim 4.1.

We are left to construct the runs S ′′2 and R′′
2.

Message Saturation Because transducerΠ of M is recursion-free, we can consider
the maximum height n amongst derivation trees of Π , where the height is the largest
number of edges on any path from a leaf to the root. Now, we extend S2 to a run S ′2 by
doing n additional transitions: each transition delivers the entire message buffer, and
thus simulates all nodes in parallel where each node receives its entire (simulated)
message buffer.8 Because the sending rules ofΠ are message-positive and static, the
message buffer of M—degenerated to a set—will monotonously grow. Because n is
the maximum height of a derivation tree, last (S ′2) contains all messages that could
possibly be sent on input J.

Run of N Applying Claim 4.2 to S ′2 (not to S2), we can construct a run R′
2 of

N on input H such that last (S ′2) and last (R′
2) are output- and memory-equivalent,

and such that the messages of last (S ′2) are included in last (R′
2). We now show that

actually all messages in the buffers of last (R′
2) are simulated in the (single) buffer

of last (S ′2), except for maybe their precise cardinalities.
Let S(b̄) be a message in the buffer of some node y in last (R′

2). We can extract
from R′

2 a “global” derivation tree T to explain how S(b̄) was sent to y: this is
like a normal derivation tree, except that we also say at which node a message was
derived. Letting Π be the single transducer of M, and letting x be the node in the
root of T (i.e., x sends S(b̄) to y), the natural correspondence between Π and N
allows us to convert T into a derivation tree T ′ of Π , to explain how to send the
message S→y(x, b̄). Because sending rules are message-positive and static, this tree
T ′ is successfully executed in the last n transitions of S ′2, so that S→y(x, b̄) is in the
message buffer of last (S ′2), as desired.

Obtain Message-Equivalence Consider the extension R′′
2 of R′

2 that is obtained by
letting each node, in some arbitrary order, receive its entire message buffer from con-
figuration last (R′

2). Similarly, consider the extension S ′′2 of S ′2 obtained by letting
each simulated node, in the same order as in R′′

2, receive its entire message buffer as
it is simulated by configuration last (S ′2).

As we have seen above, last (R′
2) and last (S ′2) essentially represent the same

messages in the buffer of each node, except that the cardinalities might be different.
But since duplicate messages are collapsed upon delivery, the nodes do not observe
the difference in cardinalities when the above two extensions are performed. Hence,
configurations last (R′′

2) and last (S ′′2 ) are output- and memory-equivalent. But they

8We assume run S2 contains at least one transition, so that all dox -messages are available in the buffer of
last (S2).



Theory Comput Syst

are also message-equivalent as we now explain. First, for a node y ∈ N , the exten-
sions deliver equivalent message sets to y. Hence, in both extensions, node y in turn
sends equivalent message sets. And because node y has its entire message buffer (of
configurations last (R′

2) and last (S ′2)) emptied during the delivery, the cardinalities
of messages in last (R′′

2) and last (S ′′2 ) are the same.

5 Small Model Property

Let N be a simple single-node transducer network. We establish a small model
property: if N is diffluent, then N is diffluent on an input whose active
domain size is upper bounded by an expression purely over syntactical proper-
ties of N . For this result, we use all syntactical restrictions of simple transducer
networks.

Let Π and Υ denote respectively the transducer and its schema in N . Like in
Section 4, an input for N is an instance I over Υin, and a configuration of N is a pair
(s, b) where s is a transducer state and b is a multiset of facts over Υmsg. Moreover,
the sending rules have no explicit addressee variable in their head, andΥsys will not be
used in any rule. Such a network can always be obtained by applying the simulation
in Section 4.

5.1 Syntactical Quantities

Consider the following syntactically defined quantities about N :

– the length P the longest path in the positive dependency graph of Π (defined in
Section 3.2), where the length of a path is measured as the number of edges on
this path;

– the largest number B of positive body atoms in any rule of Π ;
– the largest arity I among input relations;
– the largest arity O among output relations;
– the number C of different output and memory facts that can be made with values

in A, where A ⊆ dom is an arbitrary set with |A| = O.

Now, let sizeDom(N ) abbreviate the expression 2ICBP. We have the following small
model property:

Proposition 4 If N is diffluent, then N is diffluent on an instance J over Υin for
which |adom(J )| ≤ sizeDom(N ).

The rest of this section is devoted to showing this result.

5.2 Proof Outline

Here we sketch the proof of Proposition 4. The details are provided by the following
subsections. The proof technique is inspired by pseudoruns from Deutsch et al. [13],
although it was adapted to deal with the diffluence problem and to deal with
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message buffers (multisets). Let N ,Π and Υ be like above, and recall the syntactical
quantities of N from Section 5.1.

First we give some additional terminology and notations. Let A ⊆ dom. We call
a fact g an A-fact if the values in g are a subset of A. For a set of facts H, we write
H [A] to denote the subset of all A-facts in H. Note that nullary facts of H are always
in H [A].

Let I be an input for N . Suppose N is diffluent on I, i.e., there are two runs
R1 and R2 of N on I such that last (R1) contains an output fact f that is not in
last (R2), and there is no extension R′

2 of R2 such that last (R′
2) contains f . Let

C ⊆ dom be the set of values in f . Note that |C| ≤ O.
In Section 5.3, for i = 1, 2, we will select a subset of input facts Ki ⊆ I that

are needed to make all output and memory C-facts of run Ri , with the property
|Ki | ≤ CBP. This gives the instances K1 and K2. Note that C ⊆ adom(K1) because
f is created in R1. Define

J = I [adom(K1)∪adom(K2)].

Note that |adom(J )| ≤ 2ICBP = sizeDom(N ).
Next, in Section 5.4, for i = 1, 2, we will construct a run Si on input J with the

following properties:

– last (Si ) and last(Ri ) contain precisely the same output and memory C-facts;
– every extension S ′i of Si gives rise to an extension R′

i of Ri such that last (S ′i )
and last (R′

i ) again contain precisely the same output and memory C-facts.

This gives the runs S1 and S2 on J. The focus on output and memory C-facts is
mainly the result of the message-boundedness constraint. Since f is an output C-
fact, the first property above tells us that last (S1) contains f and last (S2) does not.
Moreover, if S2 can be extended to a run S ′2 such that last (S ′2) contains f , then the
second property above would tell us that R2 can be extended to a run R′

2 such that
last (R2)

′ also contains f . But the latter is not possible by assumption on R2. Hence,
S ′2 does not exist, and N is diffluent on the instance J, whose active domain size is
upper bounded by sizeDom(N ), as desired.

5.3 Input Selection

Consider the symbols defined in Sections 5.1 and 5.2. Let R be either R1 or R2.
In this section, we select an instance K ⊆ I that is needed to make all output and
memory C-facts of R, and such that |K| ≤ CBP.

We construct a derivation history of each output and memory C-fact in R: this
includes the rules and valuations that derive the C-facts, and it also includes the
derivation histories of messages recursively needed to make those C-facts.

5.3.1 Derivation History

Let g be an output or memory C-fact derived during R. By inflationarity of Π , the
derivation of g happens in some unique transition i. We choose one pair (ϕ, V ) of a
rule ϕ and satisfying valuation V such that g is derived during transition i by applying
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V to ϕ. Let us call (ϕ, V ) a derivation pair. If ϕ contains a (positive) body message
atom a, the message h = V (a) is required by (ϕ, V ) to derive g. Similarly as we did
for g, we can go to a transition in which h was derived and select there also one pair
(ϕ′, V ′) to derive h. We can again recursively repeat the selection of derivation pairs
for any message facts needed by (ϕ′, V ′).

Formally, after the selection of derivation pairs, we obtain a function histR that
maps each pair (i,g) to a derivation pair for g, where g is an output or memory
C-fact or a recursively needed message derived in transition i. We also have a set
msgR containing triples (k, h, l) to indicate that a valuation in transition l needs the
message h to arrive, and that h itself is sent in (an earlier) transition k. These triples
indicate the timing of the required messages.

Now, let K denote the subset of all input facts h ∈ I for which there exists a
pair (i,g) in the domain of histR, denoting histR(i,g) = (ϕ, V ), such that h ∈
V (posϕ). In words: K contains the (positive) input facts needed by the derivation
history of all output and memory C-facts in R (and any needed messages). We now
show |K| ≤ CBP. First, let us fix one output or memory C-fact g. Any chain of
messages recursively needed by g has length at most P by recursion-freeness of Π .
Moreover, in the worst case, each message recursively requires B other messages.
Therefore, the number of input facts needed by g alone is bounded by BP. And since
at most C different output and memory C-facts are created in R, we overall have that
|K| ≤ CBP, as desired.

5.3.2 Natural Properties

Section 5.3.1 allows much liberty in which histR and msgR may be chosen. We now
demand that some natural properties hold on msgR, upon which the construction in
Section 5.4 crucially depends.

First, based on msgR, for each transition i of R, we define the message multisets
βi, γi , and Ei as follows, with the intuition provided below:

– the multiplicity of a message h in βi is the number of triples (k, h, l) ∈ msgR
for which l = i;

– the multiplicity of a message h in γi is the number of triples (k, h, l) ∈ msgR
for which k < i and i ≤ l;

– the multiplicity of a message h in Ei is the number of triples (k, h, l) ∈ msgR
for which k = i.

Let ρ1, . . . , ρn, ρn+1 denote the sequence of configurations of R, where n is the
number of transitions. Intuitively, βi contains the messages needed in transition
i; γi contains the needed messages that are sent before configuration ρi and that
travel through configuration ρi to be delivered in transition i (when l = i) or
later (when i < l); and, Ei contains the needed messages that should be sent in
transition i.

In Appendix B.1, we show that histR and msgR can be chosen so that the
following properties are satisfied, with the intuition provided below:

1. γi ' bRi for each transition i of R, where ρi =
(
sRi , bRi

)
;
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2. βi is a set for each transition i of R, i.e., for each (k, h, i) and (k′, h, i) in msgR,
we have k = k′;

3. Ei = γi+1 ∩ δRi , where δRi is the set of messages sent in transition i of R.

Intuitively, property 1 means that all needed messages whose transmission overlaps
in time, also jointly occur in the message buffer, with the correct cardinalities. Prop-
erty 2 means that if multiple derivation pairs in the same transition need the same
message, the same origin of this message is used. Lastly, property 3 implies that for
each needed message, its origin transition is chosen as late as possible: whenever
for some needed message h ∈ γi+1 we have the opportunity to explain its origin in
transition i (i.e., h ∈ δRi ), we take this opportunity (i.e., h ∈ Ei).

5.4 Run Projection

Consider the symbols defined in Section 5.2. Let R be either R1 or R2. We construct
a run S on input J with the following properties:

– last (S) and last (R) contain the same output and memory C-facts;
– every extension S ′ of S gives rise to an extension R′ of R such that last (S ′) and

last (R′) again contain precisely the same output and memory C-facts.

To improve the readability of this section, helper claims are placed in Appendix B.2.
First, Claim B.4 tells us that the second property above holds when the first property
holds and when the message buffer of last (S) is included in the message buffer of
last (R). Intuitively, this inclusion allows every extension S ′ of S to be converted to
an extension R′ of R so that the buffer of S ′ remains included in the buffer of R′,
allowing R′ to make precisely the same message deliveries as S ′.

We first sketch the main idea in the construction of S. For run R, let histR, msgR,
βi , γi , and Ei be as defined in Section 5.3. We assume that msgR satisfies the prop-
erties given in Section 5.3.2. Run S will be a projected version of R: we do the same
number of transitions as R, and perform the message deliveries selected by msgR,
so that the output and memory C-facts of R are faithfully created. One caveat, how-
ever, is that some transitions of RB should sometimes deliver more messages than
just those of msgR because we want the message buffer of S to be included in the
corresponding message buffer of R (see above).

Let n be the number of transitions in R. For each i ∈ {1, . . . , n + 1}, we denote
the ith configuration of R and S respectively as ρi = (sRi , bRi ) and σi = (sSi , bSi ).
We inductively specify the message deliveries of S so that the following properties
are satisfied for each i ∈ {1, . . . , n + 1}:
1. sSi and sRi have the same output and memory C-facts;
2. message buffer bSi a submultiset of message buffer bRi ; and,
3. γi is a submultiset of the message buffer bSi .

The need for the first two properties was already explained above, and property 3
helps in proving them. For the base case (i = 1), properties 1 and 2 are satisfied
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because ρ1 and σ1 are start configurations, in which there are no output or memory
facts and the message buffers are empty; and, property 3 is satisfied because γ1 = ∅,
which follows from bR1 = ∅ and the property γ1 ' bR1 of msgR. For the induction
hypothesis, we assume that the properties are satisfied for γi and σi . For the inductive
step, we show that they are satisfied for ρi+1 and σi+1. In transition i of S, which
transforms σi into σi+1, we deliver the following message multiset:

mS
i =

(
bSi \ (γi\βi)

)
∩mR

i ,

where mR
i denotes the message multiset delivered in transition i of R, and where we

use multiset difference and intersection. Intuitively, the set βi of messages needed in
transition i, is delivered, but we have to protect the messages in γi\βi , because they
are needed after transition i. All remaining facts can be delivered, on condition that
they are delivered in R.

The following subsections show the properties 1 to 3.

5.4.1 Property 1

We show that sSi+1 and sRi+1 contain the same output and memory C-facts. First,
because mS

i ' mR
i , Claim B.6 tells us that the output and memory C-facts of sSi+1

are a subset of those in sRi+1. For the other direction, let g be an output or memory C-
fact in sRi+1\sRi . Because g is a C-fact, the mapping histR(i,g) = (ϕ, V ) is defined,
where valuation V is satisfying for ϕ during transition i of R and derives g. We show
that this is also true during transition i of S, so that g ∈ sSi+1. We look at the different
components in the body of ϕ:

– Consider the input atoms. Let h ∈ V (posϕ)|Υin . We have to show h ∈ J . First,
because V is satisfying for ϕ during transition i of R, we have h ∈ I . Moreover,
because h is an input fact needed in histR, we have h ∈ K (Section 5.3). Hence,
h ∈ I [adom(K)] ⊆ I [adom(K1)∪ adom(K2)] = J . Let h ∈ V (negϕ)|Υin . We have to
show h /∈ J . This follows from h /∈ I (because V is satisfying in R) and J ⊆ I .

– Consider the message atoms. Recall that ϕ is message-positive. Let h ∈
V (posϕ)|Υmsg . We have to show that h is delivered in transition i of S, i.e.,
h ∈ set (mS

i ). Because h is a message needed in histR, there is a triple
(k, h, i) ∈ msgR for some k < i. Hence, h ∈ βi . Finally, Claim B.3 applied to
γi ' bSi (induction hypothesis) gives βi ⊆ set (mS

i ).
– Consider the output and memory atoms. Let h ∈ V (posϕ)|Υout∪Υmem. We have

to show h ∈ sSi . First, because V is satisfying in R, we have h ∈ sRi .
Moreover, because g is a C-fact, the message-boundedness of ϕ implies that
h is a C-fact. Hence, h ∈ sSi by the induction hypothesis. Similarly, for each
h ∈ V (negϕ)|Υout∪Υmem we can show h /∈ sSi .

– The nonequalities of ϕ are satisfied under V in R, hence in S as well.

We conclude that V is satisfying for ϕ in transition i of S.
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5.4.2 Property 2

We show bSi+1 ' bRi+1. By the operational semantics, bSi+1 =
(
bSi \mS

i

)
∪ δSi and

bRi+1 =
(
bRi \mR

i

)
∪ δRi , where δSi and δRi denote the set of messages sent in tran-

sition i of S and R respectively. Because δSi ⊆ δRi by Claim B.6, it is sufficient to
show bSi \mS

i ' bRi \mR
i . Let g be an arbitrary fact. We show num

(
g, bSi \mS

i

)
≤

num
(
g, bRi \mR

i

)
.

Because mS
i ' bSi , we have num

(
g, bSi \mS

i

)
= num

(
g, bSi

)
− num

(
g, mS

i

)
.

Applying the definition of mS
i further gives

num
(
g, bSi \mS

i

)
= num

(
g, bSi

)
−min

{
num

(
g, bSi \(γi\βi)

)
, num

(
g, mR

i

)}

= max{e1, e2},
where

e1 = num
(
g, bSi

)
− num

(
g, bSi \(γi\βi)

)
, and

e2 = num
(
g, bSi

)
− num

(
g, mR

i

)
.

We show that both e1 ≤ num
(
g, bRi \mR

i

)
and e2 ≤ num

(
g, bRi \mR

i

)
.

– We show e1 ≤ num
(
g, bRi \mR

i

)
. First, rewriting e1 = num

(
g, bSi \

(
bSi \

(γi\βi))) and applying γi\βi ' bSi (follows from induction hypothesis γi '
bSi ), we obtain e1 = num(g, γi\βi).

Now, since γi+1 = (γi\βi) ∪ Ei (Claim B.2), we further have e1 =
num(g, γi+1\Ei ). If we can show num(g, γi+1\Ei ) = num

(
g, γi+1\δRi

)

then γi+1 ' bRi+1 (property of msgR) implies e1 ≤ num
(
g, bRi+1\δRi

)
=

num
(
g, bRi \mR

i

)
, as desired.

To show num(g, γi+1\Ei ) = num
(
g, γi+1\δRi

)
, it suffices to show that if

g ∈ γi+1 then num(g, δRi ) = num(g, Ei ). This equality holds, because msgR
satisfies Ei = γi+1 ∩ δRi .

