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Abstract
We show that the matrix query language MATLANG corresponds to a natural fragment of
the positive relational algebra on K-relations. The fragment is defined by introducing a
composition operator and restricting K-relation arities to 2. We then proceed to show that
MATLANG can express all matrix queries expressible in the positive relational algebra on
K-relations, when intermediate arities are restricted to 3. Thus we offer an analogue, in a
model with numerical data, to the situation in classical logic, where the algebra of binary
relations is equivalent to first-order logic with three variables.
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1 Introduction

Motivated by large-scale data science, there is recent interest in supporting linear algebra
operations, such as matrix multiplication, in database systems. This has prompted investi-
gations comparing the expressive power of common matrix operations with the operations
on relations provided by the relational algebra and SQL [4, 8, 9, 12].

For Boolean matrices, the connection between matrices and relations is very natural and
well known. An m × n Boolean matrix A can be viewed as a binary relation R ⊆ {1, . . . ,
m} × {1, . . . , n}, where R consists of those pairs (i, j) for which Ai,j = 1. Boolean matrix
multiplication then amounts to composition of binary relations. Composition is the central
operation in the algebra of binary relations [13, 16, 17]. Besides composition, this algebra
has operations such as converse, which corresponds to transposition of a Boolean matrix;
union and complement, which correspond to disjunction and negation of Boolean matrices;
and the empty and identity relations, which correspond to the zero and identity matrices.

This is a revised and extended version of the conference paper “On matrices and K-relations” presented
at the 11th International Symposium on Foundations of Information and Knowledge Systems (FoIKS
2020), Dortmund, Germany, February 17–21, 2020 [5].
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A common theme in research in the foundations of databases is the expressive power of
query languages [1]. When we decide to use a particular query language, we would like to
understand as well as possible what we can do with this query language. Results that char-
acterize expressiveness may be very helpful in this respect. An example of such a result is
the classical Codd theorem, stating the equivalence between the standard relational alge-
bra and first-order logic. Likewise, for the algebra of binary relations, a classical result [18]
is that it has the same expressive power as the formulas with two free variables in FO(3),
the three-variable fragment of first-order logic. In this sense, we understand quite well the
expressive power of a natural set of operations on Boolean matrices.

What can now be said in this regard about more general matrices, with entries that are
not just Boolean values? An m × n matrix with entries in some semiring K is essentially a
mapping from {1, . . . , m}×{1, . . . , n} toK . This perfectly fits the data model ofK-relations
introduced by Green et al. [7]. In general, consider an infinite domain dom and a supply of
attributes. In a database instance, we assign to each attribute a range of values, in the form
of a finite subset of dom. Attributes can be declared to be compatible; compatible attributes
have the same range. A relation schema S is a finite set of attributes. Tuples over S are
mappings that assign to each attribute a value of the appropriate range. Now, a K-relation
over S is a mapping that assigns to each tuple over S an element of K .

So, an m × n matrix X can be seen as a K-relation over two attributes, say, A and B,
where the range of A is {1, . . . , m} and the range of B is {1, . . . , n}. We can assume an
order on all attributes and choose A < B so that we know which values are row indices and
which are column indices. If, furthermore, there is an n × k matrix Y at play, we can also
model the latter as a K relation over two attributes, say, C and D, with C < D, but with the
additional conditional that C is compatible with B to reflect that the number of columns of
matrix X equals the number of rows of matrix Y . We can view vectors as K-relations over a
single attribute, and scalars as K-relations over the empty schema. In general, a K-relation
of arity r is essentially an r-dimensional tensor (multidimensional array). (Because we need
not necessarily assume an order on dom, the tensor is unordered.)

Green et al. defined a generalization of the positive relation algebra working on K-
relations, which we denote here by ARA.1 When we restrict ARA to arities of at most 3,
which we denote by ARA(3), we obtain an analogue to FO(3) mentioned above. So, ARA
provides a suitable scenario to reinvestigate, in a data model with numerical values, the
equivalence between the algebra of binary relations and FO(3). In this paper, we make the
following contributions.

1. We define a suitable generalization, to K-relations, of the composition operation of
classical binary relations. When we add this composition operator to ARA, but restrict
arities to at most two, we obtain a natural query language for matrices. We refer to this
language here as “ARA(2) plus composition”.

2. We show that ARA(2) plus composition actually coincides with the matrix query
language MATLANG, introduced by two of the present authors with Geerts and Weer-
wag [4] in an attempt to formalize the set of common matrix operations found in
numerical software packages.

3. We show that a matrix query is expressible in ARA(3) if and only if it is expressible in
MATLANG, thus providing an analogue to the classical result about FO(3) and the alge-
bra of binary relations. More generally, for any arity r , we show that an r-ary query

1ARA stands for Annotated-Relation Algebra, as the elements from K that a K-relation assigns to its tuples
are usually viewed as annotations.
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over r-ary K-relations is expressible in ARA(r + 1) if and only if it is expressible in
ARA(r) plus composition. For this result, we need the assumption that K is commu-
tative. We stress that the proof is not a trivial adaptation of the proof of the classical
result, because we can no longer rely on familiar classical properties like idempotence
of union and join.

ARA has been a very influential vehicle for data provenance.2 The elements from K are
typically viewed as annotations, or as identifiers, and the semantics of ARA operations was
originally designed to show how these annotations are propagated in the results of data manip-
ulations. Other applications, apart from provenance, have been identified from the outset,
such as security levels, or probabilities [7]. By doing the present work, we have understood
that ARA can moreover serve as a fully-fledged query language for tensors (multidimen-
sional arrays), and matrices in particular. This viewpoint is backed by the recent interest in
processing Functional Aggregate Queries (FAQ [2, 3], also known as AJAR [10]). Indeed,
FAQ and AJAR correspond to the project-join fragment of ARA, without self-joins.

This is a revised and extended version of the conference paper “On matrices and K-
relations” presented at FoIKS 2020 [5]. The conference version does not contain the proofs
of the presented results. The current version is a fully self-contained version to which these
proofs have been added. In addition, we have expanded the discussion on complexity issues
connected to the translations between various languages considered in this work.

The paper is further organized as follows. Section 2 recalls the data model of K-relations
and the associated query language ARA. Section 3 presents the result on ARA(r + 1)
and ARA(r) plus composition. Section 4 relates ARA(2) plus composition to MATLANG.
Section 5 draws conclusions, discusses related work, and proposes directions for further
research.

2 Annotated-relation algebra

In this section, we start with some preliminaries before introducing the Annotated-Relation
Algebra, or ARA for short. We also identify some identities on ARA expressions that are
useful in later sections.

By function we will always mean a total function. For a function f : X → Y and Z ⊆ X,
the restriction of f to Z, denoted by f |Z , is the function Z → Y where f |Z(x) = f (x) for
all x ∈ Z.

Recall that a semiring K is a set equipped with two binary operations, addition (+)
and multiplication (∗), such that (1) addition is associative, commutative, and has an iden-
tity element 0; (2) multiplication is associative, has an identity element 1, and has 0 as an
annihilating element; and (3) multiplication distributes over addition. A semiring is called
commutative if multiplication is commutative.

Proviso In the remainder of this paper, the presence of a semiring K is implicitly assumed.
Unless where explicitly specified otherwise, K need not be commutative.

From the outset, we also fix countable infinite sets rel, att, and dom, the elements of
which are called relation names, attributes, and domain elements, respectively. We assume
the existence of an equivalence relation “∼” on att with an infinite number of equivalence

2The paper by Green et al. [7] received the PODS 2017 test-of-time award.
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classes each of which is infinite. Let A and B be attributes. If A ∼ B, we say that A and B

are compatible. Intuitively, compatible attributes must be assigned the same domains, which
will be formalized soon. A function f : X → Y with X and Y sets of attributes is called
compatible if, for all A ∈ X, A and f (A) are compatible.

A relation schema is a finite subset of att. A database schema is a function S : N →
Pfin(att) from a finite set N of relation names to the set of all finite subsets of att, assigning
a relation schema S(R) to each R ∈ N . We call the relation names in N also the relation
names of S . The arity of a relation name R of S is the cardinality |S(R)| of its schema.
The arity of the database schema S is the largest arity among its relation names.

We now recursively define the expressions of the Annotated-Relation Algebra, abbre-
viated by ARA, syntactically. In the process, we assign a relation schema to each ARA
expression by extending S from relation names to arbitrary ARA expressions. The ARA
expressions over a database schema S is the smallest set of expressions that can be created
using the following rules.

Relation name. A relation name R of S is an ARA expression over S .
One. If e is an ARA expression over S , then 1(e) is an ARA expression over S , and

S(1(e)) := S(e).
Union. If e1 and e2 are ARA expressions over S with S(e1) = S(e2) then e1 ∪ e2 is an

ARA expression over S , and S(e1 ∪ e2) := S(e1) = S(e2).
Projection If e is an ARA expression over S and Y ⊆ S(e), then πY (e) is an ARA

expression over S , and S(πY (e)) := Y .
Selection. If e is an ARA expression over S , Y ⊆ S(e), and the elements of Y are mutually

compatible, then σY (e) is an ARA expression over S , and S(σY (e)) := S(e).
Renaming. If e is an ARA expression over S and ϕ : S(e) → Y is a compatible one-

to-one correspondence with Y ⊆ att, then ρϕ(e) is an ARA expression over S , and
S(ρϕ(e)) :=Y .

Join. If e1 and e2 are ARA expressions over S , then e1 �� e2 is an ARA expression over
S , and S(e1 �� e2) := S(e1) ∪ S(e2).

The arity of an ARA expression e over S is the cardinality |S(e)| of its schema.