– We show e2 ≤ num
(
g, bRi \mR

i

)
. We have bSi ' bRi by the induction hypoth-

esis. Hence, e2 ≤ num
(
g, bRi

)
− num

(
g, mR

i

)
. But since mR

i ' bRi , we may
write e2 ≤ num

(
g, bRi \mR

i

)
, as desired.

5.4.3 Property 3

We show γi+1 ' bSi+1. First, Claim B.2 tells us that γi+1 = (γi\βi) ∪ Ei . It is
sufficient to show γi\βi ' bSi \mS

i and Ei ⊆ δSi because then γi+1 '
(
bSi \mS

i

)
∪

δSi = bSi+1, as desired.
We show that γi\βi ' bSi \mS

i . First, from the definition of mS
i , we get mS

i '
bSi \(γi\βi). By adding γi\βi to both sides of this inclusion, and using γi\βi ' bSi
(by induction hypothesis γi ' bSi ), we obtain mS

i ∪ (γi\βi) ' bSi . Hence, γi\βi '
bSi \mS

i .
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We show that Ei ⊆ δSi . Let g ∈ Ei . By definition of Ei , there is a triple (i,g, l) ∈
msgR for some l > i, i.e., g is a needed message that should be sent in transition i. By
construction of histR, the mapping histR(i,g) = (ϕ, V ) is defined, where valuation
V is satisfying for rule ϕ during transition i of R and derives g. We show that V is
also satisfying for ϕ in transition i of S, which gives g ∈ δSi . This goes similarly as
in property 1, where we showed that the C-facts of sRi+1 are in sSi+1, except that this
time we only have to consider input atoms, message atoms and nonequalities of ϕ
(because sending rules are static).

6 Decidability

Note that Proposition 4 does not immediately give decidability of diffluence for sim-
ple transducer networks because even on a fixed input instance, we still have an
infinite state system since the message buffers have no size limit. In this section
we show that diffluence of simple single-node transducer networks is decidable. In
Section 6.1, we give a nondeterministic exponential time (NEXPTIME) decision pro-
cedure. In Section 6.2, we give a NEXPTIME lower bound, thus making the problem
NEXPTIME-complete. This also makes diffluence for multi-node networks NEXP-
TIME -complete: (i) the NEXPTIME upper bound follows from the PTIME reduction
to a single-node network (Section 4), and (ii) the NEXPTIME lower bound is because
single-node networks are a special case of multi-node networks.

6.1 Decision Procedure

In Section 6.1.1 we give the description of the decision procedure. Next, Sec-
tions 6.1.2 and 6.1.3 investigate the correctness, and Section 6.1.4 investigates the
complexity.

Let N be a simple single-node transducer network. Let Π and Υ respec-
tively denote the transducer and transducer schema of N . We use the syntactical
simplifications for single-node networks (Section 4.1).

6.1.1 Procedure

We give a nondeterministic procedure for checking whether N is diffluent. We say
that the procedure accepts N if at least one computation branch has found evidence
that N is diffluent, in which case that branch executes the accept-statement. A branch
can also stop early by executing reject.

Let P, B, C, and sizeDom(N ) be as defined in Section 5.1. Consider the expres-
sion runLen = CBP + C. For A ⊆ dom, we say that a fact f is a A-fact if
adom(f ) ⊆ A. The procedure does the following steps, in order:

1. [Input] Guess an input instance I for N with |adom(I)| ≤ sizeDom(N ).
2. [Two runs] Guess two runs S1 and S2 of N on input I, such that both runs do

at most runLen transitions. Concretely, such a run is guessed by first choosing
how much transitions are done (≤ runLen), and by choosing for each transition
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which submultiset of the message buffer should be delivered. For simulating
these runs, it is sufficient to store only the last configuration, and not all previous
configurations.

3. [Output] Choose an output fact f in last(S1) that is not in last(S2). If no such
fact can be chosen, then reject.

4. [Extension] Denote C = adom(f ). We extend S2 by doing P+1 more transi-
tions, and in each transition we deliver the entire message buffer. If no output or
memory C-fact is created in this extension, then accept and else reject.

6.1.2 Correctness Part 1

Suppose that N is diffluent. We show that the procedure accepts. Helper claims can
be found in Appendix C.1.

First, by the small model property (Section 5), there is an input I for N such that
|adom(I)| ≤ sizeDom(N ) and N is diffluent on input I. Thus, there are two runs
R1 and R2 of N on input I such that last (R1) contains an output fact f that is not in
last (R2), and there is no extension of R2 in which f can be output. The procedure
can guess an instance I ′ that is isomorphic to I, but for notational simplicity we may
assume that simply I ′ = I .

Denote C = adom(f ). By inflationarity of Π , we can always extend R2 to a run
R′

2 such that no more output or memory C-facts can be created in any extension of
R′

2. By assumption on R2, configuration last (R′
2) does not contain f . We now con-

vert R1 and R′
2 to runs that the procedure can guess: by Claim C.1, there exists two

runs S1 and S2 of N on input I with at most runLen transitions such that last (S1)
and last (S2) contain exactly the same output and memory C-facts as respectively
last (R1) and last (R′

2). Hence, last (S1) contains f and last (S2) does not. So, the
procedure can choose f as the output fact to focus on.

Next, let S ′2 denote the extension of S2 as performed by the procedure: we do
P+1 additional transitions, in each of which we deliver the entire message buffer. We
show that no more output or memory C-facts are created in this extension, so that the
procedure accepts, as desired. Towards a proof by contradiction, suppose that there
is some new transition i ∈ {1, . . . , P + 1} that derives an output or memory C-fact g,
with the assumption that i is the first such transition. Let (ϕ, V ) be a derivation pair
for g in transition i. We show that R′

2 can be extended to output g as well, giving the
desired contradiction.

Extend R′
2 to a run R′′

2 by doing P+1 more transitions in each of which we also
deliver the entire message buffer. We show that V is satisfying for ϕ in the last
transition of R′′

2. We consider the different body components of ϕ:

– The input literals of ϕ are satisfied under V in the last transition of R′′
2 because

S ′2 and R′′
2 have the same input I.

– Let h ∈ V (posϕ)|Υmsg . Because V is satisfying for ϕ in S ′2, message h can be
sent, and then Claim C.2 can be applied to know that h is delivered in the last
transition of R′′

2.
– Let h ∈ V (posϕ)|Υout∪Υmem. We have to show that h is available in the last

transition of R′′
2. First, because g is a C-fact, the message-boundedness of ϕ
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implies that h is a C-fact. Because g is assumed to be the first output or memory
C-fact to be created in the extension of S2, fact h is in last (S2). Thus h is in
last (R′

2) by construction of S2, so h can be read in the last transition of R′′
2.

– Let h ∈ V (negϕ)|Υout∪Υmem. We have to show that h is not read in the last tran-
sition of R′′

2. Like in the previous case, h is a C-fact. It is sufficient to show that
h is not in last (R′

2) because no output or memory C-fact can be created in an
extension of R′

2, including R′′
2. Now, because V is satisfying for ϕ in S ′2, the

inflationarity of transducer Π implies that h is not in last (S2). Thus h is not in
last (R′

2) by construction of S2.
– Also, the nonequalities of ϕ are satisfied under V in R′′

2.

6.1.3 Correctness Part 2

Suppose that the procedure accepts. We show that N is diffluent.
Because the procedure accepts, there is a computation branch that has done the

following. The branch has guessed an input instance I for N such that |adom(I)| ≤
sizeDom(N ). Next, the branch has guessed two runs S1 and S2 of N on input I,
and has been able to choose an output fact f in last (S1) that is not in last (S2).
Denote C = adom(f ). Lastly, the branch has extended S2 to a run S ′2 by doing P+1
additional transitions in which the entire message buffer is delivered each time, and
the procedure has observed that no output or memory C-facts were created in this
extension, including f .

To show that N is diffluent, it is sufficient to show that no output or memory
C-facts (including f ) can be created in any extension of S ′2. Towards a proof by con-
tradiction, suppose that an output or memory C-fact g can be created in an extension
S ′′2 of S ′2. Let us assume that g is the first such output or memory C-fact. Let ϕ and
V be a rule and valuation that are responsible for deriving g. We show that V is sat-
isfying for ϕ in the last transition of S ′2 itself, so that g would already have been
created in S ′2, which is the desired contradiction. To show that V is satisfying in S ′2,
we proceed similarly as in the first correctness proof above. We note the differences:

– Let h ∈ V (posϕ)|Υout∪Υmem. We have to show that h is available in the last
transition of S ′2. Like before, h is a C-fact by message-boundedness. Because g
is assumed to be the first output or memory C-fact to be created in the extension
of S ′2, it must be that h is in last (S ′2). Moreover, because the decision procedure
has not observed the creation of an output or memory C-fact in the transitions of
S ′2 after last (S2), fact h is in last (S2). Hence, h can be read in the last transition
of S ′2.

– Let h ∈ V (negϕ)|Υout∪Υmem. We have to show that h is not present in the last
transition of S ′2. Because V is satisfying for ϕ in S ′′2 , fact h must be absent there.
Hence, by inflationarity, h is not in last (S2).

6.1.4 Time Complexity

Here we analyze the time complexity of each computation branch of the decision
procedure. We sketch how the procedure might be implemented in an imperative
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programming language where blocks of code can be guarded by a nondeterministic
choice, that could either execute the corresponding block or skip it. In this framework,
we show that each branch uses at most single-exponential time, making the decision
procedure be in NEXPTIME.

Encoding We use the encoding of transducer neworks from Section 2.8. Let |N |
denote the input size. Now, consider the syntactical quantities defined in Section 5.1.
The quantities I and O are upper bounded by |N | because all input and output rela-
tions are used in rules (whose atoms are written in full). The quantities B and P
are also upper bounded by |N |. Letting n denote the number of different trans-
ducer relations, again upper bounded by |N |, the number C is upper bounded
by nOO = n2O log O, which is single-exponential in |N |. Hence, sizeDom(N ) is
single-exponential in |N |.

Let numFc denote the number of different facts that can be created with
sizeDom(N ) unique domain values (across all relations). Note that numFc is
single-exponential in |N |.

Input For each input instance I ′ for N with |adom(I ′)| ≤ sizeDom(N ), the proce-
dure can guess an isomorphic instance I. Because sizeDom(N ) is single-exponential
in |N |, an active domain value of I can be represented as a number encoded by p
bits, where p is polynomial in |N |. We omit the algorithmic details to guess I.

Two Runs Next, the procedure needs to guess two runs S1 and S2 of N on I, such
that each run does at most runLen transitions. We describe how to guess one run
S ∈ {S1,S2}; the other run can be guessed similarly after the first one.

To guess S, we do a for-loop with runLen iterations in which we incrementally
modify a configuration, starting with the start configuration. Note that runLen is
single-exponential in |N |. In each iteration, we choose whether or not we do a transi-
tion. To do a transition, we select a submultiset m of the message buffer to deliver. The
size of the message buffer is at most runLen·numFc, so this selection can be done
in single-exponential time. We are left to show that simulating the subsequent local
transition can be done in single-exponential time. Let J denote the transducer state in
the last configuration obtained. Now, for all transducer rules ϕ, for all valuations V
for ϕ, if V is satisfying for ϕ with respect to J ∪ set (m) then derive g = V (headϕ).
The number of rules is linear in |N |. For one rule, the number of variables is also lin-
ear in |N |. Hence, the number of valuations for one rule, using values in adom(I),
is single-exponential in |N |. Finally, checking whether a valuation V is satisfying
for a rule ϕ is done by (i) checking that the nonequalities are satisfied, which can be
done in polynomial time; and, (ii) going over all body literals l of ϕ, applying V, and
checking whether J ∪ set (m) |= V (l), which can be done in single-exponential time
because |J ∪ set (m)| ≤ numFc.

Output The procedure then selects an output fact f in last (S1) that is not in
last (S2). Because the number of output facts in last (S1) is at most numFc, we can
select f in single-exponential time. Possibly last (S2) has at least the output facts of
last (S1), in which case the procedure does reject. Otherwise, we continue.
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Extension In the last step, the procedure extends S2 with P+1 transitions, in each of
which we deliver the entire message buffer. The message buffer in last (S2) contains
at most runLen·numFc facts, and all the subsequent buffers in the extension contain
at most numFc facts because the buffer has degenerated to a set. Hence, we can apply
the same time complexity analysis for simulating the local transitions as above.

Letting C = adom(f ), checking whether a newly derived output or memory fact
is a C-fact can be done in polynomial time. Overall, simulating the additional P+1
transitions can be done in single-exponential time.

6.2 Complexity Lower Bound

In Section 6.1 we gave a NEXPTIME upper bound on the time complexity for
deciding diffluence for simple single-node transducer networks. In this section, we
complement this result by giving a NEXPTIME lower bound, making the decision
problem NEXPTIME-complete. Concretely, we show that any problem in NEXPTIME

is polynomial time reducible to this decision problem.
Let A be a problem from NEXPTIME. Formally, A is a set of words over some

alphabet Σ , and there exists a nondeterministic Turing machine M such that (i) for
each word w over Σ , M accepts w iff w ∈ A; and, (ii) every computation trace of M
on an input w over Σ eventually halts and uses at most O(2|w|k ) steps, where k is a
constant specific to M [22].

Fix some word w over Σ . We construct a simple single-node transducer net-
work N for w such that N is diffluent iff M accepts w. We use the syntactical
simplifications of single-node networks (Section 4.1).

6.2.1 Turing Machine

First, following the conventions in Sipser [22], the Turing machine M is given as a
tuple

(Q,Σ, Γ, δ, q0, qaccept, qreject),

where Q is the set of states, Σ is the alphabet of the language A, Γ is the tape-
alphabet (satisfying Σ ⊆ Γ ), δ is the transition function, q0 ∈ Q is the start state,
qaccept ∈ Q is the accept state, and qreject ∈ Q is the reject state. Function δ has the
signature Q × Γ → P(Q × Γ × {L, R}), where L and R indicate whether the tape
head moves left or right after performing a transition.

6.2.2 Construction

We define the transducer schema Υ and transducerΠ of N . The main idea is as fol-
lows. We provide Υ with input relations to encode a computation trace of the Turing
machine M on input w. By simulating the Turing machine M, transducer Π checks
that the input contains a valid and accepting computation trace. If so,Π sends a spe-
cial message accept() to itself, whose delivery is a trigger for diffluent behaviour.
On a more technical note, the sending rules might sometimes send accept() when
the trace is actually partially incorrect. To solve this, like in Section 4, we also check
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explicitly for errors in the input: when an error is detected, a message error() is
sent, and this acts as a signal to correct any diffluent behavior.

Diffluence Independently of w or M, we add the following relations to Υ : input
relation A(1); memory relation B(1); output relation T (1); and, message relations
A

(1)
msg, B

(1)
msg, accept(0) and error(0). The following rules implement the basic idea

of making Π diffluent when accept() is received; we can vary the delivery order
of Amsg-facts and Bmsg-facts. The purpose of relation error was explained above.

Amsg(u) ← A(u), accept().

Bmsg(u) ← A(u), accept().

B(u) ← Bmsg(u).

T (u) ← Amsg(u), ¬B(u).

T (u) ← Amsg(u), error().

Computation Trace We represent a computation trace of M on w with new input
relations. Henceforth we write n to denote the length of w. We can select a k ∈ N such
that for each string w′ over Σ , if M accepts w′ then M has an accepting computation
trace on w′ with at most 2nk

transitions. Note that k is considered a constant in the
construction of the transducer.

A number a in the interval [0, 2nk ] indicates a (zero-based) configuration ordinal
in the trace. Moreover, since time usage upper bounds space usage, a can also be
used to indicate an individual tape cell. The number a has a binary representation
with nk bits, which is polynomial in n. Now, Table 1 gives the input relations, with
their precise arities, to represent a computation trace. The first component in relations
state, head, and tape is an identifier of a Turing machine configuration. This
identifier only serves to join the different aspects of one configuration across all three
relations: relation state gives the current state symbol; relation head gives the
head position; and, relation tape gives the contents of each tape cell.

Sending accept We now provide rules to send accept(). Newly mentioned
relations are assumed to be added to Υmsg. The idea is as follows: in the relations of
Table 1, we look for a path of length at most 2nk

configurations that connects the start
configuration to an accepting configuration, and such that each pair of subsequent
configurations is allowed by a valid transition of M.

Suppose we could send a message of the form reach0(i, j) to say that configu-
ration j can be reached from configuration i by a valid transition of M. The subscript

Table 1 Computation trace
input relations Relation Purpose

state(2) Configuration state

head(1+nk) Configuration head position

tape(1+nk+1) Configuration tape cell contents
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0 indicates that the distance between i and j is 20 = 1. Since the desired path is of
length at most 2nk

, the following recursion-free rules can consider all such paths:9

reachm(i,j) ← reachm−1(i,l), reachp(l,j)

for each m = 1, . . . , nk, and each p = 0, . . . , m− 1.

Suppose too we could send a message of the form start(i) to say that con-
figuration i satisfies the properties of the start configuration of M on w. We send
accept() with these rules:

accept() ← start(i), reachm(i,j), state(j,q), qaccept(q)

for each m = 0, . . . , nk.

Here, q
(1)
accept is an extra input relation containing the symbol of the start state.

Note that the number and size of the above sending rules is polynomial in n.
Appendix C.2 fills in the missing details regarding the messages reach0, start,
error, and argues the correctness.

7 Expressivity

We investigate the expressivity of simple transducer networks. First we define how
a transducer network can compute a distributed query. We consider only confluent
transducer networks because otherwise the output might vary depending on the run.
Let N = (N , Υ , Π) be a confluent transducer network, not necessarily simple.
Let inN and outN be the distributed schemas for N as defined in Section 2.7. We
say that N computes the following distributed query Q, that is over input schema
inN and output schema outN : Q maps each instance H over inN to the instance
Q(H) = J over outN such that J (x) for each x ∈ N is the set of all output facts that
can be produced at x during any run of N on H. The instance Q(H) could be defined
even if N is diffluent, but when N is confluent, all runs on H can be extended to
obtain Q(H). We call Q(H) the output of N on input H.