Example 1 From a purely syntactical point of view, let S be a database schema on
N = {no courses, course fee} with S(no courses) = {student, dptm} and S(course fee) =
{dptm}. Hence, the arity of no courses is 2 and the arity of course fee is 1. We shall
give meaning to the above in Example 2, after we look at databases and relations from a
semantical point of view, below.

Let π{student}(no courses �� course fee) be an ARA expression over S . This expression
has schema {student} and arity 1. We come back to the semantics of this expression in
Example 3.

We now turn to semantics. A domain assignment is a function D : att → D, where D
is a set of nonempty finite subsets of dom, such that, for compatible attributes A and B,
D(A) = D(B). Let X be a relation schema. A tuple over X with respect to D is a function
t : X → dom such that, for all A ∈ X, t (A) ∈ D(A). We denote by TD(X) the set of tuples
over X with respect to D. Note that TD(X) is finite. A relation r over X with respect to D

is a function r : TD(X) → K . So a relation annotates every tuple over X with respect to D

with a value from K . If S is a database schema, then an instance I of S with respect to D

is a function that assigns to every relation name R of S a relation I(R) : TD(S(R)) → K .
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Remark 1 In practice, a domain assignment need only be defined on the attributes that are
used in the database schema (and on attributes compatible with these attributes). Thus, it can
be specified finitely. While, here, we have chosen to keep the notions of domain assignment
and instance separate, it may be argued that it is perhaps more natural to think of the domain
assignment as being part of the instance.

Example 2 Wewish to record for a university both the number of courses each student takes
in each department and the unit fee for a course in each department. For that purpose, we
shall use the database schema S defined in Example 1. Let K be the semiring of integers. If
I is an instance of S , then the relation I(no courses) must annotate each pair of a student
and a department with the number of courses taken by that student in that department.
Likewise, the relation I(course fee) must annotate each department with the unit fee for a
course in that department. Let D be a domain assignment with D(student) = {Alice,Bob}
and D(dptm) = {CS,Math,Bio}. One particular database instance I of S with respect to
D is shown in Fig. 1.

We now define the relation 1D
X , as well as how the generalizations of the classical opera-

tions from the positive relational algebra (which we encountered as the constructors in ARA
expressions) work on relations.

One. Let X be a relation schema. The relation 1D
X : TD(X) → K with schema X is

defined by 1D
X(t) = 1.

Union. Let r1, r2 : TD(X) → K be relations with the same schema X. The relation r1 ∪
r2 : TD(X) → K with schema X is defined by (r1 ∪ r2)(t) = r1(t) + r2(t).

Projection. Let r : TD(X) → K be a relation with schemaX, and let Y ⊆ X. The relation
πY (r) : TD(Y ) → K with schema Y is defined by

(
πY (r)

)
(t) =

∑

t ′∈TD(X),
t ′|Y =t

r(t ′).

Selection. Let r : TD(X) → K be a relation with schema X, and let Y ⊆ X, such that
the attributes of Y are mutually compatible. The relation σY (r) : TD(X) → K over X is
defined by

(
σY (r)

)
(t) =

{
r(t) if t (A) = t (B) for all A,B ∈ Y ;
0 otherwise.

Renaming. Let r : TD(X) → K be a relation with schema X, and let ϕ : X → Y be
a compatible one-to-one correspondence. The relation ρϕ(r) : TD(Y ) → K over Y is
defined by

(
ρϕ(r)

)
(t) = r(t ◦ ϕ).

Fig. 1 Example of a database instance
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Join. Let r1 : TD(X1) → K and r2 : TD(X2) → K be relations with schemas X1 and
X2, respectively. The relation r1 �� r2 : TD(X1 ∪ X2) → K over X is defined by (r1 ��

r2)(t) = r1(t |X1) ∗ r2(t |X2).

The above operations provide semantics for ARA in a natural manner. Formally, let S
be a database schema, and D a domain assignment. The semantics of an ARA expression e

over S with respect to D is a mapping which associates to an instance I of S with respect
to D the output relation e(I) with schema S(e), defined by the following rules.

Relation name. If R is a relation name, then R(I) := I(R).
One. If e is an ARA expression over S , then

(
1(e)

)
(I) := 1D

S(e).
Union. If e1 and e2 are ARA expressions over S with S(e1) = S(e2), then (e1∪e2)(I) :=

e1(I) ∪ e2(I).
Projection If e is an ARA expression over S and Y ⊆ S(e), then

(
πY (e)

)
(I) :=

πX(e(I)).
Selection. If e is an ARA expression over S , Y ⊆ S(e), and the attributes of Y are

mutually compatible, then
(
σY (e)

)
(I) := σY (e(I)).

Renaming. If e is an ARA expression over S and ϕ : S(e) → Y is a compatible one-to-
one correspondence with Y ⊆ att, then

(
ρϕ(e)

)
(I) := ρϕ(e(I)).

Join. If e1 and e2 are ARA expressions over S , then (e1 �� e2)(I) := e1(I) �� e2(I).

Example 3 We continue with Examples 1 and 2. Consider again the ARA expression
π{student}(no courses �� course fee) over database scheme S . Let I be an instance of S
with respect to domain asignment D. From the above rules, it follows that (no courses ��

course fee)(I) annotates each pair of a student and a department with the product of the
number of courses taken by that student in that department and the unit fee for a course
in that department, i.e., with the total fee for the courses taken by that student in that
department. The projection π{student} then aggregates these subtotals per student over all
departments. Hence,

(
π{student}(no courses �� course fee)

)
(I) annotates each student with

the total fee for all courses taken by that student. Figure 2 shows the output relation for the
ARA expression πstudent(no courses �� course fee) applied to the database instance I shown
in Fig. 1.

Remark 2 The language ARA is a slight variation of the K-annotated relational algebra as
originally defined by Green et al. [7] to better suit our purposes, i.e., comparing ARA to
MATLANG in Section 4.

First, the original definition does not have a domain assignment D : att → D but instead
a single domain common to all attributes (and it therefore also does not have a compatibility
relation ∼). As such, the original definition corresponds to the case where database schemas
and ARA expressions use only mutually compatible attributes, which is too restrictive for
our purposes. Second, we focus on equality selections, while the original paper does not fix
the allowed selection predicates. Third, and finally, we extended the original definition with
one-relations.

Fig. 2 The output relation for the ARA expression πstudent(no courses �� course fee) applied to the database
instance I shown in Fig. 1
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The following observations, to the effect that some (but not all) classical relational-
algebra equivalences carry over to the K-annotated setting, were originally made by Green
et al. (They are not affected by the small differences between their formalism and ours,
outlined in Remark 2.)

Proposition 1 [7, Proposition 3.4] The following properties and identities hold, where, for
each given identity, we assume that the left-hand side of that identity is well defined.

– Union is associative and commutative.
– Join is associative and distributive over union, i.e., (r1 ∪ r2) �� r3 = (r1 �� r3) ∪ (r2 ��

r3).
– Any two selections commute.
– Projection and selection commute if projection retains the attributes on which selection

takes place.
– Projection distributes over union, i.e., πY (r1 ∪ r2) = πY (r1) ∪ πY (r2).
– Selection distributes over union, i.e., σY (r1 ∪ r2) = σY (r1) ∪ σY (r2).
– Selection and join commute in the sense that σY (r1) �� r2 = σY (r1 �� r2) and r1 ��

σY (r2) = σY (r1 �� r2).
– If K is commutative, then join is commutative.

Note that idempotence of union and of join, i.e., r �� r = r ∪ r = r , which holds for the
classical relational algebra, does not in general hold for ARA.

We supplement Proposition 1 with the following properties.

Lemma 1 Let r1 : TD(X1) → K and r2 : TD(X2) → K .

1. If X1 ∩ X2 ⊆ X ⊆ X1 ∪ X2, then πX(r1 �� r2) = πX∩X1(r1) �� πX∩X2(r2).
2. If Y1, Y2 ⊆ X1 where Y1 ∩ Y2 �= ∅ and the attributes of Y1 and of Y2 are mutually

compatible, then σY2(σY1(r1)) = σY1∪Y2(r1).
3. If ϕ : X1 ∪ X2 → X is a compatible one-to-one correspondence, then ρϕ(r1 �� r2) =

ρϕ|X1
(r1) �� ρϕ|X2

(r2). If moreover X1 = X2, then ρϕ(r1 ∪ r2) = ρϕ(r1) ∪ ρϕ(r2).
4. If Y ⊆ X1 and ϕ : X1 → X is a compatible one-to-one correspondence, then

ρϕ(σY (r1)) = σϕ(Y )(ρϕ(r1)), where ϕ(Y ) = {ϕ(y) | y ∈ Y }.

Proof 1. Both left- and right-hand side are functions from TD(X) to K , as (X ∩ X1) ∪
(X ∩ X2) = X ∩ (X1 ∪ X2) = X. To prove that they are equal, let t be any tuple in
TD(X). Then,

(
πX(r1 �� r2)

)
(t) =

∑

t ′∈TD(X1∪X2),
t ′|X=t

(r1 �� r2)(t
′) =

∑

t ′∈TD(X1∪X2),
t ′|X=t

r1(t
′|X1) ∗ r2(t

′|X2).

Since X1 ∩ X2 ⊆ X, all tuples t ′ in the latter sum agree on X1 ∩ X2. Hence, we can
apply distributivity of ∗ over + to rewrite that sum to

( ∑

t ′1∈TD(X1),

t ′1|X∩X1=t |X∩X1

r1(t
′
1)

)
∗

( ∑

t ′2∈TD(X2),

t ′2|X∩X2=t |X∩X2

r2(t
′
2)

)

= (
πX∩X1(r1)

)
(t |X∩X1) ∗ (

πX∩X2(r2)
)
(t |X∩X2)

= (
πX∩X1(r1) �� πX∩X2(r2)

)
(t),
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as was to be shown.
2. Both left- and right-hand side are functions from TD(X1) to K . To prove that they are

equal, let t be any tuple in TD(X1). Then,

(
σY2(σY1(r1))

)
(t) =

{(
σY1(r1)

)
(t) if t (A) = t (B) for all A,B ∈ Y2;

0 otherwise.