We now define how UCQ¬ can express distributed queries in a more direct way,
i.e., without transducer networks. This will provide insight in the expressivity of sim-
ple transducer networks. First, for a distributed database schema E over a network
N , and an instance H over E , let 〈E〉N and 〈H 〉N be as defined in Section 4.2. Intu-
itively, a UCQ¬-program over 〈E〉N can directly access all relations of all nodes. To
make such a program generic, node identifiers are provided in the relations x.Idwith
x ∈ N and Node. Let Q be a distributed query over an input schema E and an out-
put schema F , where both schemas are over the same network N . We say that Q is
expressible in UCQ¬ if for each pair x ∈ N and R(k) ∈ F(x) we can give a UCQ¬

9We use that any length between 0 and 2nk
can be represented by a sum of unique powers of two.
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program Φx,R over input schema 〈E〉N and output schema {R(k)} such that for all
instances H over E we have

Q(H)(x)|R = Φx,R

(
〈H 〉N

)
.

Now we can present the expressivity result:

Theorem 2 Confluent simple transducer networks capture the distributed queries
expressible in UCQ¬.

This result requires showing a lower and upper bound on the expressivity of sim-
ple transducer networks. These directions are given in the following subsections.
Currently, this result depends on our definition of UCQ¬ as a language with built-
in nonequalities (or equivalently by having a built-in equality relation). In particular,
for showing the upper bound, we do a nontrivial simulation of runs of transducer
networks with UCQ¬, and there we depend on the availability of nonequalities. It
remains open whether the result really needs this feature.

7.1 Lower Bound

Let Q be a distributed query over input distributed schema E and output distributed
schema F , and that is expressible in UCQ¬. Let N be the network of E and F .
Over N , we define a simple transducer network N = (N , Υ,Π) to compute Q. We
assume E(x) and F(x) have disjoint relation names for each x ∈ N ; that E(x) and
F(x) do not contain Id or All; and, that that any relations we add to N do not yet
occur in E and F . Any conflicts can always be resolved with appropriate renamings.

7.1.1 Transducer Schemas

First, we give the shared message relations of N , where relation names containing
“¬” indicate the absence of a fact:

– the relations x.R(k) and x.R
(k)
¬ for each x ∈ N and R(k) ∈ E(x), to broadcast

local inputs;
– the relations x.Id(1) and x.Id(k)

¬ for each x ∈ N , to broadcast identifiers;
– the relations x.T (k) for each x ∈ N and T (k) ∈ F(x), to compute local outputs;

and,
– the relation adom(1), to share active domain values.

For each x ∈ N , we define Υ (x)in = E(x); = Υ (x)out = F(x); Υ (x)mem = ∅;
and, Υ (x)msg is the set of message relations from above.

7.1.2 Transducer Rules

Let x ∈ N . We incrementally specify the rules of Π(x). First, to send the active
domain of the input, for each R(k) ∈ Υ (x)in ∪ {Id(1)} and each i ∈ {1, . . . , k}, we
add the following rule:

adom(n,ui) ← All(n), R(u1, . . . ,ui, . . . ,uk).
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Also, for each R(k) ∈ Υ (x)in ∪ {Id(1)}, we add the following rules to send the
presence or absence of local facts at x:

x.R(n,u1, . . . ,uk) ← All(n), R(u1, . . . ,uk).

x.R¬(n,u1, . . . ,uk) ← All(n), adom(u1), . . . , adom(uk), ¬R(u1, . . . ,uk).

Now we let Π(x) produce output. Let T (k) ∈ Υ (x)out. To satisfy the message-
boundedness restriction for the output rules, we add sending rules for message
relation x.T (k) and copy any received x.T -messages to output relation T. Because Q
is expressible in UCQ¬, there is a UCQ¬ programΦ over 〈E〉N that expresses the T-
facts at x. For each ϕ ∈ Φ, we transform ϕ into a sending rule ϕ′ for relation x.T (k),
as follows:

– the head T (u1, . . . ,uk) of ϕ becomes the head x.T (n,u1, . . . ,uk) of ϕ′, where
n is a new variable;

– the positive body atoms of ϕ′ are (i) Id(n), with n as defined previ-
ously; (ii) the atoms All(m) for which Node(m) ∈ posϕ ; (iii) the atoms
y.R(v1, . . . ,vl) ∈ posϕ , which are now messages; (iv) the (positive) message
atoms y.R¬(v1, . . . ,vl) for which y.R(v1, . . . ,vl) ∈ negϕ ;

– the negative body atoms of ϕ′ are the atoms All(m) for which Node(m) ∈
negϕ ; and,

– the nonequalities of ϕ′ are those of ϕ.

The positive body atom Id(n) has the effect that x.T -messages are sent only to x.
Now, the final output for T (k) is created by adding this rule:

T (u1, . . . ,uk) ← x.T (u1, . . . ,uk).

This completes the specification of Π(x). Note that transducer Π(x) is simple: all
message rules are message-positive and static; all output rules are message-positive
and message-bounded; Π(x) is inflationary (there are no memory relations); and,
Π(x) is recursion-free.

Following the above instructions, we can build the transducer at each node of N .
There are also no cycles through message relations in N . Hence, N is simple.

7.1.3 Example

The following example illustrates the construction of the transducer network.

Example 3 Let N = {x, y}. Consider the following distributed schemas E and F ,
that are over N : E(x) = {A(2)}, E(y) = {B(1)},F(x) = {S(1)} and F(y) = {T (1)}.
Consider the following distributed query Q with input schema E and output schema
F , expressed in UCQ¬:

S(u) ← x.A(u,v), ¬y.B(u), u )= v.

T (u) ← x.A(u,v), x.Id(u).

Each rule corresponds to one of the output relations.
We construct a transducer network N = (N , Υ,Π) to compute Q. To save space,

we will not literally follow the general construction from above, but instead restrict
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attention to the relations and rules that affect the output. Also, the sending rules for
adom are clear, so we do not explicitly give them.

First, the shared message relations of N are: x.A(2), x.Id(1), y.B
(1)
¬ and adom(1).

For node x, we define Υ (x)in = {A(2)}, Υ (x)out = {B(1)}, and Υ (x)mem = ∅.
Transducer Π(x) contains the rules:

x.A(n,u,v) ← All(n), A(u,v).

x.Id(n,u) ← All(n), Id(u).

x.S(n,u) ← Id(n), x.A(u,v), y.B¬(u), u )= v.

S(u) ← x.S(u).

For node y, we define Υ (y)in = {B(1)}, Υ (y)out = {T (1)}, and Υ (y)mem = ∅.
Transducer y contains the rules:

y.B¬(n,u) ← All(n), adom(u), ¬B(u).

y.T (n,u) ← x.A(u,v), x.Id(u).

T (u) ← y.T (u).

This completes the network N .

7.2 Upper Bound

Let N = (N , Υ , Π) be a confluent simple transducer network. Let Q denote the
distributed query computed by N . Let x ∈ N and let R(k) be a local output relation
of x. We have to construct a UCQ¬-program Φ over input schema 〈inN 〉N and
output schema {R(k)}, such that Q(H)(x)|R = Φ(〈H 〉N ) for each input distributed
database instance H over inN .

The basic idea is to describe the computation of N with UCQ¬-program Φ,
for output relation R at x. To make this technically easier, we first convert N to
a single-node network in Section 7.2.1. Some common notations are introduced in
Section 7.2.2, and program Φ is described in Section 7.2.3. The correctness is shown
in Appendix D.

7.2.1 Reduction to Single-Node

Consider the concepts from Section 4.2. Using Proposition 3, let M be the simple
single-node transducer network that simulates N , and that is confluent because N
is confluent. By the syntactical simplications of single-node networks (Section 4.1),
the query Q′ computed by M is regarded as an ordinary database query over
input schema 〈inN 〉N and output schema 〈outN 〉. If for every input H for N we
would know that Q′(〈H 〉N ) = 〈Q(H)〉, because x.R is in 〈outN 〉, it will be suf-
ficient to construct the UCQ¬-program Φ as a description of the computation of
M for relation x.R. To keep the notation simpler, we may assume without loss of
generality that output relation R only occurs at x. So, we will write “R” instead
of “x.R”.
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Now we are left to show Q′(〈H 〉N ) = 〈Q(H)〉 for every input H over inN .
Let the output of a configuration ρ, denoted out (ρ), be as defined in Section 4.2.
Abbreviate J = Q′(〈H 〉N ). We show J ⊆ 〈Q(H)〉. By confluence of M, there is
a run S of M on 〈H 〉N such that out (last (S)) = J . Next, because M simulates
N , there is a run R of N on H such that 〈out (last (R))〉 = out (last (S)). So, J =
〈out (last (R))〉 ⊆ 〈Q(H)〉. Now we show 〈Q(H)〉 ⊆ J . By confluence of N , there
exists a run R of N on H such that Q(H) = out (last (R)). Because M simulates
N , there exists a run S of M on 〈H 〉N such that out (last (S)) = 〈out (last (R))〉.
Hence, 〈Q(H)〉 = out (last (S)) ⊆ J .

7.2.2 Common Concepts and Notations

A ground literal is a fact or a fact with “¬” prepended. For a database instance I and
a ground literal l, we write I |= l to mean l ∈ I if l is a fact and otherwise we mean
f /∈ I , where l = ¬f . For a derivation tree T , for each internal node x, we write
bodyT (x) to denote the set of ground literals obtained by applying valT (x) to the
body literals of ruleT (x).

Two derivation trees T and S are said to be structurally equivalent if (i) the trees
(nodesT , edgesT ) and (nodesS , edgesS) are isomorphic under a node bijection b :
nodesT → nodesS ; and, (ii) for every edge (x, y) ∈ edgesT , we have ruleT (x) =
ruleS(b(x)) and litT (y) = litS(b(y)). We call b the structural bijection.

7.2.3 Building the UCQ¬-Program

In this section, we construct the required UCQ¬-program Φ. We gradually build
up the different parts of this program, and introduce auxiliary definitions and nota-
tions along the way. Using the equivalence between UCQ¬ and existential FO
with nonequalities, abbreviated ∃FO, some parts are specified in ∃FO for technical
convenience.

Let Υ and Π respectively denote the transducer schema and transducer of single-
node transducer network M.

General Derivation Trees Let T be a derivation tree of Π . We define the active
domain of T to be the set of all values assigned by valuations in T . We say that T
is general if there is no structurally equivalent derivation tree S with a strictly larger
active domain. Intuitively, a general derivation tree assigns a different value to each
variable of a rule if possible.

All Output Strategies Let f orestR be a maximal set of general derivation trees of
transducer Π for output relation R, such that no two trees are structurally equiva-
lent, and such that no two trees have an overlap of their active domains. Because Π
is recursion-free, there are only a finite number of structurally different trees, and
thus f orestR is finite. Intuitively, f orestR represents all possible strategies of Π
to derive facts over R, using as much different values as possible. For each subset
G ⊆ f orestR , we write adom(G) to denote the union of all active domains of trees
in G.
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Canonical Runs Intuitively, for any particular input forΠ , we can make a selection
G ⊆ f orestR of all trees that “work” on that input, i.e., for all trees T ∈ G there is
a substitution of the values in T by values in the input so that the new valuations are
true. If we regard values in adom(G) as variables (as we will do later), this substitu-
tion of values looks very much like a valuation. Next, for G, we can formally define
a canonical run RG. The idea is that in RG we execute all trees of G concurrently,
with as few transitions as possible, i.e., by using their canonical schedulings. The run
RG will do n transitions, where n is the largest height of a tree in G.10 Hence, the
length of RG is bounded by the syntactical properties of Π .

Note that for an internal node of a derivation tree T , by message-positivity,
bodyT (x)|Υmsg contains only facts. Now, for each transition i ∈ {1, . . . , n} of RG,
we (want to) deliver the following message set

MG
i =

⋃

T ∈G

⋃

x ∈ intT ,

κT (x) = i

bodyT (x)|Υmsg .

In words: for each transition i, set MG
i is the union across all trees of G of the

messages needed by rules scheduled at transition i. We now make an ∃FO-formula
sndMsgG to express that these message sets can be sent. For notational simplic-
ity, the symbols of adom(G) represent variables. For a derivation tree T ∈ G, let
msgT ⊆ intT denote the set of internal nodes x where litT (x) is over a message
relation. Because sending rules are message-positive and static, it suffices to demand
that all involved input literals are satisfied (both positive and negative):

sndMsgG :=
∧

T ∈G

∧

x∈msgT

bodyT (x)|Υin .

This is a quantifier-free formula, where we write sets of literals in the conjunction,
with the understanding that such a set is written using some arbitrary ordering on its
elements.

Canonical Runs: Output Succeeds Let G be as above. Fix some T ∈ G. In the
following, we specify an ∃FO-formula to express that T succeeds in deriving its root
fact in RG. Here, a possible “danger”, is that the concurrent execution of T with
another tree S might make certain valuations in T become unsatisfying. This could
for instance happen when S derives a memory fact that T later tests for absence. We
formalize this below.

The alpha nodes of T , denoted αT , are all internal nodes x of T for which litT (x)
is a (positive) output or memory literal.11 Note that rootT ∈ αT . The valuations of
these alpha nodes have to be satisfiable to make T succeed. For each x ∈ αT , the
beta nodes of x, denoted βT (x), are the child-nodes y of x for which litT (y) is a
negative output or memory literal. By definition of derivation tree, βT (x) contains

10The height of a derivation tree is the largest number of edges on any path from a leaf to the root.
11This literal is always positive because x is an internal node.
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only leafs. For each x ∈ αT , a node y ∈ βT (x) is a potential danger: if the fact in the
ground literal valT (x)(litT (y)), henceforth referred to as “beta fact”, is accidentally
derived before transition κT (x), then valT (x) is unsatisfying in transition κT (x) (by
inflationarity of Π). The derivation of beta facts could happen when the message
deliveries of RG accidentally trigger some rules of Π .

To represent these unwanted derivations, we consider truncated derivation trees
that are like normal derivation trees, except that message nodes are also leafs. We
only consider truncated derivation trees for deriving output and memory facts. We
say that a truncated derivation tree S can be aligned to RG if there is a scheduling
λ : intS → {1, . . . , n} such that for each x ∈ intS , message set MG

λ(x) contains

bodyS(x)|Υmsg , i.e., for each valuation in S, the necessary messages occur in some
well-chosen transitions. Possibly multiple alignments exist for S. For an output or
memory fact f , we write alignG(f ) to denote the set of all pairs (S, λ) where S is a
truncated derivation tree for f having alignment λ to RG, and such that no two pairs
in alignG(f ) differ only in the values for representing tree-nodes. This set is finite,
as we now argue. First, becauseΠ is recursion-free, there are only a finite number of
structurally different (truncated) derivation trees for f . Second, only a finite number
of valuations can be used in the rules of such trees: because these rules are output or
memory rules, by message-boundedness, assigned values must either be in f or must
occur in a message, and RG contains only a finite number of messages.

Now we specify the formula to express that a derivation tree T derives its root fact
in RG. To obtain a general construction for later use, we take T to be a truncated
derivation tree for an output or memory relation, that has an alignment κ to RG. Note
that αT = intT . The formula is as follows:

succeedG,T ,κ := succeed in
G,T ,κ ∧ succeed

deny
G,T ,κ

with
succeed in

G,T ,κ :=
∧

x∈αT
bodyT (x)|Υin; and,

succeed
deny
G,T ,κ :=

∧

x∈αT

∧

y ∈ βT (x),

let f = f actT (y)

∧

(S, λ) ∈ alignG(f ),

λ(rootS) < κ(x)

¬succeedG,S,λ.

Intuitively, for each x ∈ αT , we express (i) that the input literals in bodyT (x) are
satisfied; and, (ii) we consider all possible truncated derivation trees for beta facts,
and their alignments, and demand that these alignments fail to derive the root (beta)
fact. The second requirement is expressed with a recursive construction through nega-
tion: intuitively, to protect the alpha facts, we must deny the beta facts, which in turn
(recursively) requires letting the alpha facts of trees for these beta facts fail, and so
on. This recursion ends because each time we pass a truncated derivation tree to the
recursive step, the root of this tree is scheduled strictly closer to the beginning of RG.
The final formula succeedG,T ,κ is quantifier-free, with variables in adom(G).

Combining Everything Let G ⊆ f orestR and T ∈ G be as above. We write T ↓

to denote the truncated version of T , by making the nodes that derive messages into
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leaf nodes. Note that the canonical scheduling κT , when restricted to the internal
nodes of T ↓, is an alignment of T ↓ to RG. We can combine our previous formulas
to express that the messages of RG can be sent and that T ↓ successfully derives its
root fact when its internal nodes are scheduled by κT :

deriveG,T := ∃z̄
(
diff V alG ∧ sndMsgG ∧ succeedG,T ↓,κT

)
,

where z̄ is an arbitrary ordering of the values in adom(G) that do not occur in the
root fact of T , and where

diff V alG =
∧

a, b ∈ adom(G),
a )= b

(a )= b).

The subformula diff V alG demands that a valuation is injective, which we need in
the correctness proof to convert concrete derivation trees to abstract ones (i.e., to
features of formula deriveG,T ). By the equivalence of ∃FO and UCQ¬, we may
consider deriveG,T to be a UCQ¬-program, having as free variables the tuple x̄ in
the root fact of T .12 We can create such a UCQ¬-program for every G ⊆ f orestR
and T ∈ G.