Furthermore,

(
σY1(r1)

)
(t) =

{
r1(t) if t (A) = t (B) for all A,B ∈ Y1;
0 otherwise.

Combining the above, we see that

(
σY2(σY1(r1))

)
(t) =

{
r1(t) if t (A) = t (B) for all A,B ∈ Y1 ∪ Y2;
0 otherwise

= (
σY1∪Y2(r1)

)
(t).

3. In the identity involving join, both left- and right-hand side are functions from TD(X)

to K . To prove that they are equal, let t be any tuple in TD(X). Let u = t ◦ ϕ, which is
a tuple in TD(X1 ∪ X2). Then,

(
ρϕ(r1 �� r2)

)
(t) = (r1 �� r2)(t ◦ ϕ) = (r1 �� r2)(u) = r1(u|X1) ∗ r2(u|X2).

Obviously, u|X1 = t |ϕ|X1(X1) ◦ϕ|X1 and u|X2 = t |ϕ|X2(X2) ◦ϕ|X2 . Furthermore, ρϕ|X1
(r1)

is a function from TD(ϕ|X1(X1)) to K and ρϕ|X2
(r2) is a function from TD(ϕ|X2(X2))

to K . Hence,

r1(u|X1) ∗ r2(u|X2) = r1(t |ϕ|X1(X1) ◦ ϕ|X1) ∗ r2(t |ϕ|X2(X2) ◦ ϕ|X2)

= (
ρϕ|X1

(r1)
)
(t |ϕ|X1(X1)) ∗ (

ρϕ|X2
(r2)

)
(t |ϕ|X2(X2))

= (
ρϕ|X1

(r1) �� ρϕ|X2
(r2)

)
(t)

In the identity involving union, both left- and right-hand side are again functions from
TD(X) to K . To prove that they are equal, let t be as above. Since X1 = X2, ϕ is a
function from X1 = X2 to X. Then,

(
ρϕ(r1 ∪ r2)

)
(t) = (r1 ∪ r2)(t ◦ ϕ)

= r1(t ◦ ϕ) + r2(t ◦ ϕ)

= (
ρϕ(r1)

)
(t) + (

ρϕ(r2)
)
(t)

= (
ρϕ(r1) ∪ ρϕ(r2)

)
(t).

4. Both left- and right-hand side of this identity are functions from TD(X) to K . To prove
that they are equal, let t be any tuple in TD(X). Then,

(
ρϕ(σY (r1))

)
(t) = (

σY (r1)
)
(t ◦ ϕ)

=
{

r1(t ◦ ϕ) if (t ◦ ϕ)(A) = (t ◦ ϕ)(B) for all A,B ∈ Y ;
0 otherwise.

The identity follows from the observations that r1(t ◦ ϕ) = (
ρϕ(r1)

)
(t), (t ◦ ϕ)(A) =

t (ϕ(A)), and (t ◦ ϕ)(B) = t (ϕ(B)). Since ϕ is one-to-one, t (ϕ(A)) = t (ϕ(B)) for all
A,B ∈ Y is equivalent to t (A′) = t (B ′) for all A′, B ′ ∈ ϕ(Y ).
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We also use the derived operation of projecting away one attribute, π̂A(e), which is a
shorthand for πS(e)\{A}(e) if A ∈ S(e). Note that, conversely, πX(e) = (π̂Am · · · π̂A1)(e)

where X = S(e) \ {A1, . . . , Am} and the Ai’s are pairwise distinct. Hence, “standard”
projection and projecting away one attribute are interchangable as far as the construction of
ARA expressions is concerned. We shall take advantage of this in proofs, as projecting away
one attribute has often the advantage of having to deal only with that particular attribute.

3 Annotated-relation algebra with composition

In this section, we define an operation called k-composition and show that augmenting ARA
by composition allows one to reduce the required arity of the relations that are computed
in subexpressions. The intuition is to provide a generalization of classical composition of
two binary relations to annotated relations, so that we can compose up to k relations of
arity up to k. Specifically, the classical composition of a binary relation r with a binary
relation s amounts to viewing these relations as relations over schemas {A,B} and {A,C},
respectively, and performing π̂A(r �� s). Thus, we arrive at the following generalization.

Definition 1 Let k be a nonnegative integer and let l ∈ {1, . . . , k}. Let ri : TD(Xi) → K

for i ∈ {1, . . . , l}, let X = X1 ∪ · · · ∪ Xl , and let A ∈ X1 ∩ · · · ∩ Xl .
Define the k-composition ζA,k(r1, . . . , rl) : TD(X \ {A}) → K as

(
ζA,k(r1, . . . , rl)

)
(t) = (

π̂A(r1 �� · · · �� rl)
)
(t),

for all t ∈ TD(X \ {A}).

Note that ζA,k takes at most k arguments. We emphasize that ζA,k is defined as a new
operator (albeit one that can be defined by an ARA expression) and not as a shorthand for
an ARA expression.

We denote by ARA + ζk the language obtained by extending ARA with k-composition.
That is, if e1, . . . , el are ARA + ζk expressions with l ≤ k and A ∈ S(e1) ∩ · · · ∩ S(el),
then e = ζA,k(e1, . . . , el) is an ARA + ζk expression. Also, we let S(e) := (S(e1) ∪ · · · ∪
S(el)) \ {A}.

Let k be a nonnegative integer. We denote by ARA(k) the fragment of ARA in which the
database schemas are restricted to arity at most k and each subexpression has arity at most k.
In particular, join e1 �� e2 is only allowed if |S(e1 �� e2)| ≤ k. The fragment (ARA + ζk)(k)

is defined similarly.
From Definition 1, it follows that (ARA+ζk)(k) is subsumed by ARA(k+1). Indeed, let e

be an (ARA+ζk)(k) expression. We obtain an equivalent ARA expression e′ by subsequently
replacing each subexpression of the form ζA,k(e1, . . . , el) by π̂A(e1 �� · · · �� el). Since the
former has arity at most k, so has the latter. However, each such replacement introduces one
subexpression not equivalent to a subexpression of e, namely e1 �� · · · �� el , of which we
can only say that it has arity at most k + 1. Hence, e′ is in ARA(k + 1).

One of our main results (Corollary 1) provides the converse inclusion, when the database
schemas and outputs are restricted to arity at most k. To this end, we establish a normal form
for ARA expressions (Theorem 1). First, we prove the following technical identity that we
shall use to show Theorem 1.
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Lemma 2 Let r1, . . . , rn be relations with relation schemas X1, . . . , Xn, respectively, and
with respect to a domain assignment D. Assume that A, B ∈ X1 ∪ · · · ∪ Xn are distinct and
compatible. Define, for i ∈ {1, . . . , n},

r ′
i :=

⎧
⎪⎨

⎪⎩

ri if A /∈ Xi;
ρϕ(ri) if A ∈ Xi, B /∈ Xi;
π̂A(σ{A,B}(ri)) if A,B ∈ Xi,

where ϕ is the one-to-one correspondence from Xi to (Xi \ {A}) ∪ {B} that maps A to B

and keeps the remaining attributes fixed. Then,

π̂A(σ{A,B}(r1 �� · · · �� rn)) = r ′
1 �� · · · �� r ′

n.

Proof Let X be a finite set of attributes with A,B ∈ X distinct and compatible. Let r : TD

(X) → K be a relation and t ∈ TD(X \ {A}).
We have

(
π̂A(σ{A,B}(r))

)
(t) =

∑

u∈TD(X),
u|X\{A}=t

(
σ{A,B}(r)

)
(u) =

∑

u∈TD(X),
u|X\{A} = t,

u(A)=u(B)

r(u) = r(t̃), (1)

where t̃ ∈ TD(X) is t̃ = t ∪ {(A, t (B))}. Thus, t̃ is obtained from t by adding attribute A

with value t (B). Indeed, the last summation of (1) is over a single tuple u, namely u = t̃ .
In particular, applying (1) to r1 �� · · · �� rn, we obtain

(
π̂A(σ{A,B}(r1 �� · · · �� rn))

)
(t) = (r1 �� · · · �� rn)(t̃) = r1(t̃ |X1) ∗ · · · ∗ rn(t̃ |Xn).

Denote the schemas of the relations r ′
1, . . . , r

′
n by X′

1, . . . , X
′
n, respectively. Let i ∈

{1, . . . , n}. We distinguish three cases.

– If A /∈ Xi , then t̃ |Xi
= t |Xi

. Hence ri(t̃ |Xi
) = r ′

i (t |X′
i
).

– If A ∈ Xi and B /∈ Xi , then t̃ |Xi
= t |(Xi\{A})∪{B} ◦ ϕ = t |X′

i
◦ ϕ. Hence, ri(t̃ |Xi

) =
(
ρϕ(ri)

)
(t |X′

i
) = r ′

i (t |X′
i
).

– If A, B ∈ Xi , then, by (1) but now applied to ri and t |Xi\{A}, we have ri(t̃ |Xi
) =(

π̂A(σ{A,B}(ri))
)
(t |Xi\{A}) = r ′

i (t |X′
i
).

In all three cases, we obtain ri(t̃ |Xi
) = r ′

i (t |X′
i
). Consequently,

r1(t̃ |X1) ∗ · · · ∗ rn(t̃ |Xn) = r ′
1(t |X′

1
) ∗ · · · ∗ r ′

n(t |X′
n
) = (r ′

1 �� · · · �� r ′
n)(t).