Before we can give the final UCQ¬-programΦ, we need to consider the following.
Although deriveG,T considers alignments of beta facts, an input for Π possibly
has not as many different values as adom(G). For this reason, we might overlook
some alignments that could occur on a real input. For example, an undesirable beta
fact might be derivable by a rule S(x, x) ← Amsg(x, x) where A

(2)
msg ∈ Υmsg. But

because G contains general trees, in run RG we might deliver only (abstract) Amsg-
facts with two different components, preventing an alignment of this rule. To solve
this problem, we consider equivalence relations E on adom(G). Assuming a total
order on dom, we can replace each value a ∈ adom(G) by the smallest value in its
equivalence class under E, giving a set of derivation trees E(G) with a smaller active
domain. Using E(G) instead of G, and a tree T ∈ E(G), the variables in UCQ¬-
program deriveE(G),T can represent more specific inputs. We write Eq(G) to denote
all equivalence relations of adom(G) under which the nonequalities of rules in G are
still satisfied.

Now, we define the final program Φ as

Φ :=
⋃

G⊆f orestR

⋃

E∈Eq(G)

⋃

T ∈E(G),

deriveE(G),T .

The correctness of Φ is shown in Appendix D.

8 Discussion and Future Work

We have shown that under five restrictions: recursion-freeness; inflationarity;
message-positivity; static message sending; and message-boundedness, one obtains

12A variable may occur multiple times in x̄.
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decidability in NEXPTIME of diffluence of relational transducer networks imple-
mented by unions of conjunctive queries with negation (and nonequalities). In fact,
the problem turns out to be complete for NEXPTIME.

As already mentioned in the Introduction, a topic for further work is to investi-
gate whether decidability can be retained while (slightly) relaxing the restrictions of
recursion-freeness, inflationarity, and message-positivity. Also, we have only consid-
ered concrete transducer networks, i.e., networks with a particular nodeset. It might
be interesting to decide if for a given transducer Π , all transducer networks are
confluent where Π is replicated on all nodes [8].

Regarding expressivity, the techniques of the upper bound can transform a given
confluent simple transducer network to a query description in UCQ¬. When the tech-
niques of the lower bound are applied to this query description, we obtain a simple
transducer network that does not use memory relations anymore, but still expresses
the same query as the original network. This can be considered to be some normal
form. It might be interesting to describe the smallest size that the normal form could
have in relationship to the original network.

There seem to be several reasonable ways to formalize the intuitive notion of
eventual consistency. In contrast to our current formalization, a stronger view of
eventual consistency [1, 8] is to require that on every input, all infinite “fair” runs
produce the same set of output facts. Again, a number of reasonable fairness condi-
tions could be considered here; a rather standard one would be to require that every
node performs a transition infinitely often, and that every sent message is eventu-
ally delivered. When a transducer network is eventually consistent in this stronger
sense, it is also in the confluence sense of this paper, but the other implication is
not necessarily true. Indeed, confluence only guarantees that outputs can still be pro-
duced when messages are delivered in the “right” way. For example, we might have
to deliver two messages simultaneously. But this might never happen in some par-
ticular fair run. Clearly, the choice of fairness notion plays an important role. Since
eventual consistency is indeed meant to be a very weak guarantee [24], it deserves
further research to better understand the relationship between eventual consistency
and fairness requirements. Further results on this matter are provided in follow-up
work [6].

There also seems to be a pragmatic lesson: although confluence is an interesting
property to guarantee for a network, the cost of automatically deciding it might be
too high. Automatically deciding confluence of distributed programs is, of course,
not the only way of guaranteeing confluence. Other approaches guarantee confluence
by syntactic limitations [4, 19], or by focusing on semantic classes of programs that
are confluent without expensive coordination [7, 8, 25].

Appendix A: Undecidability Results

A.1 Proof of Proposition 1

Inspired by the work of Deutsch et al. [11, 14], we reduce the finite implication prob-
lem for functional and inclusion dependencies to the diffluence decision problem.
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Section A.1.1 provides notations for dependencies. Next, Section A.1.2 contains the
technical description of the reduction. The correctness is shown in Section A.1.3.

A.1.1 Dependencies

We introduce notations for dependencies. Let D be a database schema, and let R(k) ∈
D. A functional dependency σ over R is a tuple (R, ā, b), where ā is a subsequence
of [1, . . . , k] and b ∈ {1, . . . , k}. This dependency holds for a database instance I
over D if for any pair of facts in I, if they have the same values on components ā then
they have the same value on component b.

Let R(k) and S(l) be relations in D. An inclusion dependency σ from R to S is
a tuple (R, ā, S, b̄), where ā and b̄ are subsequences of [1, . . . , k] and [1, . . . , l]
respectively, and ā and b̄ have the same length. Denoting ā = [a1, . . . , am] and
b̄ = [b1, . . . , bm], this dependency holds for a database instance I over D if

{(ua1 , . . . , uam)|R(u1, . . . , uk) ∈ I } ⊆ {(vb1 , . . . , vbm)|S(v1, . . . , vl) ∈ I }.

A.1.2 Transducer Network Construction

Let (D,Σ, σ ) be an instance of the finite implication problem. We create a single-
node transducer network N that is simple except that send rules don’t have to be
static and such that N is diffluent iff (D,Σ, σ ) is not valid.

The syntactical simplifications of Section 4.1 are applied.
Abbreviate Σ ′ = Σ ∪ {σ }. Let Υ be the transducer schema of Π . We define

Υin = D ∪ {A(1)} where A is a new relation name not yet occurring in D. Relation A
is used to cause inconsistencies. We define Υout = {T (1)}. We introduce the message
and memory relations of Υ while we describe the rules of Π below.

We construct Π to be recursion-free; so N is also globally recursion-free. More-
over, the output and memory rules will be message-bounded and all rules are
message-positive. We only add rules to insert memory facts, making Π inflationary.

Send Input First, Π sends all input facts to itself. This helps satisfy the message-
boundedness restriction. So, for each relation R(k) ∈ D, we have a rule:

Rmsg(u1, . . . ,uk) ← R(u1, . . . ,uk).

Projecting To check violations of Σ ′, received input messages are projected onto
auxiliary memory relations.

Let τ ∈ Σ ′ be a functional dependency. Denote τ = (R, ā, b). We add a memory
relation R

(l)
τ where l is the length of ā plus 1 (for b). On receipt of an Rmsg-fact, we

project components ā and b to Rτ , with ā placed (in order) before b. This can be
done in a message-bounded manner (details omitted).

Let τ ∈ Σ ′ be an inclusion dependency. Denote τ = (R, ā, S, b̄). We add two
memory relations R

(m)
τ and S

(m)
τ , where m is the length of ā and b̄. On receipt of an

Rmsg- and Smsg-fact, we project the components ā and b̄ (in order) to the relations Rτ
and Sτ respectively. Again, this can be done in a message-bounded manner.
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Checking The above auxiliary memory relations depend on message delivery, but
we don’t know when all input facts have been delivered. For this purpose we intro-
duce a special marker message datadone(0). We unconditionally send it in every
transition, with the rule

datadone() ← .

On receipt of datadone(), we create a snapshot of the input facts. We check depen-
dencies only once in this snapshot, by using the memory relation checkdone(0),
which is filled by the rule

checkdone() ← datadone().

To actually check dependencies, we proceed as follows. Let τ ∈ Σ ′ be a functional
dependency. Denote τ = (R, ā, b). We send message violτ () if τ is violated in the
snapshot, where k = |ā|:

violτ () ← Rτ (a1, . . . ,ak,b), Rτ (a1, . . . ,ak,b
′), b )= b′,

datadone(), ¬checkdone().

Now, let τ ∈ Σ ′ be an inclusion dependency. Denote τ = (R, ā, S, B̄). We send
message violτ () if τ is violated in the snapshot, where m = |ā| = |b̄|:

violτ () ← Rτ (a1, . . . ,am), ¬Sτ (a1, . . . ,am),

datadone(), ¬checkdone().

Diffluent Behavior We cause diffluent behavior if σ is violated and Σ is not. First,
we (unconditionally) send Amsg-facts, based on the input A-facts:

Amsg(u) ← A(u).

Received Amsg-facts are copied to output relation T while new memory relation
blocked(0) is empty:

T (u) ← Amsg(u), ¬blocked().

Blocking is triggered by the violation of σ :

blocked() ← violσ ().

So, if σ is violated, diffluence can be caused by varying the delivery order of Amsg-
facts and violσ (). But we want to remove the diffluence if any τ ∈ Σ turns out to
be violated as well, by adding this output rule:

T (u) ← Amsg(u), repair().

Here, repair(0) is a new memory relation that becomes enabled whenΣ is violated,
denoting Σ = {τ1, . . . , τn}:

repair() ← violτ1().
...

repair() ← violτn().
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A.1.3 Correctness

Let (D,Σ, σ ) be as above. Let N denote the constructed transducer network.

First Direction Suppose (D,Σ, σ ) is not valid. There is an instance I over D such
that I |= Σ and I ! σ . We give N the input J = I∪{A(a)} and we obtain diffluence
as follows.

In a first run R1, the message Amsg(a) is sent during the first transition, and in the
second transition we deliver only this message, causing the output fact T (a) to be
derived.

In a second run R2, we do not deliver Amsg(a). Instead, in R2 we send and deliver
all input facts of I, after which we deliver datadone(). Now, message violσ () is
sent because I ! σ . We deliver this message, causing blocked() to be derived. This
completes the construction of R2. Run R2 produces no output because Amsg(a) is not
delivered. Next, no extension of R2 can deliver violτ () for some τ ∈ Σ because
I |= Σ . Hence, repair() can not be derived. So, blocked() prevents T (a) from
being derived whenever Amsg(a) would be delivered.

Second Direction For the other direction, suppose that N is diffluent. There is an
input J for N , and two runs R1 and R2 of N on J, such that R1 derives an output
fact T (a) and R2 does not, and neither can T (a) be derived in any extension of R2.
We show there is a subset I ⊆ J |D such that I |= Σ and I )|= σ , so that (D,Σ, σ )
is not valid.

First, the derivation of T (a) in R1 implies that Amsg(a) can be sent in R1. Hence,
Amsg(a) can be sent in R2 and in extensions thereof. Therefore, what is preventing
T (a) from being derived in extensions of R2 is the presence of blocked() and the
absence of repair(). The fact blocked() was derived by the delivery of violσ ().
This delivery must have happened inside R2 because otherwise in some extension of
R2 we could postpone the delivery of violσ () until after Amsg(a) was delivered,
deriving T (a), which is impossible in any extension of R2.

The sending of violσ () implies that datadone() was delivered in some tran-
sition i of R2, and at moment the transducer had received a snapshot I ⊆ J |D such
that I ! σ . Also, because repair() was not derived in R2 and can not be derived
in an extension, it must be that no violτ ()-fact was ever sent for any τ ∈ Σ . So, in
transition i of R2, we have I |= Σ .

A.2 Proof of Proposition 2

Let (U, V ) be an instance of the Post correspondence problem. Denote U =
u1, . . . , un and V = v1, . . . , vn. We construct a single-node transducer network N
that is simple except that local message recursion is allowed, such that (U, V ) has a
match iff N is diffluent.

A.2.1 Notations

For a word w and an index k ∈ {1, . . . , |w|}, we write w[k] to denote the symbol of
w at position k.
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A.2.2 Transducer Network Construction

We now define the single transducer Π of N and its transducer schema Υ . The
syntactical simplifications of Section 4.1 are applied.

Represent Words For each i ∈ {1, . . . , n}, we add to Υin unary relations Ui
k and

V i
l with k ∈ {1, . . . , |ui |} and l ∈ {1, . . . , |vi |}. Now, the words ui and vi can be

encoded. To illustrate, ui = aba is represented by the facts {Ui
l (a), Ui

2(b), Ui
3(a)}.

To represent a word-structure with arbitrary length, we provide Υin with
the input relations R(2), L(2) and F (1). Here, L and F respectively stand for
“label” and “first”. For instance, the word abc might be represented as the facts
{R(1, 2), R(2, 3), L(1, a), L(2, b), L(3, c), F (1)}. The word a can be represented by
{F(1), L(1, a)}.

We send error() whenever the previous input relations violate the following
natural constraints:

– all relations Ui
k and V

j
l contain at most one symbol; for each pair ui and vj , and

each k ∈ {1, . . . , |ui |} and l ∈ {1, . . . , |vj |}, the relations Ui
k and V

j
l contain

a different symbol iff ui[k] )= vj [l]; similarly for pairs of two U-words or two
V-words;

– relation R contains only chains; relation F designates at most one start element;
each element on the chain has at most one label.

We omit the details of the rules to check these constraints.

Alignment We search a match for (U, V ) by aligning (ui, vi)-pairs against the input
word-structure. Let i ∈ {1, . . . , n}. To align the single pair (ui, vi), we use the
following binary message relations:

– relations align[i, k, k] with 1 ≤ k ≤ min(|ui |, |vi |) to represent simultaneous
alignment, one character at a time;

– relations align[i, k, |vi |] with |vi |+ 1 ≤ k ≤ |ui | to continue aligning ui when
vi has reached its end;

– relations align[i, |ui |, k] with |ui |+ 1 ≤ k ≤ |vi | to continue aligning vi when
ui has reached its end.

Next, we have the start rule, to start aligning at the beginning of the word-structure:

align[i, 1, 1](a,a) ← F(a), L(a,c), Ui
1(c), V i

1 (c).

Then we have simultaneous continuation rules for each k satisfying 1 ≤ k ≤
min(|ui |, |vi |)− 1:

align[i, k + 1, k + 1](a′,b′) ← align[i, k, k](a,b), R(a,a′), R(b,b′),
L(a′,c1), L(b′,c2), Ui

k+1(c1), V i
k+1(c2).

We have separate continuation rules for ui , for each k satisfying |vi | ≤ k ≤ |ui | − 1:

align[i, k+1, |vi |](a′,b)←align[i, k, |vi |](a,b), R(a,a′), L(a′,c), Ui
k+1(c).
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Similarly, we have separate continuation rules for vi , for each k satisfying |ui | ≤
k ≤ |vi | − 1:

align[i, |ui |, k+1](a,b′)← align[i, |ui |, k](a,b), R(b,b′), L(b′,c), V i
k+1(c).

Lastly, once ui and vi are both fully aligned, for each pair (uj , vj ) with j ∈
{1, . . . , n} we have the switch rule from pair i to pair j (with possibly i = j ):

align[j, 1, 1](a′,b′) ← align[i, |ui |, |vi |](a,b), R(a,a′), R(b,b′),

L(a′,c1), L(b′,c2), U
j
1 (c1), V

j
1 (c2).

Diffluent Behavior Diffluence is obtained in a similar fashion as in Section A.1. We
add input relation A(1) and message relation A

(1)
msg, and a sending rule:

Amsg(u) ← A(u).

We also have an output relation T (1) to which received Amsg-facts are copied while
a memory relation blocked() is nonempty:

T (u) ← Amsg(u), ¬blocked().

Now, whenever we receive a message of the form align[i, |ui |, |vi |](a, a), we
have been able to successfully align a sequence of (ui, vi)-pairs to the input word-
structure, so that the U- and V-side end at the same position. This corresponds to a
match for (U, V ). For each i ∈ {1, . . . n}, add the memory insertion rule:

blocked() ← align[i, |ui |, |vi |](a,a).

Note that these rules are message-bounded. So, diffluence is obtained by varying
the delivery order of Amsg-facts and such alignment-messages. Inconsistencies are
repaired when error() is received (together with Amsg-facts):

T (u) ← Amsg(u), error().

A.2.3 Correctness

Let (U, V ) be an instance of the Post correspondence problem. Let N be the
constructed transducer network.

First Direction Suppose (U, V ) has a match E = e1, . . . , em. Diffluence of N is
obtained as follows. Denote w = ue1 . . . uem (or equivalently w = ve1 . . . vem ). We
can naturally encode (U, V ) and w (as the word-structure) over the input relations.
This results in an instance J on which error() can not be sent. We give I = J ∪
{A(a)} as input to N .

In a first run R1 on I, we immediately send and deliver Amsg(a), causing T (a) to
be derived. In a second run R2, we do not deliver Amsg(a), but, following sequence
E, we send messages to align pairs of (U, V ) to the encoding of w. Abbreviating
z = em, and assuming the chain in the word-structure consists of consecutive natural
numbers starting at 1, at some point we send align[z, |uz|, |vz|](|w|, |w|). Upon
delivering this message in R2, we derive blocked(). Because error() can not be
sent, T (a) can not be derived in any extension of R2.



Theory Comput Syst

Second Direction Suppose that N is diffluent. We show that (U, V ) has a match.
There is an input I for N and two runs R1 and R2 such that R1 derives an out-
put fact T (a) that is not derived in R2 or any extensions thereof. The presence of
T (a) in R1 implies that Amsg(a) can be delivered in R1. So, Amsg(a) can also be
delivered in extensions of R2. The reason why T (a) can not be derived in such exten-
sions is the presence of blocked() and because error() can never be sent. Fact
blocked() must have been derived in R2 itself, by delivering a message of the form
align[i, |ui |, |vi |](a, a).13

By going over the derivation history of align[i, |ui |, |vi |](a, a) in a forward
manner, we obtain a sequence E = e1, . . . , em of indices in {1, . . . , n} by looking
at the used start- or switch-rules. Sequence E is a match, because the absence of
error() implies that the alignment of the U-words “sees” the same word-structure
as the alignment of the V-words. This would not be the case, for instance, when
an element of the word-structure could have two labels or when the other natural
constraints on the input are violated.

Appendix B: Small Model Property

B.1 Details of Section 5.3

Let R be a run of N on input I. We construct histR and msgR such that the proper-
ties 1, 2, and 3 of Section 5.3 are satisfied. Let n be the number of transitions of R.
For each i ∈ {1, . . . , n + 1}, we denote the ith configuration of R as ρi = (sRi , bRi ).
For a transition i, we denote the multiset of delivered messages and the set of sent
messages respectively as mR

i and δRi .
We will perform the construction backwards, starting in the last transition of R.

Inductively, for each transition j = n, n − 1, . . . , 1, we define histRj and msg
j
R,

where, intuitively, hist
j
R and msg

j
R say something about the C-facts and their needed

messages for transition j and later. In the end, we define histR = hist1
R and

msgR = msg1
R. For each pair of transitions j and i, histRj and msg

j
R give rise to the

(multi)sets γ j
i , β

j
i , and Ej

i , defined as in Section 5.3.2. By induction on j, we want
the following properties to be satisfied:

1. γ
j
i ' bRi for each transition index i;

2. β
j
i is a set for each transition index i;

3. Ej
i = γ

j
i+1 ∩ δRi for each transition index i; and,

4. hist
j
R contains only derivation pairs for transitions j and later.

To allow for a simple base case, we start the inductive construction at j = n+1 and
we define histn+1

R = ∅ (no mappings) and msgn+1
R = ∅. The induction properties

13If blocked() would not be derived in R2 itself, we could simply extend R2 by delivering Amsg(a),
upon which T (a) would be derived.
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are satisfied for the base case. For the induction hypothesis, we assume that hist
j+1
R

and msg
j+1
R are defined such that the properties are satisfied.

B.1.1 Extend Derivation History

We define hist
j
R to be hist

j+1
R extended with an assignment of a derivation pair

(ϕ, V ) to each pair (j, g) where g is either (i) an output or memory C-fact created
during transition j of R, or (ii) a needed message such that (j, g, l) ∈ msg

j+1
R

for some l. Note that hist
j
R is a function because there are no derivation pairs for

transition j in hist
j+1
R .

Now we define msg
j
R as an extension of msg

j+1
R . Let β be the set of all messages

positively needed by the selected derivation pairs in hist
j
R for transition j. For each

g ∈ β, we will select an origin transition k of g, and the resulting triple (k, g, j) is
added to msg

j
R. There are two cases:

– If there is no triple (k0, g, l) ∈ msg
j+1
R with k0 < j then we define k to be the

largest transition index of R for which k < j and g ∈ δRk ;

– Otherwise, let k0 be the smallest transition of R for which (k0, g, l) ∈ msg
j+1
R

and k0 < j . Then we can apply Claim B.1 to know num(g, γ
j+1
k0

) <

num(g, bRk0
). So, intuitively, we have some instance of g in bRk0

that is not yet

used in msg
j+1
R . We now define k as the largest transition index of R for which

k < k0 and g ∈ δRk .

B.1.2 Show Induction Properties

We show that the induction properties are satisfied. First, hist
j
R by construction only

contains derivation pairs for transitions j and later. Now we show the properties for
msg

j
R. Because we have added triples only for facts in β to msg

j
R with respect to

msg
j+1
R , it is sufficient to focus on one g ∈ β. Let k be the transition index such that

(k, g, j) ∈ msg
j
R. Let i ∈ {1, . . . , n} be an arbitrary transition index. We consider

each of the properties:

Inclusion We have to show num(g, γ
j
i ) ≤ num(g, bRi ). If i ≤ k then

num(g, γ
j
i ) = 0, because index k by choice is the smallest transition index of R for

which (k, g, l) ∈ msg
j
R for some l. If j < i, then num(g, γ

j
i ) = num(g, γ

j+1
i )

since (k, g, j) is only a delivery for transition j; thus the property is satisfied by
applying the induction hypothesis.

Lastly, we consider the case k < i ≤ j . If there is no triple (k0, g, l) ∈ msg
j+1
R

with k0 < j then by choice of k we have num(g, γ
j
i ) = 1. And because g is not sent

between k and j and yet num(g, bRj ) ≥ 1 (since g ∈ β), it must be num(g, bRi ) ≥ 1;

hence, num(g, γ
j
i ) ≤ num(g, bRi ).
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Now suppose that k0 exists. We consider the subcases k < i ≤ k0 and k0 < i ≤ j .
If k < i ≤ k0 then num

(
g, γ

j
i

)
= 1, and since g is not sent between k and k0 and yet

num
(
g, bRk0

)
≥ 1 (Claim B.1), it must be num

(
g, bRi

)
≥ 1; hence, num

(
g, γ

j
i

)
≤

num
(
g, bRi

)
. If k0 < i ≤ j , we have num

(
g, γ

j
i

)
= num

(
g, γ

j+1
i

)
+ 1 because

(k, g, j) ∈ msg
j
R is new (and k < k0) and num

(
g, γ

j+1
i

)
< num

(
g, bRi

)
(Claim

B.1); hence, num
(
g, γ

j
i

)
≤ num

(
g, bRi

)
.

Set We have to show num
(
g, β

j
i

)
≤ 1. If i < j then num

(
g, β

j
i

)
= 0 and if j < i

then num
(
g, β

j
i

)
= num

(
g, β

j+1
i

)
≤ 1. If i = j then the property is satisfied

because we have selected only one k such that (k, g, j) ∈ msg
j
R.

Equality We have to show num
(
g, Ej

i

)
= num

(
g, γ

j
i+1 ∩ δRi

)
. Let k be as

defined above. If i < k then num
(
g, Ej

i

)
= 0 and num

(
g, γ

j
i+1

)
= 0 because k

is the smallest origin transition of g registered in msg
j
R. If j ≤ i then Ej

i = Ej+1
i

and γ j
i+1 = γ

j+1
i+1 because in msg

j
R\msg

j+1
R we do not register the sending of mes-

sages in j. Next, we consider the case k ≤ i < j . A first observation is that by
choice of k, we have num

(
g, γ

j
i+1

)
≥ 1. Hence, it suffices to show num

(
g, Ej

i

)
=

num
(
g, δRi

)
. If i = k then both num

(
g, δRi

)
= 1 and num

(
g, Ej

i = 1
)

hold. Now
only the more specific case k < i < j remains, which we divide in two subcases.

If there is no triple (k0, g, l) ∈ msg
j+1
R with k0 < j , then because k < i < j ,

by choice of k, the message g is not sent in transition i. This gives num
(
g, δRi

)
=

0. Consequently g was never registered as being sent from transition i, giving
num

(
g, Ej

i

)
= 0, as desired.

Now suppose that k0 exists. If k < i < k0 then, again like the previous case,
we have num

(
g, δRi

)
= 0 and num

(
g, Ej

i

)
= 0. Suppose k0 ≤ i < j . We

have num
(
g, γ

j+1
i+1

)
≥ 1 because (k0, g, l) ∈ msg

j+1
R for some l with j < l.

Moreover, since num
(
g, Ej+1

i

)
= num

(
g, γ

j+1
i+1 ∩ δRi

)
by the induction hypoth-

esis, we obtain num
(
g, Ej+1

i

)
= num

(
g, δRi

)
. Lastly, we have num

(
g, Ej

i

)
=

num
(
g, Ej+1

i

)
because k < i. Hence, num

(
g, Ej

i

)
= num

(
g, δRi

)
.

B.1.3 Claims

Claim B.1 Suppose we are in transition j of the inductive construction, with hist
j+1
R

and msg
j+1
R already defined, satisfying the induction properties. Let g ∈ β. Suppose

there is a transition index k0 of R such that (k0, g, l) ∈ msg
j+1
R and k0 < j . Assume
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that k0 is the smallest such index. For each transition i ∈ {j, j − 1, . . . , k0}, we have
num

(
g, γ

j+1
i

)
< num

(
g, bRi

)
.

Proof We show this by backward induction on i = j , j − 1, . . . , k0. To increase
readability, we will abbreviate j + 1 as the prime symbol ′. So, γ j+1

i , Ej+1
i , and

msg
j+1
R become respectively γ ′i , E

′
i , and msg′R.

Base Case For the base case, i = j , we have to show num
(
g, γ ′i

)
< num

(
g, bRi

)
.

If we can show num
(
g, γ ′i

)
≤ num

(
g, γ ′i+1\δRi

)
, then by applying the induction

property γ ′i+1 ' bRi+1 on msg′R, we obtain num
(
g, γ ′i

)
≤ num

(
g, bRi+1\δRi

)
. And

using bRi+1\δRi = bRi \mR
i (by the operational semantics), we get num

(
g, γ ′i

)
≤

num
(
g, bRi \mR

i

)
. Lastly, because mR

i ' bRi and num
(
g, mR

i

)
> 1 (indeed, g ∈

β ' mR
j = mR

i ), we obtain num
(
g, γ ′i

)
, < num

(
g, bRi

)
, as desired.

We are left to show num
(
g, γ ′i

)
,≤ num

(
g, γ ′i+1\δRi

)
. Because in msg′R

no needed messages are registered for transition j (and smaller), it must be
num

(
g, γ ′i

)
, = num

(
g, γ ′i+1\E ′i

)
. If we can show num

(
g, E ′i

)
= num

(
g, δRi

)
,

then we are ready. It actually suffices to show g ∈ γ ′i+1, because then num
(
g, E ′i

)
=

num
(
g, δRi

)
follows from the induction property E ′i = γ ′i+1 ∩ δRi of msg′R.

We show g ∈ γ ′i+1. By definition of k0, there is a triple (k0, g, l) ∈ msg′R for
some l. Again, because in msg′R no needed messages are registered for transition j
and smaller, it must be j < l or equivalently j + 1 = i + 1 ≤ l. Hence, g ∈ γ ′i+1 by
definition of γ ′i+1.

Inductive Step For the induction hypothesis, suppose that num
(
g, γ ′i+1

)
<

num
(
g, bRi+1

)
. We show num

(
g, γ ′i

)
< num

(
g, bRi

)
. We proceed similarly as in

the base case, but the strictness “<” is obtained differently.
First, by definition of k0, we have (k0, g, l)∈msg

j+1
R for some l. Like above, we

have j <l. Hence, k0≤ i < l or equivalently k0 < i+1 ≤ l and thus num
(
g, γ ′i+1

)
≥

1. Because δRi is a set, if we can show num
(
g, γ ′i

)
≤ num

(
g, γ ′i+1\δRi

)
, then

the induction hypothesis gives num
(
g, γ ′i

)
< num

(
g, bRi+1\δRi

)
. By the oper-

ational semantics we would further obtain num
(
g, γ ′i

)
< num

(
g, bRi \mR

i

)
≤

num
(
g, bRi

)
, as desired.

Showing num
(
g, γ ′i

)
≤ num

(
g, γ ′i+1\δRi

)
is like in the base case.

Claim B.2 Let R be a run of N on I. Let hist and msgR be as defined in Section 5.3.
Let i be a transition index of R. We have γi+1 = (γi\βi)∪Ei (multiset difference and
union).

Proof Let g be a fact. We show num(g, γi+1) = num(g, (γi\βi) ∪ Ei ).
First, num(g, γi+1) is, by definition of γi+1, the number of triples (j, g, k) ∈

msgR for which j < i + 1 and i + 1 ≤ k. Hence, num(g, γi+1) = e1 + e2, where

– e1 is the number of triples (j, g, k) ∈ msgR for which j < i and i + 1 ≤ k, and,



Theory Comput Syst

– e2 is the number of triples (j, g, k) ∈ msgR for which j = i and i + 1 ≤ k.

Regarding e2, since always j < k, the equality j = i already implies i + 1 ≤ k.
So, e2 simplifies to the number of triples (i,g, k) ∈ msgR, or equivalently e2 =
num(g, Ei ). If we would know that e1 = num(g, γi\βi) then overall we would
obtain, as desired:

num(g, γi+1) = num(g, γi\βi) + num(g, Ei )

= num(g, (γi\βi) ∪ Ei ).

Now we show e1 = num(g, γi\βi). Using that i + 1 ≤ k is equivalent to i < k, we
have e1 = f1 − f2, where

– f1 is the number of triples (j, g, k) ∈ msgR for which j < i and i ≤ k, and,
– f2 is the number of triples (j, g, k) ∈ msgR for which j < i and i = k (or

simply i = k because always j < k).

By definition of γi and βi , we have f1 = num(g, γi) and f2 = num(g, βi). Lastly,
because num(g, βi) ≤ num(g, γi), we obtain

e1 = num(g, γi)− num(g, βi)

= num(g, γi\βi).

B.2 Details of Section 5.4

Claim B.3 Let the transitions of S be defined up to and including transition i. If
γi ' bSi then βi ⊆

(
mS

i

)
.

Proof By definition, mS
i =

(
bSi \(γi\βi)

)
∩mR

i . Let g ∈ βi . It is sufficient to show
that num

(
g, bSi \(γi\βi)

)
≥ 1 and num

(
g, mR

i

)
≥ 1.

We show that num
(
g, bSi \(γi\βi)

)
≥ 1. It is sufficient to show num

(
g, bSi

)
≥ 1

and num(g, γi\βi) < num
(
g, bSi

)
. First, because βi is a set (property of msgR),

and g ∈ βi , we have num(g, βi) = 1. Also, the given assumption γi ' bSi implies
num(g, γi) ≤ num

(
g, bSi

)
.

– We show num
(
g, bSi

)
≥ 1. From the definition of βi and γi , we have

num(g, βi) ≤ num(g, γi). And since num(g, βi) = 1 and num(g, γi) ≤
num

(
g, bSi

)
, we obtain num

(
g, bSi

)
≥ 1.

– We show num(g, γi\βi) < num
(
g, bSi

)
. Since num(g, βi) = 1 and

num(g, βi) ≤ num(g, γi), we have num(g, γi\βi) < num(g, γi). Combined
with num(g, γi) ≤ num

(
g, bSi

)
, we obtain num(g, γi\βi) < num

(
g, bSi

)
.

We are left to show that num
(
g, mR

i

)
≥ 1. By definition of g ∈ βi , there is

a triple (k, g, l) ∈ msgR with l = i. Hence, by construction of msgR, we have
num

(
g, mR

i

)
≥ 1.
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Claim B.4 Let R be a run of N on input I. Suppose a run S of N on J has the
properties that (i) last (S) and last (R) contain the same output and memory C-
facts, and, (ii) the message buffer of last (S) is a submultiset of the message buffer in
last (R). Then, for every extension S ′ of S, there is an extension R′ of R such that
last (S ′) and last (R′) again contain precisely the same output and memory C-facts.

Proof Let S ′ be an extension of S that does m new transitions after those of S, with
m ≥ 1. The idea is to extend R by also doing m new transitions, in each of which we
do the same message deliveries as in the corresponding transition in the extension of
S. This results in run R′.

For each i ∈ {1, . . . , m + 1}, let ρi =
(
sRi , bRi

)
and σi =

(
sSi , bSi

)
denote the

ith configuration in the extension of respectively R and S, with ρ1 = last (R) and
σ1 = last (S). We show by induction on i ∈ {1, . . . , m + 1} that (i) σi and ρi

contain the same output and memory C-facts, and, (ii) the message buffer of σi is
a submultiset of the message buffer of ρi . This second property helps us deliver the
same messages in the extension of R as done in the extension of S.

For the base case, these properties hold because ρ1 = last (R) and σ1 = last (S).
Assuming the properties hold for configuration i with i ≥ 1, for the inductive step
we show that they can be satisfied in configuration i + 1. Recall that transition i is
responsible for transforming configuration i into configuration i + 1. Now, in tran-
sition i of R′ we deliver the same message multiset as in transition i of S ′, which is
possible by induction property (ii).

Output and Memory We show that σi+1 and ρi+1 have the same output and mem-
ory C-facts. To show that the C-facts of σi+1 are a subset of those in ρi+1, we can
apply Claim B.6 (property 1). To show the reverse inclusion, let g be a newly derived
C-fact in transition i of R′. We show that g is also created in transition i of S ′. Let
(ϕ, V ) be a derivation pair for g in transition i of R′. We show that V is also satisfying
for ϕ in transition i of S ′.

– Let h ∈ V (posϕ)|Υin . We have to show h ∈ J . Suppose we would know that
adom(h) ⊆ adom(J ). Then, since h ∈ I (because V is satisfying for ϕ in R′)
and J = I [adom(J )] (Claim B.5), we have h ∈ J , as desired.

Now we show that adom(h) ⊆ adom(J ). Let a ∈ posϕ |Υin be an atom such
that V (a) = h. A variable u in a is either free or bound. If u is free then V (u) ∈
C because g is a C-fact, and thus V (u) ∈ adom(J ) because C ⊆ adom(K1) ⊆
adom(J ). Next, if u is bound then by message-boundedness of ϕ, value V (u)
occurs in a delivered message during transition i of R′. But this message is also
delivered during transition i of S ′, and because values in messages of S ′ are
restricted to adom(J ), value V (u) occurs in adom(J ).

– Let h ∈ V (negϕ)|Υin . We have to show h /∈ J . This follows from h /∈ I (since V
is satisfying for ϕ in R′) and J ⊆ I .

– Recall that ϕ is message-positive. Because V is satisfying for ϕ during transition
i of R′, each message h ∈ V (posϕ)|Υmsg is delivered during that transition. By
definition of the message deliveries in R′, these messages are also delivered in
transition i of S ′.



Theory Comput Syst

– Let h ∈ V (posϕ)|Υout∪Υmem. We have to show that h is in σi . Because g is a C-
fact, the message-boundedness of ϕ implies that h is a C-fact. And because V is
satisfying for ϕ in R′, h is in ρi . By the induction hypothesis, ρi and σi have the
same output and memory C-facts. Hence, h is in σi . Similarly we can show for
each h ∈ V (negϕ)|Υout∪Υmem that h is not in σi .