We use the following terminology. Let F be any family of expressions. A selection of
F -expressions is an expression of the form σYn · · · σY1(f ), where f is an F -expression and
n ≥ 0. Note the slight abuse of terminology as we allow multiple selection operations.
Furthermore, when we say that e is a union of F -expressions or a join of F -expressions, we
allow e to be just a single expression in F (so union and join may be skipped).

We are now ready to state and prove one of the main results of this paper. This result
is inspired by the classic equivalence of FO(3) and the algebra of binary relations [18]. (A
compact proof of this equivalence is given by Marx and Venema [14, Theorem 3.4.5, Claim
2]; a self-contained exposition is also available [19].)

Two ARA expressions e1 and e2 over the same database schema are called equivalent,
denoted e1 ≡ e2, if they yield the same output relation for every domain assignment and
every database instance respecting that domain assignment.



Onmatrices and K-relations

Theorem 1 Let S be a database schema of arity at most k, and assume that K is commu-
tative. Every ARA(k + 1) expression over S is equivalent to a union of selections of joins of
(ARA + ζk)(k) expressions over S .

Proof For brevity, if an expression is a union of selections of joins of (ARA+ζk)(k) expres-
sions over S , then we say that this expression is in normal form.

We now prove that every ARA(k + 1) expression e is equivalent to an expression in
normal form, by induction on the structure of e. (This approach works, since, by definition,
a subexpression of an ARA(k + 1) expression is also in ARA(k + 1)).

Relation names. Let e be a relation name R of S . Since relation names of S have arity
at most k, e is already in normal form.

One. Let e be 1(e′), where e′ is equivalent to an expression in normal form. Let e1, . . . , en

be (ARA + ζk)(k) expressions over S such that e1 �� · · · �� en is a subexpression of this
expression in normal form. Since unions and selections do not change the schema of an
expression, S(e′) = S(e1 �� · · · �� en), and, hence, e = 1(e′) ≡ 1(e1 �� · · · �� en) ≡
1(e1) �� · · · �� 1(en). Since, for i = 1, . . . , n, S(1(ei)) = S(ei), 1(ei)—just like ei—
is of arity at most k. We may therefore conclude that e is equivalent to an expression in
normal form.

Union. Let e be e1 ∪ e2, where e1 and e2 are equivalent to expressions in normal form.
By definition, the union of expressions in normal form is again in normal form.

Join. Let e be e1 �� e2, where e1 and e2 are equivalent to expressions in normal form.
Since join distributes over union and since selection and join commute in the sense of
Proposition 1, it follows that e = e1 �� e2 is also equivalent to an expression in normal
form.

Selection. Let e be σY (e′), where e′ is equivalent to an expression in normal form.
Since selection distributes over union (Proposition 1), it follows that e = σY (e′) is also
equivalent to an expression in normal form.

Renaming. Let e be ρϕ(e′), where e′ is equivalent to an expression in normal form. Since
renaming distributes over both union and join and since renaming and selection commute
(Lemma 1), it follows that e = ρϕ(e′) is equivalent to a union of selections of joins of
renamings of (ARA + ζk)(k) expressions. Since renaming preserves arity, renamings of
(ARA+ ζk)(k) expressions are in turn (ARA+ ζk)(k) expressions. We may thus conclude
that e = ρϕ(e′) is equivalent to an expression in normal form.

Projection. Without loss of generality, let e be π̂A(e′), where e′ is equivalent to an expres-
sion in normal form. Since projection distributes over union (Proposition 1), we may
assume without loss of generality that e′ is equivalent to σYm · · · σY1(f ), with f a join
of (ARA + ζk)(k) expressions. By Proposition 1 and Lemma 1, we may assume that
Y1, . . . , Ym are pairwise disjoint. We may also assume that they are all of cardinality at
least 2, since σY on relations is the identity if |Y | ≤ 1. We consider two cases.

1. A ∈ Y1 ∪ · · · ∪ Ym. Since Y1, . . . , Ym are pairwise disjoint, there is a unique
i ∈ {1, . . . , m} for which A ∈ Yi . Since any two selections commute (Propo-
sition 1), we may assume that A ∈ Y1. Also by Proposition 1, e = π̂A(e′) ≡
σYm · · · σY2(π̂A(σY1(f ))). Since Y1 is of cardinality at least 2, there existsB ∈ Y1 dis-
tinct from A. Hence, by Lemma 1, σY1(f ) ≡ σY1\{A}(σ{A,B}(f )), and π̂A(σY1(f )) ≡
σY1\{A}(π̂A(σ{A,B}(f ))). Now, by Lemma 2, π̂A(σ{A,B}(f )) is equivalent to a join of
(ARA + ζk)(k) expressions, as was to be shown.

2. A /∈ Y1 ∪ · · · ∪ Ym. With a similar argument as in the former case, e = π̂A(e′)
≡ σYm · · · σY1(π̂A(f )). It remains to show that π̂A(f ) is a join of (ARA + ζk)(k)
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expressions. Since e′ is a subexpression of the ARA(k+1) expression e, e′ in turn is in
ARA(k+1), hence |S(e′)| ≤ k+1. Moreover, S(f ) = S(e′), hence |S(f )| ≤ k+1.
If |S(f )| ≤ k, then f itself is an (ARA + ζk)(k) expression and so is π̂A(f ). So,
assume that |S(f )| = k + 1.

Since join is commutative (because K is) and associative, we can regard f as a
join of a multiset F = {f1, . . . , fn} of (ARA + ζk)(k) expressions. Now, for any two
expressions e1 and e2 with A /∈ S(e1), we have that π̂A(e1 �� e2) ≡ e1 �� π̂A(e2)

(Lemma 1). Therefore, we may assume that, for all i = 1, . . . , n, A ∈ S(fi). Let
SA

k (f ) be the set of all k-element subsets of S(f ) containing A. There exists a func-
tion s : {1, . . . , n} → SA

k (f ) such that, for all i = 1, . . . , n, S(fi) ⊆ s(i). LetR be
the range of s. Thus, |R| ≤ |SA

k (f )| = k. Let, for S ∈ R, fS := ��i=1,...,n;s(i)=S fi .
In words, fS is the join of all subexpressions fi , 1 ≤ i ≤ n, for which s(i) = S.
Since s(i) = S implies that S(fi) ⊆ S, it follows that S(fS) ⊆ S. Hence,
|S(fS)| ≤ |S| = k. Therefore, fS is an (ARA + ζk)(k) expression. Since, for
each i = 1, . . . , n, fi occurs in fs(i), it follows that f ≡ ��S∈R fS . Consequently,
π̂A(f ) ≡ π̂A(��S∈R fS) ≡ ζA,k((fS)S∈R), by Definition 1. We thus obtain an
(ARA + ζk)(k) expression as desired.

Example 4 Assume that K is commutative and consider the ARA(3) expression e =
π{B,C}(σ{B,C}(R �� R �� S �� T �� ρϕ(T )) ∪ σ{A,B}(R �� S �� T )), where S(R) = {A,B},
S(S) = {B,C}, S(T ) = {A,C} (A, B,C are pairwise distinct), and ϕ sends A to B and
C to itself. The proof of Theorem 1 obtains an equivalent expression in normal form as
follows.

e = π̂A(σ{B,C}(R �� R �� S �� T �� ρϕ(T )) ∪ σ{A,B}(R �� S �� T ))

≡ π̂A(σ{B,C}(R �� R �� S �� T �� ρϕ(T ))) ∪ π̂A(σ{A,B}(R �� S �� T ))

≡ σ{B,C}(π̂A(R �� R �� S �� T �� ρϕ(T ))) ∪ π̂A(σ{A,B}(R �� S �� T ))

≡ σ{B,C}(S �� ρϕ(T ) �� π̂A(R �� R �� T )) ∪ π̂A(σ{A,B}(R �� S �� T ))

≡ σ{B,C}(S �� ρϕ(T ) �� ζA,2(R �� R, T )) ∪ π̂A(σ{A,B}(R �� S �� T ))

≡ σ{B,C}(S �� ρϕ(T ) �� ζA,2(R �� R, T )) ∪ (
π̂A(σ{A,B}(R)) �� S �� ρϕ(T )

)
.

The last expression is in the normal form since the subexpressions S, ρϕ(T ), ζA,2(R ��

R, T ), and π̂A(σ{A,B}(R)) are all (ARA + ζ2)(2) expressions.

Note that we most likely cannot omit the “selections of” in Theorem 1. To see this for
k = 2, consider the expression σ{A,C}(R �� S) where R and S are relation names with
S(R) = {A,B} and S(S) = {B,C}. This expression is in ARA(3) and is also in normal
form, as the relation names R and S constitute expressions in (ARA + ζ2)(2). We cannot
see, however, how the selection operator σ{A,C} could be eliminated from this normal form.

Remark 3 Theorem 1 still holds if the 1 operator is omitted from the definition of ARA.
Indeed, in the proof we can simply omit the case for the 1 operator, which is not used
anywhere else.

In Theorem 1, we have shown that an ARA(k + 1) expression is equivalent to a union
of selections of joins of (ARA + ζk)(k) expressions. Since union and selection do not
change arity, a union of selections of joins of (ARA + ζk)(k) expressions is an (ARA +
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ζk)(k) expression if and only if these joins have arity at most k if and only the original
ARA(k+1) expression has arity at most k. Hence, Theorem 1 yields the following corollary.

Corollary 1 Let S be a database schema of arity at most k and assume that K is com-
mutative. Every ARA(k + 1) expression e over S of arity at most k is equivalent to an
(ARA + ζk)(k) expression over S .