– Because the nonequalities of ϕ are satisfied under V in R′, they are also satisfied
in S ′.

We conclude that V is satisfying for ϕ during transition i of S ′. Hence, g ∈ σi+1.

Message Buffer We show bSi+1 ' bRi=1. Let m denote the message multiset delivered
in transition i. Let δRi and δSi denote the message sets sent in new transition i of R′

and S ′ respectively. The operational semantics implies that bRi+1 = (bRi \m) ∪ δRi
and bSi+1 = (bSi \m) ∪ δSi (multiset difference and union). The desired inclusion
bSi+1 ' bRi+1 follows from (bSi \m) ' (bRi \m) (by the induction hypothesis) and
δSi ⊆ δRi (by Claim B.6, property 2).

Claim B.5 The instance J satisfies J = I [adom(J )].

Proof This is because (i) J ⊆ I implies J ⊆ I [adom(J )], and (ii), since adom(J ) ⊆
adom(K1) ∪ adom(K2), we have

I [adom(J )] ⊆ I [adom(K1)∪ adom(K2)] = J.

Claim B.6 Let R be a run of N on I and let S be a run of N on J. Let i and j be
a transition index of respectively R and S. For transition i of R, let ρi , mR

i , and
ρi+1, respectively denote the begin-configuration, the delivered messages, and the
end-configuration. For transition j of S we similarly define σj , m

S
j , and σj+1.

Suppose that (i) ρi and σj have the same output and memory C-facts, and, (ii)
mS

j ' mR
i . The following properties hold:

1. The output and memory C-facts of σj+1 are a subset of those in ρi+1.
2. The messages sent in transition j of S are a subset of those sent in transition i

of R.

Proof The two properties are shown below.

Property 1 Let g be an output or memory C-fact that is newly derived during tran-
sition j of S, by means of a derivation pair (ϕ, V ). We show that V is also satisfying
for ϕ during transition i of R.

– Let h ∈ V (posϕ)|Υin . We have to show h ∈ I . This follows from h ∈ J (since V
is satisfying for ϕ in S) and J ⊆ I (by construction of J).

– Let h ∈ V (negϕ)|Υin . We have to show h /∈ I . Since V is satisfying for ϕ in
S, we have h /∈ J . Since V can only assign values from adom(J ), we have
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adom(h) ⊆ adom(J ). So, if h ∈ I then h ∈ I [adom(J )] = J (Claim B.5), which
is false. Hence, h /∈ I .

– Recall that ϕ is message-positive. Let h ∈ V (posϕ)|Υmsg . We have to show that
h ∈ mR

i . Because V is satisfying for ϕ in S, we have h ∈ mS
i ' mR

i .
– Let h ∈ V (posϕ)|Υout∪Υmem. We have to show that h is in ρi . Because g is a C-

fact, the message-boundedness of ϕ implies that h is a C-fact. Moreover, because
V is satisfying for ϕ, fact h is a C-fact in σj and thus by assumption also in ρi .

We can similarly show for each h ∈ V (negϕ)|Υout∪Υmem that h /∈ ρi .
– Lastly, because the nonequalities of ϕ are satisfied under V in S, they are also

satisfied under V in R.

We obtain that V is satisfying for ϕ during transition i of R. Hence, g is in ρi+1.

Property 2 Let g be a message sent in transition j of S, by means of a derivation pair
(ϕ, V ). We show that V is also satisfying for ϕ during transition i of R. Because send
rules are static, we only have to reason about input and message body atoms of ϕ.
For these body atoms, the proof of property 1 above can actually be applied verbatim
to show (i) for each h ∈ V (posϕ)|Υin and h ∈ V (negϕ)|Υin that respectively h ∈ I
and h /∈ I ; and (ii) for each h ∈ V (posϕ)|Υmsg that h is delivered in transition i
of R.

Appendix C: Decidability

C.1 Details of Section 6.1.2

Claim C.1 Let f be an output fact created in some run of N on an input I. Denote
C = adom(f ). Let R be an arbitrary run of N on input I. There exists a run S of N
on input I with at most runLen transitions and such that last (S) contains precisely
the same output and memory C-facts as last (R).

Proof We start by sketching the approach. Like in Section 5.3, we can “mark” the
transitions where the output and memory C-facts are created, and also the transitions
where any message is sent that is recursively needed by such a C-fact. This gives us
the function histR and the set msgR as defined there (satisfying the properties of
Section 5.3.2). Since each C-fact requires at most BP messages by recursion-freeness,
at most CBP + C = runLen transitions are marked this way. The maximum would be
reached if each C-fact requires a unique set of messages. Let M denote the marked
transition indices of R. Intuitively, the new run S does only the marked transitions,
so |M| in total.

We also need some extra notations. We write ρi = (sRi , bRi ) and σi = (sSi , bSi ) to
denote the begin-configuration of transition i in R and S respectively. For transition
i of R, let γi be as defined in Section 5.3.2, based on msgR. Denote n = |M|. We
can order the transitions of M in ascending order, and we write M(i) to denote the
transition index of M at ordinal i in this ordering, with i ∈ {1, . . . , n}. For uniformity,
we define M(n + 1) = n′ + 1, with n′ the last transition index of R.
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Now, by induction on the configurations, we construct S so that each configuration
index i ∈ {1, . . . , n + 1} satisfies the following properties:

– sSi contains the same output and memory C-facts as sRM(i); and,

– γM(i) is a submultiset of bSi .

Then, the last configuration sSn+1 contains the same output and memory C-facts as
sRM(n+1) = sRn′+1, which is the last configuration of R, as desired. The second
induction property helps in showing the first induction property.

For the base case (i = 1), we have sS1 = ∅ because σ1 is the start configuration of
S. Moreover, sRM(1) can not contain any output and memory C-facts because M(1)
is the first marked transition, and thus the C-facts are created in or after transition
M(1). A similar reasoning applies to needed messages: γM(1) = ∅, which is a
submultiset of bS1 .

For the induction hypothesis, we assume that the properties hold for configura-
tion σi of S, with i ≥ 1 (and i ≤ n). Abbreviate j = M(i) and let βj be as
in Section 5.3.2. We define transition i of S to deliver precisely set βj . Note that
we can deliver βj because γj ' bSi (induction hypothesis) and βj ' γj (follows
from their definition).14 We now show that the induction properties are satisfied for
configuration σi+1.

Output and Memory Abbreviate k = M(i + 1). We have to show that sSi+1 and
sRk contain the same output and memory C-facts. We have j < k (because M(i) <
M(i + 1)). Also, there are no other marked transitions between j and k, so no new
output and memory C-facts are created between j and k. Finally, inflationarity implies
that sRj+1 and sRk contain precisely the same output and memory C-facts. Hence, it is

sufficient to show that sSi+1 and sRj+1 contain the same output and memory C-facts.

First, let g be an output or memory C-fact in sSi+1. We show that g ∈ sRj+1. If

g ∈ sSi then by the induction hypothesis g ∈ sRj ⊆ sRj+1. Now suppose g ∈ sSi+1\sSi .
Let (ϕ, V ) be a derivation pair for g in transition i of S. We show that V is also
satisfying for ϕ in transition j of R.

– Since S and R are given the same input, the input literals in the body of ϕ are
satisfied under V in transition j of R as well.

– Let h ∈ V (posϕ)|Υmsg . Since V is satisfying for ϕ in transition i of S, it must be
h ∈ βj . By construction of msgR, the set βj is delivered in transition j of R, as
desired.

– Since sSi and sRj contain the same output and memory C-facts (induction hypoth-
esis), message-boundedness of ϕ implies that the output and memory literals of
ϕ are satisfied under V in transition j of R.

– Finally, the nonequalities of ϕ under V are also satisfied in transition j of R
because they are satisfied in transition i of S.

14We deliver no more than βj to avoid unwanted fact derivations.
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Let g be an output or memory C-fact in sRj+1. Similarly to the above, if g ∈ sRj then

by the induction hypothesis g ∈ sSi ⊆ sSi+1. Because g is an output or memory C-
fact, the mapping histR(j, g) = (ϕ, V ) is defined. We show that V is also satisfying
for ϕ in transition i of S. The reasoning for nonequalities and input, output, and mem-
ory literals of ϕ is the same as above for the case g ∈ sSi+1\sSi . Let h ∈ V (posϕ)|Υmsg .
Then h is a message needed by (ϕ, V ), and thus g ∈ βj by construction of msgR.
Hence, h is delivered in transition i of S.

Buffer We have to show γM(i+1) ' bSi+1. Abbreviate j = M(i) and k = M(i+1).
We have j + 1 ≤ k because j < k. We start by showing γj+1 = γk , so it becomes
sufficient to show γj+1 ' bSi+1.

Let g be a fact. We show num(g, γj+1) ≤ num(g, γk). By definition of γj+1,
expression num(g, γj+1) is the number of triples (a,g, b) ∈ msgR for which a <
j + 1 ≤ b. Let (a, g, b) be such a triple. It is sufficient to show that a < k ≤ b. We
have a < k because a < j + 1 and j + 1 ≤ k. Secondly, if b < k then a needed
message is delivered at transition b of R, implying b ∈ M, which is impossible
because j < b < k and there are no marked transitions between j and k. Hence,
k ≤ b.

Let g be a fact. We show num(g, γk) ≤ num(g, γj+1). This is similar to the
previous direction, but there are also some differences. By definition of γk , expression
num(g, γk) is the number of triples (a,g, b) ∈ msgR for which a < k ≤ b. Let
(a, g, b) be such a triple. It is sufficient to show that a < j + 1 ≤ b. We have
j + 1 ≤ b because j + 1 ≤ k and k ≤ b. Secondly, if j + 1 ≤ a then a needed
message would be sent at transition a of R, implying a ∈ M, which is impossible
because j < a < k and there are no marked transitions between j and k. Hence,
a < j + 1.

Lastly, we show that γj+1 ' bSi+1. Using Claim B.2, we have γj+1 = (γj\βj )∪Ej .
Let δSi denote the set of messages sent during transition i of S. The operational
semantics implies bSi+1 = (bSi \βj ) ∪ δSi . It is sufficient to show γj\βj ' bSi \βj

and Ej ⊆ δSi . The first inclusion follows from the induction hypothesis γj ' bSi .
Now, let g ∈ Ej . We show g ∈ δSi . By definition of Ej , there is a triple (j, g, b) ∈
msgR. So, g is a needed message that should be sent in transition j of R. Hence,
histR(j, g) = (ϕ, V ) is defined. We show that V is satisfying for ϕ during transition
i of S, so that g ∈ δSi . Because ϕ is static, we only consider the input and message
literals, where the latter are positive by message-positivity. The input literals of ϕ are
satisfied under V in transition i of S, because they are satisfied in transition j of R
and because both runs have the same input. Now, let h ∈ V (posϕ)|Υmsg . We have to
show that h is delivered in transition i of S. Because h is delivered in transition j of
R (since V is satisfying for ϕ), h is a needed message for transition j; hence, h ∈ βj

and this set is delivered in transition i of S.

Claim C.2 Let I be an input for N . Let R be a run of N on I. Let R′ be R extended
by doing P+1 additional transitions in each of which we deliver the entire message
buffer. Let g be a message that is sent in some run S of N on I. Message g is delivered
in the last transition of R′.
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Table 2 Input relations for M
Relation Purpose

s(1) with s ∈ Γ One relation for each tape symbol

q(1) with q ∈ Q One relation for each state symbol

0(1), 1(1), 01(1) Relations providing the numbers 0 and 1

Proof Recall the definitions and notations regarding derivation trees from
Section 2.6. Let T be a derivation tree for g extracted from S. Let κT be the canoni-
cal scheduling of T . Let n denote the height of T , measured as the number of edges
on the longest path from the root to a leaf. For i ∈ {1, . . . , n}, define the following
message set Mi :

Mi =
⋃

x ∈ intT ,

κT (x) = i

bodyT (x)|Υmsg .

Because the rules of Π are message-positive, bodyT (x)|Υmsg contains only facts.
Intuitively, Mi is the union of all message facts needed by rules scheduled at tran-
sition i by κT . Since n ≤ P, we can consider the transition index j of R′ such that
j + 1, . . ., j + n, j + n + 1 are the last n + 1 transitions of R′. If we can show that g
is sent in transition j + n, then g is delivered in the last transition j + n+ 1 (because
the entire buffer is delivered), as desired.

Because sending rules are static and message-positive, and R′ and S have the
same input I, it is sufficient to show that Mn is delivered in transition j + n, so that
the root rule and valuation of T derive g. Specifically, we show by induction on
i ∈ {1, . . . , n} that Mi is delivered in transition j + i of R′. The property holds for
the base case because M1 = ∅.15 For the induction hypothesis, we assume that Mi

can be delivered in transition j + i of R′. We now show that Mi+1 can be delivered in
transition j + i + 1 of R′. Let h ∈ Mi+1. By definition of Mi+1, there is an internal
node x of T with κT (x) = i + 1 and h ∈ bodyT (x)|Υmsg . We show that h is sent
in transition j + i of R′, so that h is delivered in transition j + i + 1. By message-
positivity of ruleT (x), there is a child node y ∈ intT of x such that f actT (y) = h.
By definition of κT , we have κT (y) = i. We show that valT (y) is satisfying for
ruleT (y) during transition j + i of R′. Like above, because sending rules are static
and message-positive, and R′ and S have the same input I, it is sufficient to show
that Mi is delivered in transition j + i, which holds by the induction hypothesis.

C.2 Complexity Lower Bound

Here we complete the specification of transducerΠ over schema Υ from Section 6.2.
We assume that Υin contains the additional relations of Table 2. All rules we specify
below are sending rules.

15Indeed, if an internal node x needs child messages then the corresponding child nodes are scheduled
earlier, making κT (x) > 1.
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Let w denote the input word for M under consideration, and let n = |w|. We can
select a constant k ∈ N such that if M accepts w then M has an accepting computation
trace on w with at most 2nk

transitions.

C.2.1 Binary Addresses

Abbreviate z = nk . Note that z is polynomial in n. Because we are only concerned
with accepting computation traces of length at most 2nk

, the address of a reachable
tape cell can be represented as a binary number with z bits. We denote such a number
as (a1 . . . az) where each ai is 0 or 1 and az is the least significant bit. Note that z bits
actually allow us to represent addresses larger than 2nk

, but the accepting computation
trace will never reach these tape cells, hence, we will ignore those addresses in the
following.

We will use messages of the form succ(a1, . . . , az; b1, . . . , bz) to say that
address (b1 . . . bz) is the successor of address (a1 . . . az), i.e., (b1 . . . bz) is
obtained from (a1 . . . az) by adding 1.16 Similarly, we use messages of the form
less(a1, . . . , az; b1, . . . , bz) and diff(a1, . . . , az; b1, . . . , bz) to say respectively
that (a1 . . . az) is smaller than (b1 . . . bz) and that (a1 . . . az) and (b1 . . . bz) are
different. To specify these messages, we add the following rules for each p =
1, . . . , z:

succ(a1, . . . ,ap−1,ap, . . . ,az; a1, . . . ,ap−1,bp, . . . ,bz) ←
01(a1), . . . , 01(ap−1), 0(ap), 1(bp),

1(ap+1), . . . , 1(az), 0(bp+1), . . . , 0(bz).

less(a1, . . . ,ap−1,ap, . . . ,az; a1, . . . ,ap−1,bp, . . . ,bz) ←
01(a1), . . . , 01(ap−1), 0(ap), 1(bp),

01(ap+1), . . . , 01(az), 01(bp+1), . . . , 01(bz).

diff(a1, . . . ,ap−1,ap, . . . ,az; b1, . . . ,bp−1,bp, . . . ,bz) ←
01(a1), . . . , 01(az), 01(b1), . . . , 01(bz), ap )= bp.

Here, if p = 1 then the variables a1 to ap−1 are nonexistent, and if p = z then the
variables ap+1 to az and bp+1 to bz are nonexistent. Note that the number and size
of these above rules is polynomial in n, and they have no cyclic dependencies (leads
to recursion-freeness).

C.2.2 Sending error

The message error is sent when some crucial properties of the input relations are
violated.

16The semicolon in the fact only serves to better separate the two binary numbers visually.
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First, we demand that for each configuration at most one state and head position
is specified, and also that each tape cell has at most one symbol:

error() ← state(i,q1), state(i,q2), q1 )= q2.

← head(i,h1, . . . ,hz), head(i,k1, . . . ,kz),

diff(h1, . . . ,hz; k1, . . . ,kz).
← tape(i,a1, . . . ,az,s1), tape(i,a1, . . . ,az,s2),

s1 )= s2.

For the relations providing the binary numbers, we demand that relations 0 and 1
are disjoint, contain at most one value, and that relation 01 is the union of 0 and 1:

error() ← 0(v), 1(v).

← 0(v), 0(w), v )= w.

← 1(v), 1(w), v )= w.

← 0(v), ¬01(v).

← 1(v), ¬01(v).

← 01(v), ¬0(v), ¬1(v).

For the relations providing symbols of Γ , we demand that they are pairwise dis-
joint and that each contains at most one symbol. We demand the same properties of
the relations providing symbols of Q. Formally, for each (s1, s2) ∈ (Γ×Γ )∪(Q×Q)
with s1 )= s2, we add the rule

error() ← s1(v), s2(v).

And for each s ∈ Γ ∪Q, we add the rule

error() ← s(v), s(w), v )= w.