Remark 4 Note that transforming an expression into the normal form of Theorem 1 may
lead to an exponential increase in expression length. The reason is that the proof uses
distributivity of join over union. Indeed, each time we replace an expression of the form
(e1 ∪ e2) �� e3 by (e1 �� e3)∪ (e2 �� e3) there is a duplication of e3. The proof of the classic
translation of FO(3) to the algebra of binary relations also induces an exponential increase
of expression length for similar reasons. A proof that this blowup is unavoidable remains
open, both for our result and for the classical result (to the best of our knowledge).

4 Working withmatrices

In this section, we show that (ARA + ζ2)(2) is equivalent to a natural version of MAT-
LANG [4]. As a consequence of Corollary 1, we then obtain that also ARA(3), with database
schemas and output relations restricted to arity at most 2, is equivalent to MATLANG. We
begin by recalling the definition of this language.

4.1 MATLANG

Let us fix the countable infinite sets matvar and size, where the latter has a distinguished
element 1 ∈ size. The elements of matvar are called matrix variables and the elements of
size are called size symbols.

A matrix schema is a function S : V → size × size with V ⊆ matvar both finite and
nonempty. We write (α, β) ∈ size × size also as α × β.

We now recursively define MATLANG expressions syntactically. In the process, we assign
a matrix schema to each MATLANG expression by extending S from matrix variables to
arbitrary MATLANG expressions. The MATLANG expressions over a matrix schema S is the
smallest set of expressions that can be created by using the following rules.

Variable. A matrix variable M of S is a MATLANG expression over S .
Transpose. If e is a MATLANG expression over S with S(e) = α × β, then eT is a

MATLANG expression with S(eT ) := β × α.
One-vector. If e is a MATLANG expression over S with S(e) = α × β, then 1(e) is a

MATLANG expression with S(1(e)) := α × 1.
Diagonalization. If e is a MATLANG expression over S with S(e) = α × 1, then diag(e)

is a MATLANG expression with S(diag(e)) := α × α.
Multiplication. If e1 and e2 are MATLANG expressions over S with S(e1) = α × β and

S(e2) = β × γ , then e1 · e2 is a MATLANG expression with S(e1 · e2) := α × γ .
Addition. If e1 and e2 are MATLANG expressions over S with S(e1) = S(e2), then e1+e2

is a MATLANG expression with S(e1 + e2) := S(e1) = S(e2).
Hadamard product. If e1 and e2 are MATLANG expressions over S with S(e1) = S(e2),

then e1 ◦ e2 is a MATLANG expression with S(e1 ◦ e2) := S(e1) = S(e2).
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A size assignment is a function σ that assigns to each size symbol a strictly positive
integer with σ(1) = 1. Let M be the set of all matrices over K . We say that M ∈ M
conforms to α × β ∈ size × size by σ if M is a σ(α) × σ(β)-matrix.

If S : V → size × size is a matrix schema, then an instance of S with respect to σ is a
function I : V → M such that, for each M ∈ V , the matrix I(M) conforms to S(M) by σ .

Remark 5 In practice, a size assignment need only be defined on the size symbol that are
used in the schema. Thus, it can be finitely specified. While, here, we have chosen to keep
the notions of size assignment and instance separate, it may be argued that it is perhaps
more natural to think of the size assignment as being part of the instance.

Example 5 Let K be the set of integers and let S be a matrix schema on the set of
matrix variables {no courses, course fee} with S(no courses) = student × dptm and
S(course fee) = dptm × 1. Now, let σ be a size assignment such that σ(student) = 2 and
σ(dptm) = 3. An instance I of S with respect to σ is shown in Fig. 3.

This matrix schema and instance may be compared to the database schema and instance
exhibited in Examples 1 and 2 and Fig. 1.

We now define how the operations which we encountered as the constructors in MAT-
LANG expressions work on matrices.

Transpose, Multiplication, Addition. Matrix transpose, matrix multiplication, and matrix
addition are defined in the usual way.

One-vector. Let M be a m × n matrix. Then, 1(M) is the m × 1 matrix (i.e., column
vector) for which, for i = 1, . . . , m,

(
1(M)

)
i,1 = 1.

Diagonalization. Let M be a m × 1 matrix (i.e., a column vector). Then, diag(M) is the
m × m (square) matrix for which, for i, j = 1, . . . , m,

(
diag(M)

)
i,j

=
{

Mi,1 if i = j ;
0 if i �= j .

Hadamard product Let M1 and M2 be m × n matrices. Then, M1 ◦ M2 is the m × n

matrix for which, for i = 1, . . . , m and j = 1, . . . , n, (M1 ◦ M2)i,j = (M1)i,j ∗ (M2)i,j .

The above operations provide semantics for ARA in a natural manner. Formally, let S be
a matrix schema, and let σ be a size assignment. The semantics of a MATLANG expression
over S with respect to σ is a mapping associating with an instance I of S with respect to σ

the output matrix e(I) conforming to S(e) by σ , defined by the following rules.

Variable. If M is a matrix variable, then M(I) := I(M).
Transpose. If e is a MATLANG expression over S , then (eT )(I) := (

e(I)
)T .

One-vector. If e is a MATLANG expression over S , then
(
1(e)

)
(I) := 1(e(I)).

Fig. 3 An example of an instance of a matrix schema
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Diagonalization. If e is a MATLANG expression over S with S(e) = α × 1, then(
diag(e)

)
(I) := diag(e(I)).

Multiplication If e1 and e2 are MATLANG expressions over S with S(e1) = α × β and
S(e2) = β × γ , then (e1 · e2)(I) := e1(I) · e2(I).

Addition If e1 and e2 are MATLANG expressions over S with S(e1) = S(e2), then (e1 +
e2)(I) := e1(I) + e2(I).

Hadamard product If e1 and e2 are MATLANG expressions over S with S(e1) = S(e2),
then (e1 ◦ e2)(I) := e1(I) ◦ e2(I).

Remark 6 Matrix addition and the Hadamard product are the pointwise applications of addi-
tion and product, respectively. The original definition of MATLANG [4] is more generally
defined in terms of an arbitrary set Ω of allowed pointwise functions. So, MATLANG as
defined above fixes Ω to {+, ∗}. This restriction was also considered by Geerts [6] (who
also allows multiplication by constant scalars, but this is not essential).

Also, the original definition of MATLANG fixes K to the field of complex numbers and
complex conjugate transpose is considered instead of transpose. By definition, the complex
conjugate transpose of a matrix is obtained by pointwise application of complex conjugate to
the transpose of that matrix. Hence, transpose can be expressed as pointwise application of
complex conjugate to the complex conjugate transpose of a matrix. It follows that transpose
and conjugate complex transpose are exchangable provided the set Ω of allowed pointwise
functions contains complex conjugate.

In Sections 4.2 and 4.3, we provide simulations of MATLANG in (ARA + ζ2)(2) and of
(ARA + ζ2)(2) in MATLANG.

4.2 SimulatingMATLANG in (ARA + ζ2) (2)

The notations used in this translation are summarized in Table 1 for easy reference.
Examples 6 and 7, together with Figs. 3 and 5, may also help to understand the translation.

For notational convenience, instead of fixing a one-to-one correspondence between rel
andmatvar, we assume that rel = matvar.

Let us now fix injective functions row : size \ {1} → att and col : size \ {1} → att with
disjoint ranges such that, for all α ∈ size\ {1}, row(α) and col(α) are compatible. To reduce
clutter, we write, for α ∈ size \ {1}, row(α) as rowα and col(α) as colα .

Table 1 Symbol table for the simulation of MATLANG in (ARA + ζ2)(2)

Mapping MATLANG (ARA + ζ2)(2)

matrix variable → relation name M M

size symbol → attributes α rowα , colα
element of size × size → relation schema s Γ (s)

matrix schema → database schema S Γ (S)

size assignment → domain assignment σ D(σ)

matrix → relation M Rels,σ (M)

matrix instance → database instance I Rels,σ (I)

MATLANG expression → (ARA + ζ2)(2) expression e Υ (e)
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Let s ∈ size × size, s = α × β. We associate to s a relation schema

Γ (s) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{rowα, colβ} if α �= 1 �= β;
{rowα} if α �= 1 = β;
{colβ} if α = 1 �= β;
∅ if α = 1 = β.

Observe that always |Γ (s)| ≤ 2.
Let S be a matrix schema on a set of matrix variables V . We associate to S a database

schema Γ (S) on V as follows. For M ∈ V , we set
(
Γ (S)

)
(M) := Γ (S(M)). Notice that,

in the left-hand side, we interpret M as a relation name, whereas, in the right-hand side, we
interpret M as a matrix variable. Of course, Γ (S) is extended to ARA expressions in the
usual way.

Let σ be a size assignment. We associate to σ a domain assignment D(σ) where, for
α ∈ size,

(
D(σ)

)
(rowα) = (

D(σ)
)
(colα) := {1, . . . , σ (α)}.

Let M ∈ M conform to s by σ . We associate to matrix M a relation
Rels,σ (M) : TD(σ)(Γ (s)) → K as follows. For t in TD(σ)(Γ (s)), we have

(
Rels,σ (M)

)
(t) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Mt(rowα),t (colβ ) if α �= 1 �= β;
Mt(rowα),1 if α �= 1 = β;
M1,t (colβ ) if α = 1 �= β;
M1,1 if α = 1 = β.