C.2.3 Sending accept

We give the rules to send messages of the form reach0(i, j) and start(i), where
reach0(i, j) indicates that configuration j can be reached by a valid Turing machine
transition from configuration i, and where start(i) indicates that configuration i
has the properties of the start configuration.

Sending reach0 We will send messages of the form tapeCOK(i, j, a1, . . . , az) to
say that in configuration j, the tape cell at address (a1 . . . az) can be explained by
a Turing machine transition applied to configuration i.17 To send reach0(i, j), we
have to check that such messages can be sent for all tape cells. We will simultane-
ously enforce that the state and head position of j can follow from the state and head
position of i.

To send tapeCOK(i, j, a1, . . . , az), we consider three cases, where (h1 . . . hz)
denotes the head position of configuration i:

17The name tapeCOK stands for “tape cell ok”.
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– (a1 . . . az) < (h1 . . . hz), in which case the cell contents at (a1 . . . az) should be
unaltered in j with respect to i;

– the symmetric case (h1 . . . hz) < (a1 . . . az), with the same constraint;
– (a1 . . . az) = (h1 . . . hz), in which case a transition of Turing machine M has to

explain the symbol at cell (a1 . . . az) in j.

The first case is implemented by the following rule:

tapeCOK(i,j,a1, . . . ,az) ← head(i,h1, . . . ,hz), less(a1, . . . ,az; h1, . . . ,hz),
tape(i,a1, . . . ,az,s), tape(j,a1, . . . ,az,s).

The second case is done with a similar rule, except that
less(a1, . . . ,az; h1, . . . ,hz) is replaced by less(h1, . . . ,hz; a1, . . . ,az).

The third case is split further depending on whether the head moves left or
right. Let δ denote the transition function of Turing machine M. For each mapping
(q1, s1 4→ q2, s2, L) ∈ δ, add the rule:

tapeCOK(i,j,h1, . . . ,hz) ← head(i,h1, . . . ,hz), head(j,k1, . . . ,kz),
succ(k1, . . . ,kz; h1, . . . ,hz),
state(i,q1), tape(i,h1, . . . ,hz,s1),
state(j,q2), tape(j,h1, . . . ,hz,s2),
q1(q1), s1(s1), q2(q2), s2(s2).

Regarding relations q1, s1, q2 and s2, it does not matter what precise values they con-
tain by genericity of the rules (as long as the conditions enforced in Section C.2.2
hold). A similar rule is added for each mapping (q1, s1 4→ q2, s2, R) ∈ δ, except
that succ(k1, . . . ,kz; h1, . . . ,hz) is replaced by succ(h1, . . . ,hz; k1, . . . ,kz).
Note that the nondeterminism of Turing machine M is implemented by having mul-
tiple rules in Π of these last two forms. Also, the number of rules for relation
tapeCOK is constant because M is fixed, but their size is polynomial in n.

Next, we send messages of the form tapeOKm(i, j, a1, . . . , az; b1, . . . , bz),
with m = 0, . . . , z and (a1 . . . az) ≤ (b1 . . . bz), to say that inter-
val [(a1 . . . az), (b1 . . . bz)] contains 2m tape cells and that the message
tapeCOK(i, j, c1, . . . , cz) can be sent for all addresses (c1 . . . cz) in this interval.
The goal is to eventually send a message tapeOKz(i, j, a1, . . . , az; b1, . . . , bz)
where (a1 . . . az) is the first tape cell. To start, we generate tapeOK0-messages:

tapeOK0(i,j,a1, . . . ,az; a1, . . . ,az) ← tapeCOK(i,j,a1, . . . ,az).

And we add the following rule for each m = 1, . . . , z:

tapeOKm (i,j,a1, . . . ,az; b1, . . . ,bz) ←
tapeOKm−1(i,j,a1, . . . ,az; c1, . . . ,cz),
tapeOKm−1(i,j,d1, . . . ,dz; b1, . . . ,bz),
succ(c1, . . . ,cz; d1, . . . ,dz).

Note that the number and size of such rules is polynomial in n.
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Finally, the reach0-messages are sent with the following rule:

reach0(i,j) ← tapeOKz(i,j,a1, . . . ,az; b1, . . . ,bz),
0(a1), . . . , 0(az).

Note that we constrain attention to the range [0, 2z].

Sending start To send a message start(i), we have to check that configuration
i has the properties of the start configuration: (i) the tape contains the input word w
starting at the first tape cell, with the other tape cells blank; (ii) the state is q0; and,
(iii) the head is at tape cell 0. The last two properties are easily checked.

To check property (i), we send messages of the form
startTapeCOK(i, a1, . . . , az) to indicate that the contents of tape cell (a1 . . . az)
in configuration i is as required by the start configuration. We add the following rule
for all addresses a ∈ [0, n − 1], where (a1 . . . az) is the binary representation of a
and wa is the symbol of word w at (zero-based) index a:

startTapeCOK(i,a1, . . . ,az) ←
a1(a1), . . . , az(az), tape(i,a1, . . . ,az,s), wa(s).

We also add one rule to demand that the other tape cells contain blanks, where 5 ∈ Γ
denotes the blank symbol and (b1 . . . bz) is the binary representation of n− 1:

startTapeCOK(i,a1, . . . ,az) ←
b1(b1), . . . , bz(bz), less(b1, . . . ,bz; a1, . . . ,az),
tape(i,a1, . . . ,az,s), 5(s).

Note that the number and size of rules for relation startTapeCOK is polynomial
in n.

Next, similarly to the relations tapeOKm above, we send messages of the form
startTapeOKm(i, a1, . . . , az; b1, . . . , bz), with m = 0, . . . , z and (a1 . . . az) ≤
(b1 . . . bz), to say that the interval [(a1 . . . az), (b1 . . . bz)] contains 2m tape cells and
that message startTapeCOK(i, c1, . . . , cz) can be sent for all addresses (c1 . . . cz)
in this interval. We do not explicitly give the rules, because they are very similar to
the rules of the relations tapeOKm. The number and size of the added rules is also
polynomial in n.

Finally, we can send the start-messages:

start(i) ← startTapeOKz(i,a1, . . . ,az; b1, . . . ,bz),
0(a1), . . . , 0(az), head(i, a1, . . . ,az),
state(i,q), q0(q).

C.2.4 Correctness

Here we argue the correctness of the reduction.

First Direction Suppose that M has an accepting computation trace on input word
w. We have to show that the transducer network N for w is diffluent.
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The accepting computation trace of M is a sequence of configurations, and we
identify each configuration by their (one-based) ordinal. We always have i ≤ 2z. Let
I be the input instance for N consisting of the following facts:

– facts state(i, qi) and head(i, h1, . . . , hz) for each configuration i, where qi

and (h1 . . . hz) are respectively the state and head position of i;
– fact tape(i, a1, . . . , az, s) for each configuration i and each address

(a1 . . . az) ∈ [0, 2z], where s ∈ Γ is the contents of cell (a1 . . . az) in
configuration i;

– fact s(s) for each s ∈ Γ ; fact q(q) for each q ∈ Q; facts 0(0), 1(1), 01(0), and
01(1); and, fact A(a).

Note that no error-message can be sent on this instance (cf. Section C.2.2). Hence,
it is sufficient to show that accept() can be sent, so that input fact A(a) gives rise
to the messages Amsg(a) and Bmsg(a). Then there exist two runs R1 and R2 so that
T (a) is created in R1 and not in R2 or any extension thereof.

Let e denote the last configuration of the computation trace. The state of e is
qaccept. Looking at the rules for sending accept-messages (Section 6.2), since I
contains state(e, qaccept) and qaccept(qaccept), we are left to show that the following
messages can be sent: start(1) and reachm(1, e) for some m ∈ [0, z]. Because
configuration 1 is the start configuration of the computation trace, and because we
have accurately described this configuration in the input relations, we can see that
start(1) can be sent. Similarly, we can see that for each pair (i, j) of subsequent
configurations in the trace, the message reach0(i, j) can be sent. And because the
reachm-rules with m ∈ [0, z] allow us to connect configurations over arbitrary
distances within [1, 2z], we can also send reachm(1, e) for some m ∈ [0, z].

Second Direction Suppose that the transducer network N for w is diffluent. We
have to show that M has an accepting computation trace on w.

First, because N is diffluent, there exists an input instance I for N , and two runs
R1 and R2 of N on I, such that last (R1) contains an output fact T (a) that is not in
last (R2), and T (a) can not be created in any extension of R2.

We first show that accept() can be sent on input I and that error() can not.
The presence of T (a) in last (R1) implies that the message Amsg(a) can be sent.
This in turn implies that accept() can be sent. Now, since by static send rules the
message Amsg(a) can also be sent in an extension of R2, the reason why T (a) can
not be created in that extension is that the memory fact B(a) is present and that the
message error() can never be delivered, and hence can never be sent.

Looking at the sending rules for relation accept, the sending of accept() in
R1 must have been caused by the joint occurrence of the following four facts during
some transition of N : the message facts start(x) and reachm(x, y) for some
x, y ∈ adom(I) and m ∈ [0, z], and the input facts state(y, q) and qaccept(q). The
input facts together already imply that y could describe an accepting configuration.
Now we have to look at the derivation histories of the two messages to construct a
full accepting computation trace.

As a general remark, because error() can never be sent, the input satisfies the
restrictions enforced in Section C.2.2. In particular, each configuration has at most
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one state and at most one head position in relations state and head respectively,
and each configuration has at most one symbol for each tape cell in relation tape.
So, the presence of the message start(x) implies that x not only has precisely one
state, one head position and one symbol in each tape cell, but also that x satisfies the
additional properties of a valid start configuration. Hence, x is a fully specified start
configuration.

The presence of the message reachm(x, y) implies there is a sequence of con-
figurations c1, . . . , ce in the input with c1 = x and ce = y and such that the message
reach0(i, j) can be sent for each pair (i, j) of subsequent configurations. Again
using the absence of error(), the presence of the message reach0(i, j) implies
that configurations i and j each have precisely one state, one head position, and one
symbol in each tape cell, and that there exists a valid transition rule of Turing machine
M to explain how configuration j follows from configuration i. Finally, using that y
is accepting (see above), we have found an accepting computation trace of M on w.

Appendix D: Expressivity Upper Bound

D.1 Correctness Part 1

Let Φ be as constructed in Section 7.2.3. Let H be an arbitrary distributed database
instance over inN . Abbreviate I = 〈H 〉N . Let f ∈ Φ(I). We have to show that f
is output at node x when N is run on H. It is sufficient to show that f is output by
M on input I.

We remind that Section 7.2.2 contains common concepts and notations. Helper
claims can be found in Section D.3.

D.1.1 Satisfying Valuation

Since f ∈ Φ(I), program Φ contains a UCQ¬-program deriveG,T0 such that
f ∈ deriveG,T0(I ). Hence, there exists a subset G0 ⊆ f orestR and an equivalence
relation E on adom(G0) such that G = E(G0) and T0 ∈ G.

Like before, we regard deriveG,T as an ∃FO-formula, where T is the truncated
version of T0 and κ is the canonical scheduling of T0:

deriveG,T0 := ∃z̄
(
diff V alG ∧ sndMsgG ∧ succeedG,T ,κ

)
.

Here, free variables are constituted by the tuple x̄ of values occurring in the root fact
of T0, and z̄ are the values in adom(G) that are not in x̄. Since f ∈ deriveG,T0(I ),
there exists a valuation V al : adom(G) → adom(I) that makes the following
quantifier-free formula true:

diff V alG ∧ sndMsgG ∧ succeedG,T ,κ .

The part diff V alG makes V al injective.
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D.1.2 Concrete Run

For each tree T ′ ∈ G, for each internal node x of T ′, we can apply the function V al
after valuation valT (x). The resulting valuations still satisfy the nonequalities of the
rules, because these nonequalities are satisfied under valT (x) and V al is injective.
Let F denote the forest of (structurally equivalent) derivation trees obtained from
G in this way. Following the principle of canonical runs of Section 7.2.3, we will
concurrently execute all trees in F by their canonical scheduling. This results in a run
R, whose length is the largest height of any tree in F. We now show that f is derived
in R.

Let T0 be as above. Let S0 ∈ F be the structurally equivalent tree. We first show
that f actS0(rootS0) = f . The tuple of values in f actT0(rootT0) are the free vari-
ables of deriveG,T0 . Thus V al(f actT0(rootT0)) = f . And by construction of F, we
have f actS0(rootS0) = V al(f actT0(rootT0).

Henceforth, we will focus on the truncated trees T and S of T0 and S0 respectively.
The canonical scheduling κ of T0 is also defined on S. Now, using the order implied
by κ , we show by induction on x ∈ aS that f actS(x) is derived in transition κ(x)
of R. So, let x ∈ aS be a node such that for all alpha child nodes y of x, the fact
f actS(y) is derived in transition κ(y) of R.18 We show that valS(x) is satisfying
for ruleS(x) in transition κ(x). The nonequalities of ruleS(x) are satisfied because
they are satisfied under valT (x) and because V al is injective. Next, we differentiate
between the different kinds of atoms in the body of ruleS(x).

Input Let l ∈ bodyS(x)|Υin . We have to show I |= l. Let l′ ∈ bodyT (x)|Υin be
such that l = V al(l′). By construction, l′ occurs in the conjunction succeed in

G,T ,κ ,
and since this formula is true under V al with respect to I, we have I |= V al(l′) or
equivalently I |= l, as desired.

Messages Let l ∈ bodyS(x)|Υmsg . Abbreviate i = κ(x). We have to show that l is
delivered in transition i of R. Because ruleS(x) is message-positive, l is a fact. Let
g ∈ bodyT (x)|Υmsg be such that l = V al(g). Because κ is an alignment for T with
respect to the abstract canonical run RG, we have g ∈ MG

i . By Claim D.1, the fact
l = V al(g) is delivered during transition i of R, as desired.

Positive Output and Memory Let l ∈ bodyS(x)|Υout∪Υmem be such that l is positive.
There is an alpha child y of x such that f actS(y) = l. By assumption on x, f actS(y)
is derived during transition κ(y) of R, and thus l is available during transition κ(x),
as desired.

Negative Output and Memory Let l ∈ bodyS(x)|Υout∪Υmem be such that l is nega-
tive. Denote l = ¬g. We show that g is not derived before transition κ(x) of R. To
relate back to T , there is also a fact h such that g = V al(h) and ¬h ∈ bodyT (x).

18This property is automatically satisfied in the base case, where x has no alpha child nodes.
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Towards a proof by contradiction, suppose that g is derived in some transition j <
κ(x) of R. Then it is possible to extract a truncated derivation tree S ′ from R with
f actS

′
(rootS

′
) = g, together with an alignment κ ′ of S ′ such that for all alpha nodes

z of S ′, the fact f actS
′
(z) is derived during transition κ ′(z) of R because valS

′
(z)

is satisfying for ruleS
′
(z). Note that val−1 is defined because V al is injective. Let

T ′ be the truncated derivation tree obtained from S ′ by applying for each alpha
node z, the function V al−1 after the valuation valS

′
(z). The tree T ′ has root fact

val−1(g) = h.
There exists y ∈ βT (x) with f actT (y) = h. Suppose we would also know

that (T ′, κ ′) ∈ alignG(h) (shown below). Then the subformula succeed
deny
G,T ,κ

contains the subformula ¬succeedG,T ′,κ ′ , which is true under V al. Equivalently,
succeedG,T ′κ ′ is false under V al. We will use this information to show that at
least one alpha node z of T ′ exists for which valuation V al ◦ valT

′
(z) is not

satisfying for ruleT
′
(z) during transition κ ′(z) of R, or equivalently, valuation

V al ◦ V al−1 ◦ valS
′
(z) = valS

′
(z) is not satisfying for ruleS

′
(z) during transition

κ ′(z). This gives the desired contradiction.
Since succeedG,T ′,κ ′ is false under V al, it must be that either succeed in

G,T ′,κ ′

is false or succeed
deny
G,T ′,κ ′ is false. In the first case, there is an alpha node z of T ′

and a literal l ∈ bodyT
′
(z)|Υin such that I ! V al(l). This immediately gives that

V al ◦ valT
′
(z) is not satisfying for ruleT

′
(z) during any transition of R, hence, not

in transition κ ′(z), as desired.
Now suppose that succeed

deny
G,T ′,κ ′ is false under V al. Thus, succeed

deny
G,T ′,κ ′ con-

tains a subformula ¬succeedG,T ′′,κ ′′ where succeedG,T ′′,κ ′′ is true under V al.
Hence, there is an alpha node z of T ′, with a beta child u, letting i = f actT

′
(u),

and there is a pair (T ′′, κ ′′) ∈ alignG(i) with κ ′′(rootT
′′
) < κ ′(z). Let S ′′ be

the (truncated) derivation tree obtained from T ′′ by applying V al after all valua-
tions. Now, using the natural recursion on succeedG,T ′′,κ ′′ , it is possible to show
that (S ′′, κ ′′) derives V al(i) during earlier transition κ ′′(rootT

′′
) < κ ′(z). This

reasoning ends, because in each recursive step we come strictly closer to the begin-
ning of R, and eventually we only use formulas of the form succeed in

G, , . Since

valuation V al ◦ valT
′
(z) requires the absence of V al(i) during κ ′(z), and V al(i)

is present in κ ′(z), this valuation is not satisfying during transition κ ′(z) of R,
as desired.