Remark 7 We wish to make a short remark on 1 × 1 matrices over K , which by definition
contain a single element of K . By the above, the schema of the relation representing a 1× 1
matrix is the empty set, which has arity 0. The only tuple over this relation schema is the
so-called empty tuple. To see that this tuple exists, recall that a tuple is function mapping
the attributes of the relation schema to domain values. Mathematically, a function is a set
of pairs, in this case pairs of attributes and domain values, exactly one for each attribute.
Hence, if the relation schema is empty, the empty set technically satisfies the definition of
tuple over that relation schema, and it is this tuple that we refer to as the empty tuple. If M

is the 1×1 matrix with entry a ∈ K , then Rels,σ (M) above maps the empty tuple to a ∈ K .
Figure 4 visualizes the 1 × 1 matrix M and the 0-ary relation Rels,σ (M). So, also for this
corner case, the development above is sound.

Let S : V → size × size be a matrix schema, and let I be a matrix instance of S with
respect to σ . We associate to I an instance RelS,σ (I) of database schema Γ (S)with respect
to D(σ) as follows. For M ∈ V , we set

(
RelS,σ (I)

)
(M) := RelS(M),σ (I(M)).

Example 6 Consider again matrix schema S , size assignment σ , and matrix instance I
of S with respect to σ from Example 5 and Fig. 3. We have that

(
Γ (S)

)
(no courses) =

{rowstudent, coldptm} and (
Γ (S)

)
(course fee) = {rowdptm}. The database instance RelS,σ (I)

is shown in Fig. 5.

Fig. 4 The 1 × 1 matrix considered in Remark 7 and its representation as a 0-ary relation
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Fig. 5 Matrix instance from Fig. 3 represented as a database instance. The tuple entries are the row and
column indices of the corresponding matrices

We now show that every MATLANG expression can be simulated by an (ARA +
ζ2)(2) expression.

Lemma 3 For every MATLANG expression e over a matrix schema S , there exists an
(ARA + ζ2)(2) expression Υ (e) over database schema Γ (S) such that

1.
(
Γ (S)

)
(Υ (e)) = Γ (S(e)); and

2. for all size assignments σ and matrix instances I of S with respect to σ ,
(
Υ (e)

)
(RelS,σ

(I)) = RelS(e),σ (e(I)).

Proof We construct the translation recursively on the structure of the MATLANG expression.
The basis of the inductive proof that the translation satisfies the desired properties is in the
translation of matrix variables. The inductive steps are a straightforward albeit sometimes
tedious application of definitions and the induction hypothesis. For most operations, we
therefore only provide some intuition. Only for two more elaborate cases, diagonalization
and matrix product, we provide full proofs in the most general subcase.

Variable. If M is a matrix variable, then

Υ (M) := M .

Both properties are trivially satisfied, as left- and right-hand side of the first property
both reduce to Γ (S(M)) and left- and right-hand side of the second property both reduce
to RelS,σ (I(M)).

Transpose. If e is a MATLANG expression over S with S(e) = α × β, then

Υ
(
eT

) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρrowα→colα,colβ→rowβ
(Υ (e)) if α �= 1 �= β;

ρrowα→colα (Υ (e)) if α �= 1 = β;
ρcolβ→rowβ

(Υ (e)) if α = 1 �= β;
Υ (e) if α = 1 = β.

Transposing a matrix involves swapping rows and columns, and, hence, in the translation,
row attributes must become column attributes and column attributes must become row
attributes. This is most obvious in the first of the four cases above, where α �= 1 �= β.
The three other cases are specializations of the first case for column vectors, row vectors,
and 1 × 1 matrices, respectively.

One-vector. If e is a MATLANG expression over S with S(e) = α × β, then

Υ (1(e)) :=
{
1(π{rowα}(Υ (e))) if α �= 1;
1(π∅(Υ (e))) if α = 1.
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Applying the one-vector operation to a matrix can be simulated by applying the one
operation to an appropriate projection of the relational representation of that matrix.

Diagonalization. If e is a MATLANG expression over S with S(e) = α × 1, then

Υ (diag(e)) :=
{

σ{rowα,colα}(Υ (e) �� 1(ρrowα→colα (Υ (e)))) if α �= 1;
Υ (e) if α = 1.

The latter case reflects that the diagonalization of a 1 × 1 matrix is that matrix itself.
For diagonalization, we formally prove that both properties of this Lemma are satisfied

in the case α �= 1 as the case α = 1 is straightforward, using the above observation. As
induction hypothesis, we assume that

(
Γ (S)

)
(Υ (e)) = Γ (S(e)), which equals {rowα},

and that, for all size assignments σ and matrix instances I of S with respect to σ ,(
Υ (e)

)
(RelS,σ (I)) = RelS(e),σ (e(I)).

As for the first property, we have, on the one hand,
(
Γ (S)

)
(Υ (diag(e))) = (

Γ (S)
)

(σ{rowα,colα}(Υ (e) �� 1(ρrowα→colα (Υ (e))))) = {rowα, colα}, by the induction hypothe-
sis. On the other hand, Γ (S(diag(e))) = {rowα, colα}, since S(diag(e)) = α×α. Hence,
left- an right-hand side in the first property are equal.

As for the second property, let t be a tuple in TD(σ)({rowα, colα}).
On the one hand,

((
Υ (diag(e))

)
(RelS,σ (I))

)
(t)

=
((

σ{rowα,colα}(Υ (e) �� 1(ρrowα→colα (Υ (e))))
)
(RelS,σ (I))

)
(t)

=
(
σ{rowα,colα}

((
Υ (e) �� 1(ρrowα→colα (Υ (e)))

)
(RelS,σ (I))

))
(t).

We see that, if t (rowα) �= t (colα), then
((

Υ (diag(e))
)
(RelS,σ (I))

)
(t) = 0.

Let us therefore assume in the remainder of the calculation that t (rowα) = t (colα). Then,
using the induction hypothesis in the fourth equality,

(
σ{rowα,colα}

((
Υ (e) �� 1(ρrowα→colα (Υ (e)))

)
(RelS,σ (I))

))
(t)

=
((

Υ (e) �� 1(ρrowα→colα (Υ (e)))
)
(RelS,σ (I))

)
(t)

=
((

Υ (e)
)
(RelS,σ (I))

)
(t |{rowα}) ∗

((
1(ρrowα→colα (Υ (e)))

)
(RelS,σ (I))

)
(t |{colα})

=
((

Υ (e)
)
(RelS,σ (I))

)
(t |{rowα}) ∗

(
1
((

ρrowα→colα (Υ (e))
)
(RelS,σ (I))

))
(t |{colα})

= (
RelS(e),σ (e(I))

)
(t |{rowα}) ∗ 1{colα}(t |{colα})

= (
e(I)

)
t |{rowα }(rowα)

∗ 1

= (
e(I)

)
t (rowα)

.

On the other hand,
(
RelS(e),σ

((
diag(e)

)
(I)

))
(t) =

((
diag(e)

)
(I)

)

t (rowα),t (colα)
.



Onmatrices and K-relations

If t (rowα) �= t (colα), then the latter expression equals 0; if t (rowα) = t (colα), then it
equals

(
e(I)

)
t (rowα)

. Hence, left- an right-hand side in the second property are also equal.
Multiplication If e1 and e2 are MATLANG expressions over S with S(e) = α × β and

S(e) = β × γ , then

Υ (e1 · e2) =
{

ζC,2(ρϕ1(Υ (e1)), ρϕ2(Υ (e2))) if β �= 1;
Υ (e1) �� Υ (e2) if β = 1,

where C is an attribute different from both rowα and colγ , ϕ1(colβ) = ϕ2(rowβ) = C,
and ϕ1 and ϕ2 are the identity elsewhere.

Also for matrix multiplication, we formally prove that both properties of this Lemma
are satisfied in the case where β �= 1 and α �= 1 �= γ . The other cases are then straight-
forward. As induction hypothesis, we assume that

(
Γ (S)

)
(Υ (e1)) = Γ (S(e1)), which

equals {rowα, colβ}, (Γ (S)
)
(Υ (e2)) = Γ (S(e2)), which equals {rowβ, colγ }, and that,

for all size assignments σ and matrix instances I of S with respect to σ and for i = 1, 2,(
Υ (ei)

)
(RelS,σ (I)) = RelS(ei ),σ (ei(I)).

As for the first property, we have, on the one hand,
(
Γ (S)

)
(Υ (e1 · e2)) =(

Γ (S)
)
(ζC,2(ρϕ1(Υ (e1)), ρϕ2(Υ (e2)))) = {rowα, colγ }, by the induction hypothesis.

On the other hand, Γ (S(e1 · e2)) = {rowα, colγ }, since S(e1 · e2) = α × γ . Hence, left-
an right-hand side in the first property are equal.

As for the second property, let t be a tuple in TD(σ)({rowα, colγ }).
On the one hand, using the induction hypothesis in the ninth equality,

((
Υ (e1 · e2)

)
(RelS,σ (I))

)
(t)

=
((

ζC,2(ρϕ1(Υ (e1)), ρϕ2(Υ (e2)))
)
(RelS,σ (I))

)
(t)

=
((

π{rowα,colβ }(ρϕ1(Υ (e1)) �� ρϕ2(Υ (e2)))
)
(RelS,σ (I))

)
(t)

=
(
π{rowα,colβ }

((
ρϕ1(Υ (e1)) �� ρϕ2(Υ (e2))

)
(RelS,σ (I))

))
(t)

=
∑

t ′∈TD(σ)({rowα,C,colγ }), t ′|{rowα,colγ }=t

((
ρϕ1(Υ (e1)) �� ρϕ2(Υ (e2))

)
(RelS,σ (I))

)
(t ′)

=
∑

t ′∈TD(σ)({rowα,C,colγ }), t ′|{rowα,colγ }=t

((
ρϕ1(Υ (e1))

)
(RelS,σ (I)) ��

(
ρϕ2(Υ (e2))

)
(RelS,σ (I))

)
(t ′)

=
∑

t ′∈TD(σ)({rowα,C,colγ }), t ′|{rowα,colγ }=t

(
ρϕ1

((
Υ (e1)

)
(RelS,σ (I))

)
�� ρϕ2

((
Υ (e2)

)
(RelS,σ (I))

))
(t ′)

=
∑

t ′∈TD(σ)({rowα,C,colγ }), t ′|{rowα,colγ }=t

(
ρϕ1

((
Υ (e1)

)
(RelS,σ (I))

))
(t ′|{rowα,C}) ∗

(
ρϕ2

((
Υ (e2)

)
(RelS,σ (I))

))
(t ′|{C,colγ })

=
∑

t ′∈TD(σ)({rowα,C,colγ }), t ′|{rowα,colγ }=t

((
Υ (e1)

)
(RelS,σ (I))

)
(t ′|{rowα,C} ◦ ϕ1) ∗

((
Υ (e2)

)
(RelS,σ (I))

)
(t ′|{C,colγ } ◦ ϕ2)
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=
∑

t ′∈TD(σ)({rowα,C,colγ }), t ′|{rowα,colγ }=t

(
RelS(e1),σ (ei(I))

)
(t ′|{rowα,C} ◦ ϕ1) ∗

(
RelS(e2),σ (ei(I))

)
(t ′|{C,colγ } ◦ ϕ2)

=
∑

t ′∈TD(σ)({rowα,C,colγ }), t ′|{rowα,colγ }=t

(
e1(I)

)
t ′(ϕ1(rowα)),t ′(ϕ1(colβ ))

∗ (
e2(I)

)
t ′(ϕ2(rowβ )),t ′(ϕ2(colγ ))

=
∑

t ′∈TD(σ)({rowα,C,colγ }), t ′|{rowα,colγ }=t

(
e1(I)

)
t ′(rowα),t ′(C)

∗ (
e2(I)

)
t ′(C),t ′(colγ )

=
σ(β)∑

k=1

(
e1(I)

)
t (rowα),k

∗ (
e2(I)

)
k,t (colγ )

.

On the other hand,
(
RelS(e),σ ((e1 · e2)(I))

)
(t) = (

(e1 · e2)(I)
)
t (rowα),t (colγ )

= (
e1(I) · e2(I)

)
t (rowα),t (colγ )

=
σ(β)∑

k=1

(
e1(I)

)
t (rowα),k

∗ (
e2(I)

)
k,t (colγ )

.

Hence, left- an right-hand side in the second property are also equal.
Addition If e1 and e2 are MATLANG expressions over S with S(e1) = S(e2),

then
Υ (e1 + e2) := Υ (e1) ∪ Υ (e2).

Since union involves adding values of corresponding tuples, this operation provides the
appropriate translation for matrix addition.

Hadamard product If e1 and e2 are MATLANG expressions over S with S(e1) = S(e2),
then

Υ (e1 ◦ e2) := Υ (e1) �� Υ (e2).

Since joining relations with the same scheme involves multiplying values of corre-
sponding tuples, this operation provides the appropriate translation for the Hadamard
product.

Example 7 Consider again matrix schema S , size assignment σ , and matrix instance I
of S with respect to σ from Example 5 and Fig. 3. Consider the MATLANG expression
e = no courses · course fee over S . We have S(e) = student × 1 and

e(I) =
(
2000
1840

)
and RelS(e),σ (e(I)) =

rowstudent K

1 2000
2 1840

.

By Lemma 3 and its proof, we have that RelS(e),σ (e(I)) equals e′(RelS,σ (I)) with

e′ = ζC,2(ρϕ1(no courses), ρϕ2(course fee)),

where ϕ1(colγ ) = ϕ2(rowγ ) = C /∈ {rowα, colβ} and ϕ1 and ϕ2 are the identity elsewhere.

4.3 Simulating (ARA + ζ2) (2) in MATLANG

The notations used in this translation are summarized in Table 2 for easy reference.
Examples 8 and 9, together with Figs. 1 and 3, may also help to understand the translation.
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Table 2 Symbol table for the simulation of (ARA + ζ2)(2) in MATLANG

Mapping (ARA + ζ2)(2) MATLANG

relation name → matrix variable R R

attribute → size symbol A Φ(A)

relation schema → element of size × size X Θ(X)

database schema → matrix schema S Θ(S)

domain assignment → size assignment D σ(D)

relation → matrix r MatD(r)

database instance → matrix instance I MatD(I)

(ARA + ζ2)(2) expression → MATLANG expression e Φ(e)

In order to simulate (ARA+ ζ2)(2) in MATLANG, we equip att with some linear ordering
<. Note that < is an ordering on attributes, not on domain elements. Only an ordering on
domain elements can have an impact on the expressive power of query languages [1].

Again, we assume that rel = matvar. Let us fix an injective functionΨ : att → size\{1}.
Let X be a relation schema with |X| ≤ 2. We associate to X an element Θ(X) ∈ size ×

size as follows:

Θ(X) :=

⎧
⎪⎨

⎪⎩

Ψ (A1) × Ψ (A2) if X = {A1, A2} and A1 < A2;
Ψ (A) × 1 if X = {A};
1 × 1 if X = ∅.

Let S be a database schema on a set N of relation names with arity at most 2. We associate
to S a matrix schema Θ(S) on N as follows. For R ∈ N , we set

(
Θ(S)

)
(R) := Θ(S(R)).

Let D be a domain assignment. We associate to D a size assignment σ(D) where, for
A ∈ att,

(
σ(D)

)
(Ψ (A)) = |D(A)|. If every domain in the range of a domain assignment D

is of the form {1, . . . , n} for some integer n ≥ 1, then we say that D is consecutive.
Let D be a consecutive domain assignment. Given a relation r : TD(X) → K with |X| ≤

2, we associate a matrix MatD(r) conforming toΘ(X) by σ(D). We distinguish three cases:

1. If X = {A1, A2} with A1 < A2, then MatD(r) is a |D(A1)| × |D(A2)| matrix. For
i = 1, . . . , |D(A1)| and j = 1, . . . , |D(A2)|,

(
MatD(r)

)
i,j

= r(t), where t ∈ TD(X)

is defined by t (A1) := i and t (A2) := j .
2. If X = {A}, then MatD(r) is a |D(A)| × 1 matrix (i.e., a column vector). For i =

1, . . . , |D(A)|, (MatD(r)
)
i,1 = r(t), where t ∈ TD(X) is defined by t (A) := i.

3. If X = ∅, then MatD(r) is a 1 × 1 matrix. We have that
(
MatD(r)

)
1,1 = r(t), where t

is the empty tuple (see Remark 7).

Let S : N → Pfin(att) be a database schema such that all relation names in N have arity
at most 2, and let I be a database instance of S with respect to D. We associate to I a
matrix instance MatD(I) of Mat(S) with respect to σ(D) as follows. For R ∈ N , we set(
MatD(I)

)
(R) := MatD(I(R)).

Example 8 Consider again database schema S , domain assignment D, and database
instance I of S with respect to D from Examples 1 and 2 and Fig. 1. To reduce clutter,
assume that att = size \ {1} and that Ψ is the identity function. Take student < dptm. We
have that

(
Θ(S)

)
(no courses) = student × dptm and (Θ(S))(course fee) = dptm × 1.
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Consider domain assignment D′ and database instance I ′ obtained from D and I , respec-
tively, by replacing Alice by 1, Bob by 2, CS by 1, Math by 2, and Bio by 3. Note that D′ is
consecutive. The instance MatD′(I ′) is shown in Fig. 3.

We now show that every (ARA + ζ2)(2) expression can be simulated by a MATLANG
expression.

Lemma 4 For every (ARA+ ζ2)(2) expression e over a database schema S of arity at most
2, there exists a MATLANG expression Φ(e) over matrix schema Θ(S) such that

1.
(
Θ(S)

)
(Φ(e)) = Θ(S(e)); and

2. for all consecutive3 domain assignments D and database instances I with respect to
D,

(
Φ(e)

)
(MatD(I)) = MatD(e(I)).

Proof We construct the translation recursively on the structure of the (ARA+ζ2)(2) expres-
sion. The basis of the inductive proof that the translation satisfies the desired properties is
in the translation of relation names. The inductive steps are a straightforward albeit some-
times tedious application of definitions and the induction hypothesis. For most operations,
we therefore only provide some intuition. Only for two more elaborate cases, projection and
selection, we provide full proofs in the most general subcase.

Relation name. If M is a relation name with |S(M)| ≤ 2, then

Φ(M) := M .

Both properties are trivially satisfied, as left- and right-hand side of the first property
both reduce to Θ(S(M)) and left- and right-hand side of the second property both reduce
to MatD(I(M)).

One. If e is an (ARA + ζ2)(2) expression over S , then

Φ(1(e)) :=
⎧
⎨

⎩
1(Φ(e)) ·

(
1
((

Φ(e)
)T ))T

if |S(e)| = 2;
1(Φ(e)) if |S(e)| < 2.

Applying the one operation to a null-ary or unary relation can be simulated simply by
applying the one-vector operation to the matrix representation of that relation. In case of
a binary relation, we must also apply the one-vector operation to the transpose of that
matrix, and then multiply the former with the transpose of the latter to obtain a matrix of
the same dimensions as the original one.

Union. If e1 and e2 are (ARA + ζ2)(2) expressions over S with S(e1) = S(e2), then

Φ(e1 ∪ e2) := Φ(e1) + Φ(e2).

Since matrix addition was translated in the union of their relational representations in
Lemma 3, union of at most binary relations must be translated in the sum of their matrix
representations.