Let T ′ and κ ′ be as above. We are left to show that (T ′, κ ′) ∈ alignG(h). First,
because κ ′ is an alignment for S ′, and because T ′ and S ′ are structurally equiva-
lent, κ ′ is a scheduling for T ′. Next, let z be an internal (alpha) node of T ′. Let
l ∈ bodyT

′
(z)|Υmsg , where l is a fact by message-positivity of ruleT

′
(z). We have

to show that l ∈ MG
j where j = κ ′(z). Since valT

′
(z) = V al−1 ◦ valS

′
(z),

we can consider the fact i ∈ bodyS
′
(z)|Υmsg such that l = V al−1(i). Now,

since κ ′ is an alignment for S ′ with respect to R, we know that i is delivered
in transition j of R. Then, by Claim D.1, there is a fact l′ ∈ MG

j such that
V al(l′) = i. But by injectivity of V al, this means l′ = V al−1(i) = l, as
desired.
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D.2 Correctness Part 2

Let H be an arbitrary input over inN . Abbreviate I = 〈H 〉N . Let f be an R-fact
output at node x when N is run on H. This implies that M outputs f on input I. We
have to show that f ∈ Φ(I), with Φ as constructed in Section 7.2.3.

Let Π denote the transducer of M. We remind that Section 7.2.2 contains com-
mon concepts and notations. Additionally, for two structurally equivalent derivation
trees T and S, we write mapT ,S to denote the structural bijection from nodes of T
to nodes of S. Lastly, helper claims can be found in Appendix D.3.

D.2.1 Collecting Trees

On input I, from each run of M in which f is output, we can extract a derivation
tree for f . Now, let F be a maximal set of derivation trees for f extracted from all
possible runs of M on I, such that no two trees are structurally equivalent. Set F is
finite because Π is recursion-free.

D.2.2 Canonical Run

Following the principle of canonical runs from Section 7.2.3, we can concurrently
execute all trees of F. This results in a run R whose length is the height of the largest
tree in F.

We now show that f is derived in R. Because M outputs f on input I, confluence
of M implies that R can always be extended to a run R′ in which f is output.
From R′, we can extract a pair (T , κ) of a concrete derivation tree for f and a
scheduling for this tree, such that for each x ∈ intT the fact f actT (x) is derived
during transition κ(x) of R′ by applying valT (x) to ruleT (x). There is some tree
S ∈ F structurally equivalent to T . Using the order implied by canonical scheduling
κS , we show by induction on the alpha nodes x ∈ aS that f actS(x) is derived during
transition κS(x) by applying valuation valS(x) to ruleS(x). Let x ∈ aS , assuming
for each descendant y ∈ aS of x that f actS(y) is derived during transition κS(y).

Input Since S ∈ F , the tree S was extracted from a run, and hence, the input literals
of ruleS(x) must be satisfied under valS(x).

Messages Moreover, because sending rules are message-positive and static, it can
be shown that the messages needed by ruleS(x) under valS(x) are delivered in R
during transition κS(x) (details omitted).

Output and Memory Using the assumption on descendant alpha nodes of x, the
positive output and memory facts required by valS(x) are also satisfied.

As the last step, we show that the negative output and memory literals under
valS(x) are absent during transition κS(x). Let us abbreviate n = mapS,T (defined
in Section 7.2.2). Since S and T are structurally equivalent and both derive the root
fact f , we can apply Claim D.2 to know that the valuations valS(x) and vaLT (n(x))
assign the same values to the free variables of ruleS(x). By selection of (T , κ),
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the output and memory facts that rule ruleS(x) tests for absence under valT (n(x)),
are effectively absent during transition κ(n(x)) of R′. Now, because Π is inflation-
ary, if we would know κS(x) ≤ κ(n(x)), then these same output and memory facts
must also be absent during transition κS(x), as desired. We are left to show that
κS(x) ≤ κ(n(x)). By definition of canonical scheduling κS , transition κS(x) is the
earliest transition of R in which the rule ruleS(x) can be executed if the derivation
strategy represented by S must be followed.19 Now, since the subtree under x in S is
structurally equivalent to the subtree under n(x) in T , we have κS(x) ≤ κ(n(x)).

D.2.3 Create Valuation

From Section 7.2.3, recall the set f orestR , in which no two trees are structurally
equivalent. For each tree T ∈ F , there is a unique tree S ∈ f orestR that is
structurally equivalent to T . Let G0 ⊆ f orestR be all these trees. We define a
function V al0 : adom(G0) → adom(F), giving rise to an equivalence relation on
adom(G0).

First, let S ∈ G0. We can uniquely identify a component of a positive atom in S
by a triple (p, a, i), where p is a path followed from the root towards an internal node
x of S; a is the head or a positive body atom of ruleS(x); and, i is a component index
in a. Here, p can be uniquely specified as the sequence of atoms litS(x) labelling the
encountered internal nodes x. Two components (p1, a1, i1) and (p2, a2, i2) belong
to the same rule if p1 = p2. Now, we define an equivalence relation over the com-
ponents in a bottom-up way, as follows. Starting at an internal node x without other
internal nodes as children, two components in ruleS(x) are equivalent if they contain
the same variable. Going to the parent y of x, two components c1 and c2 in ruleS(y)
are equivalent if (i) they contain the same variable; or (ii) they occur together in a
positive body atom a of ruleS(y), and for the child x of y with litS(x) = a, the
components in the head of ruleS(x) corresponding to c1 and c2 are equivalent. The
equivalence relation on the components of S is unique, and its number of equivalence
classes upper bounds the active domain size of S.

Now we define function V al0 : adom(G0) → adom(F). Let S ∈ G0 and
let T ∈ F denote the structurally equivalent tree. Because S and T are struc-
turally equivalent, the equivalence classes on components of S transfer naturally
to equivalence classes on the components of T . Because S is general, its valua-
tions assign a different value to each equivalence class, so we can define a function
VS : adom(S) → adom(T ) that contains for each equivalence class e of S the
mapping (a 4→ b), where a and b are the values assigned to e by S and T respec-
tively. For the entire set G0, we take the union of all mappings VS with S ∈ G0.
The result is denoted V al0, and this is a function because each tree in G0 has a dis-
joint active domain. We can now define an equivalence relation E on adom(G0): two
values are equivalent if their image under V al0 is the same. Assuming an order on
dom (the same order as in Section 7.2.3), we can replace each value in adom(G0)

19Indeed, for each subtree, the minimum number of transitions required to derive its root fact is precisely
the height of this tree, and this is expressed in the canonical scheduling.
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by the smallest value in its equivalence relation. This results in a set G of deriva-
tion trees, in which still as many structurally different trees occur as in G0, and with
adom(G) ⊆ adom(G0).20

Let V al denote the restriction of V al0 to adom(G); this function is injective.

D.2.4 Satisfying Valuation

Let F, G, and V al be as previously defined. For each tree S ∈ G, if we would
apply V al after each valuation in S, we obtain a tree in F. So, if we would consider
adom(S) to be variable symbols, then we can see V al as an assignment to these
variables. This will be used below to show that f ∈ Φ(I).

As shown above, there is a derivation tree T ∈ F that derives f in R, when exe-
cuted according to its canonical scheduling. Let S0 ∈ G be the tree that is structurally
equivalent to T . As remarked above, applying V al to S0 gives T . Let S denote the
truncated version of S0, and let κ denote the restriction of the canonical schedul-
ing of S0 to the remaining nodes. Recalling the construction in Section 7.2.3, we
have added to the UCQ¬-program Φ the UCQ¬-program deriveG,S , given by the
following equivalent ∃FO-formula:

deriveG,S := ∃z̄
(
diff V alG ∧ sndMsgG ∧ succeedG,S,κ

)
,

where z̄ is an ordering of the values in adom(G) not occurring in the tuple x̄ in
the root fact of S. So, x̄ are the free variables. Now, denoting f = R(ā), to show
f ∈ Φ(I), it suffices to show that if x̄ is assigned ā then the resulting sentence is true
with respect to I. This amounts to showing that the following quantifier-free formula
is true under V al with respect to I:

diff V alG ∧ sndMsgG ∧ succeedG,S,κ .

Diffval and sndMsg The subformula diff V alG is true because V al is injective on
adom(G). Next, the subformula sndMsgG is a large conjunction of input literals
from the sending rules in G. Let l be such a literal. We have to show I |= V al(l).
There exists a tree S ′ ∈ G and an internal node x of S ′ such that ruleS

′
(x) is a

sending rule and l ∈ bodyS
′
(x)|Υin . Let T ′ ∈ F be the tree structurally equivalent

to S ′, and abbreviate n′ = mapS ′,T ′ . By construction of V al, we have V al(l) ∈
bodyT

′
(n′(x)). Since valT

′
(n′(x)) was satisfied during some run, which follows

from T ′ ∈ F , and all runs have the same input facts, we obtain I |= V al(l).

Succeed Input Now consider the subformula succeedG,S,κ . This formula is speci-
fied as

succeedG,S,κ := succeed in
G,S,κ ∧ succeed

deny
G,S,κ .

Let S0 and T ∈ F be as above: S is the truncated version of S0 and T is
structurally equivalent to S0. Abbreviate n = mapS0,T .

20Nonequalities in rules of G are satisfied under their valuations because they are satisfied in F.
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Similarly to sndMsgG, the subformula succeed in
G,S,κ is a conjunction of input

literals. Let l be such a literal. We have to show I |= V al(l). There exists a node
x ∈ aS such that l ∈ bodyS(x)|Υin . By construction of V al, we have V al(l) ∈
bodyT (n(x)). And similarly to our reasoning for sndMsgG, we can now obtain that
I |= V al(l).

Succeed Deny Consider the subformula succeed
deny
G,S,κ . Let x ∈ aS , y ∈ βS(x),

denoting g = f actS(y), and (S ′, λ) ∈ alignG(g) with λ(rootS
′
) < κ(x). We

have to show that ¬succeedG,S ′,λ is true under V al, which amounts to showing that
succeedG,S ′,λ is false under V al. The main strategy will be to use that S ′ extended
with V al fails in R when executed according to λ. The reasons for failure make
(parts of) formula succeedG,S ′,λ false.

First, we show that the fact V al(g) has to be absent during (and before) transition
κ(x) of R. By definition of y, we have ¬g ∈ bodyS(x). Let S0, T ∈ F , and mapping
n, be as above for the case “succeed input”. We have ¬V al(g) ∈ V al(bodyS(x)) =
bodyT (n(x)). Now, because valuation valT (n(x)) is satisfying during transition
κT (n(x)) = κ(x), V al(g) must be absent during κ(x). By inflationarity of the
transducer, V al(g) is thus also absent before κ(x).

Let (S ′, λ) be as above. There must be an alpha node z of S ′ such that fact
V al(f actS

′
(z)) is not derived during transition λ(z) of R because otherwise

V al(f actS
′
(rootS

′
)) = V al(g) would be derived in transition λ(rootS

′
) < κ(x),

which is false. Let z be the first of such failed nodes with respect to λ. Valuation
V al ◦ valS

′
(z) is not satisfying for ruleS

′
(z) during transition λ(z) of R, and each

reason is used to show that some part of formula succeedG,S ′,λ is false under V al.
We consider the different kinds of literal in ruleS

′
(z):

[Input] Suppose there is a literal l ∈ bodyS
′
(z)|Υin such that I ! V al(l). Then the

conjunction succeed in
G,S ′,λ, and hence the entire formula succeedG,S ′,λ, is false

under V al because succeedG,S ′,λ contains l.
[Messages] Recall that ruleS

′
(z) is message-positive. Suppose that there is a fact

l ∈ bodyS
′
(z)|Υmsg such that V al(l) is not delivered in transition λ(z) of R. We

argue that this is actually not possible, so this case can not occur. First, because
λ is an alignment of S ′ to the abstract canonical run RG, fact l is delivered in
transition λ(z) of RG. Hence, by Claim D.1, fact V al(l) is delivered in transition
λ(z) of R.
[Positive output and memory] Suppose there is a positive literal l ∈
bodyS

′
(z)|Υout∪Υmem (i.e., l is a fact) such that V al(l) is not available during tran-

sition λ(z) of R. We will again show that this case can not occur. The existence of
l implies that z has an alpha child-node z′ in S ′ with f actS

′
(z′) = l. This implies

λ(z′) < λ(z). Since z is the first failed alpha node of S ′ with respect to λ, it must
be that the fact V al(f actS

′
(z′)) = V al(l) is derived in transition λ(z′). Hence,

V al(l) is available in transition λ(z) by inflationarity of Π .
[Negative output and memory] Suppose there is a negative literal ¬i ∈
bodyS

′
(z)|Υout∪Υmem, such that h = V al(i) is present during transition λ(z) of R.

From R, we can extract a pair (T ′′, λ′′) with T ′′ a truncated derivation tree for
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h, and S ′′ an alignment of T ′′ to R according to which T ′′ derives h. Note that
V al−1 exists because V al is injective. Now, let S ′′ denote the tree obtained from
T ′′ by applying for each internal node u of T ′′ the function V al−1 after valT

′′
(u).

Note that adom(S ′′) ⊆ adom(G).

Because in S ′ there is a beta child node z′ of z with f actS
′
(z′) = i, if we could

show (S ′′, λ′′) ∈ alignG(i), then formula succeed
deny
G,S ′,λ contains the subformula

¬succeedG,S ′′,λ′′ . Then, we can recursively show that succeedG,S ′′,λ′′ is true under
V al, making succeed

deny
G,S ′,λ, and by extension succeedG,S ′,λ, false under V al, as

desired. This is similar to our current proof where we show that succeedG,S,κ is true
under V al, but we would replace (S, κ) by (S ′′, λ′′). This recursive step always ends,
as we argued at the end of Section 7.2.3.

We are left to show that (S ′′, λ′′) ∈ alignG(i). First, S ′′ derives the fact
V al−1(h) = V al−1(V al(i)) = i. Next, alignment λ′′ for S ′′ schedules nodes before
their ancestors because it also does this for T ′′. For the last step, let u be an internal
node of S ′′. We have to show that each e ∈ bodyS

′′
(u)|Υmsg is delivered during transi-

tion λ′′(u) of RG. By construction of S ′′ from T ′′, there is some e′ ∈ bodyT
′′
(u)|Υmsg

that is delivered in transition λ′′(u) of R and e = V al−1(e′). But by Claim D.1, we
have e′ ∈ V al(MG

j ) with j = λ′′(u). Hence, e ∈ V al−1 ◦ V al(MG
j ) = MG

j , as
desired.

D.3 Claims

Claim D.2 Consider the symbols defined in Section 7.2.3. Let G ⊆ f orestR . Let F
be a set of derivation trees ofΠ such that (i) no two trees are structurally equivalent;
(ii) for each T ∈ F there is a structurally equivalent tree S ∈ G; and, (iii) there is an
injective function V al : adom(G) → adom(F) such that when V al is applied after
the valuations of a tree S ∈ G, we obtain the structurally equivalent tree T ∈ F .
Finally, let I be an input for M such that formula sndMsgG is satisfied under V al
with respect to I.

Let RG and R denote the canonical runs based on G and F respectively, that
both have the same length n. Let i ∈ {1, . . . , n} and let MG

i denote the (abstract)
message set delivered in transition i of RG. In transition i of R, we deliver precisely
V al(MG

i ).

Proof We show this by induction on i. For the base case (i = 1), the property holds
because MG

i = ∅ and no messages are delivered in the first transition of R (as no
messages were previously sent).

For the induction hypothesis, assume the property holds for transitions j =
1, . . . , i − 1 with i > 1. For the inductive step, we show that the property is satisfied
for transition i. First, note that at most V al(MG

i ) can be delivered in transition i of
R, because this transition only delivers the messages needed by rules in F scheduled
at i, and because the trees in F are obtained from those in G by concatenating V al to
their valuations.

For the second direction, let g ∈ MG
i and denote h = V al(g). We show that h is

delivered in transition i of R. Since g ∈ MG
i , there is a tree S ′ ∈ G, and an internal
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node x of S ′, such that κS
′
(x) = i and g ∈ bodyS

′
(x)|Υmsg . By message-positivity

of ruleS
′
(x), there is a child y of x such that f actS

′
(y) = g. From the definition

of the canonical scheduling, we have κS
′
(y) = κS

′
(x) − 1. Denoting j = κS

′
(y),

we have j = i − 1. We show that V al ◦ valS
′
(y) is satisfying for ruleS

′
(y) during

transition j, such that V al(g) = h is sent in transition j, and can be delivered in
(the next) transition i. The nonequalities of ruleS

′
(y) are satisfied because they are

satisfied under valS
′
(y) (by construction of G) and because V al is injective. Next,

because ruleS
′
(y) is static, we only have to consider input and message atoms:

– Let l ∈ bodyS
′
(y)|Υin . We have, I |= V al(l), as desired, because l is added to

sndMsgG, which is true under V al with respect to I.
– Let l ∈ bodyS

′
(y)|Υmsg . Because ruleS

′
(y) is message-positive, l is a fact. More-

over, we have l ∈ MG
j . By applying the induction hypothesis to transition j, we

know that V al(l) is delivered during transition j, as desired.

Claim D.2 Let T and S be two structurally equivalent derivation trees of Π , that
derive the same output or memory fact f . Abbreviate n = mapS,T . For each x ∈ aS ,
the valuations valS(x) and valT (n(x)) assign the same values to the free variables
of the rule ruleS(x) = ruleT (n(x)).21

Proof We show the property by induction on the length of the path from the root to
the node x ∈ aS in question. In the base case, simply x = rootS and n(x) = rootT .
We are given that f actS(rootS) = f actT (rootT ). Hence, valuations valS(rootS)
and valT (rootT ) assign the same values to free variables. Moreover, because f is
an output or memory fact, ruleS(rootS) is message-bounded, and thus any variable
occurring in an output or memory literal in the body must be a free variable. Hence,
for every alpha child y of rootS , we have f actS(y) = f actT (n(y)). The reasoning
can now be repeated for y.
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