3Recall that we required consecutive domain assignments to obtain a matrix representation of a relation. (In
case of arbitrary domain assignments, the representation is still possible, of course, if we provide mappings
of all domains into initial segments of the strictly positive integers).
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Projection It is convenient in this case to consider projecting out an attribute rather than
standard projection. We already argued that these are interchangable. If e is an (ARA +
ζ2)(2) expression over S and A ∈ S(e), then

Φ(π̂A(e)) :=
{

Φ(e) · 1((Φ(e)
)T )

if S(e) = {A1, A2}, A1 < A = A2;(
Φ(e)

)T · 1(Φ(e)) otherwise.

In essence, the two cases distinguish between projecting out the second attribute (if there
is one) and projecting out the first attribute (or the only attribute).

For this operation, we formally prove that both properties of this Lemma are satisfied
in the former case. As induction hypothesis, we assume that

(
Θ(S)

)
(Φ(e)) = Θ(S(e)),

which equals Ψ (A1) × Ψ (A2), and that, for all consecutive domain assignments D and
database instances I with respect to D,

(
Φ(e)

)
(MatD(I)) = MatD(e(I)).

As for the first property, we have, on the one hand,
(
Θ(S)

)
(Φ(π̂A2(e))) =

(
Θ(S)

)(
Φ(e) · 1((Φ(e)

)T )) = |D(A1)| × 1, by the induction hypothesis. On the other
hand, Θ(S(π̂A2(e))) = |D(A1)|×1, since S(π̂A2(e)) = {A1}. Hence, left- an right-hand
side in the first property are equal.

As for the second property, let i = 1, . . . , |D(A1)|.
On the one hand, using the induction hypothesis in the fifth equality,

((
Φ(π̂A2(e))

)
(MatD(I))

)

i,1

=
((

Φ(e) · 1((Φ(e)
)T ))

(MatD(I))
)

i,1

=
((

Φ(e)
)
(MatD(I)) ·

(
1
((

Φ(e)
)T ))

(MatD(I))
)

i,1

=
((

Φ(e)
)
(MatD(I)) · 1

(((
Φ(e)

)T
)
(MatD(I))

))

i,1

=
((

Φ(e)
)
(MatD(I)) · 1

(((
Φ(e)

)
(MatD(I))

)T ))

i,1

=
(
MatD(e(I)) · 1((MatD(e(I))

)T ))

i,1

=
|D(A2)|∑

j=1

(
MatD(e(I))

)
i,j

∗
(
1
((
MatD(e(I))

)T ))

j,1

=
|D(A2)|∑

j=1

(
e(I)

)
(ti,j ) ∗ 1

=
|D(A2)|∑

j=1

(
e(I)

)
(ti,j ),

where ti,j ∈ TD({A1, A2}) is defined by t (A1) = i and t (A2) = j .
On the other hand, for ti ∈ TD({A1}) defined by t (A1) = i,

(
MatD

((
π̂A2(e)

)
(I)

))

i,1
=

((
π̂A2(e)

)
(I)

)
(ti )

= (
π̂A2(e(I))

)
(ti )
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=
∑

t∈TD({A1,A2}), t |A1=ti

(
e(I)

)
(t)

=
|D(A2)|∑

j=1

(
e(I)

)
(ti,j ),

where ti,j ∈ TD({A1, A2}) is defined by t (A1) = i and t (A2) = j . Hence, left- an
right-hand side in the second property are also equal.

Selection. If e is an (ARA + ζ2)(2) expression over S , Y ⊆ S(e), and the attributes of Y

are mutually compatible, then

Φ(σY (e)) :=
{

Φ(e) ◦ diag(1(Φ(e))) if |S(e)| = |Y | = 2;
Φ(e) otherwise.

The latter case reflects that selection has no effect unless at least two attributes are
involved in it. We formally prove that both properties of this Lemma are satisfied in
the former case. Therefore, assume that S(e) = Y = {A1, A2}. As induction hypoth-
esis, we assume that

(
Θ(S)

)
(Φ(e)) = Θ(S(e)), which equals |D(A1)| × |D(A2)| =

|D(A1)| × |D(A1)|, since A1 and A2 are mutually compatible. We also assume that,
for all consecutive domain assignments D and database instances I with respect to D,(
Φ(e)

)
(MatD(I)) = MatD(e(I)).

As for the first property, we have, on the one hand,

(
Θ(S)

)
(Φ(σ{A1,A2}(e))) = (

Θ(S)
)
(Φ(e) ◦ diag(1(Φ(e)))),

which equals |D(A1)| × |D(A1)|, by the induction hypothesis. On the other hand,
Θ(S(σ{A1,A2}(e))) = |D(A1)| × |D(A1)|, since S(σ{A1,A2}(e)) = {A1, A2}, and A1 and
A2 are compatible. Hence, left- an right-hand side in the first property are equal.

As for the second property, let i, j = 1, . . . , |D(A1)| = |D(A2)|.
On the one hand, using the induction hypothesis in the last equality,

((
Φ(σ{A1,A2}(e))

)
(MatD(I))

)

i,j

=
((

Φ(e) ◦ diag(1(Φ(e)))
)
(MatD(I))

)

i,j

=
((

Φ(e)
)
(MatD(I)) ◦ (

diag(1(Φ(e)))
)
(MatD(I))

)

i,j

=
((

Φ(e)
)
(MatD(I))

)

i,j
∗

((
diag(1(Φ(e)))

)
(MatD(I))

)

i,j

= (
MatD(e(I))

)
i,j

∗ ((diag(1(Φ(e))))(MatD(I)))i,j .

We now distinguish two cases. If i �= j , then the second factor in the K-product above
equals 0, and, hence,

((
Φ(σ{A1,A2}(e))

)
(MatD(I))

)

i,j
= 0.
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If i = j , then
(
MatD(e(I))

)
i,i

∗
((

diag(1(Φ(e)))
)
(MatD(I))

)

i,i

= (
MatD(e(I))

)
i,i

∗
((
1(Φ(e))

)
(MatD(I))

)

i,1

= (
MatD(e(I))

)
i,i

∗
(
1
((

Φ(e)
)
(MatD(I))

))

i,1

= (
MatD(e(I))

)
i,i

∗ 1

= (
MatD(e(I))

)
i,i

= (
e(I)

)
(ti,i ),

where ti,i ∈ TD({A1, A2}) is defined by t (A1) = i = t (A2).
On the other hand, for ti,j ∈ TD({A1, A2}) defined by t (A1) = i and t (A2) = j ,

(
MatD

((
σ{A1,A2}(e)

)
(I)

))

i,j
=

((
σ{A1,A2}(e)

)
(I)

)
(ti,j )

= (
σ{A1,A2}(e(I))

)
(ti,j ),

where ti,j ∈ TD({A1, A2}) is defined by t (A1) = i and t (A2) = j . We again distinguish
two cases. If i �= j , then t (Ai) = i �= j = t (Aj ) and, consequently,

(
MatD

((
σ{A1,A2}(e)

)
(I)

))

i,j
= 0.

If i = j , then t (Ai) = t (Aj ) and
(
MatD

((
σ{A1,A2}(e)

)
(I)

))

i,i
= (

e(I)
)
(ti,i ).

Hence, left- an right-hand side in the second property are also equal.
Renaming. If e is an (ARA + ζ2)(2) expression over S and ϕ : S(e) → Y is a compatible

one-to-one correspondence with Y ⊆ att, then

Φ(ρϕ(e)) :=
{(

Φ(e)
)T if S(e) = {A1, A2}, A1 < A2, and ϕ(A1) > ϕ(A2);

Φ(e) otherwise.

Since attribute names are not reflected in the matrix representation of relations, renaming
has no effect on the translation, unless the renaming reverses the order of the attributes,
which results in swapping rows and columns, i.e., in transpose.

Join. If e1 and e2 are (ARA + ζ2)(2) expressions over S , then Φ(e1 �� e2) equals
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ(e1) ◦ Φ(e2) if S(e1) = S(e2);
s(Φ(e1),Φ(e2)) ◦ Φ(e2) if S(e1) = ∅;
Φ(e1) ◦ s(Φ(e2),Φ(e1)) if S(e2) = ∅;
Φ(e1) · (

Φ(e2)
)T if S(e1) = {A1} and S(e2) = {A2};(

Φ(e1) · (
Φ(e2)

)T
)T

if S(e1) = {A2} and S(e2) = {A1};
diag(Φ(e1)) · Φ(e2) if S(e1) = {A1} and S(e2) = {A1, A2};((

Φ(e1)
)T · diag(Φ(e2))

)T

if S(e1) = {A1, A2} and S(e2) = {A1};
Φ(e1) · diag(Φ(e2)) if S(e1) = {A1, A2} and S(e2) = {A2};(
diag(Φ(e1)) · (

Φ(e2)
)T

)T

if S(e1) = {A2} and S(e2) = {A1, A2},
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where A1 < A2 in each case where both attributes occur, and s is an abbreviation defined
as follows. If f1 and f2 are two MATLANG expressions with S(f1) = 1×1 and S(f2) =
α × β, then s(f1, f2) := 1(f2) · f1 · (

1(f2T )
)T . Notice that S(s(f1, f2)) = α × β.

Furthermore, if J is a matrix instance over S for which f1(J ) is a 1 × 1 matrix with
entry a and f2(J ) is an m × n matrix for some m, n ≥ 1, then

(
s(f1, f2)

)
(J ) is the

m × n matrix in which all entries equal a.
The many cases above reflect all possible combination where |S(e1)| ≤ 2, |S(e2)| ≤

2, and |S(e1 �� e2)| ≤ 2, taking into account the order of the attributes. In the first case,
where S(e1) = S(e2), join reduces to pointwise multiplication of the tuple values, which
is reflected by the Hadamard product in the translation. The second and third cases con-
cern a join with a null-ary relation, which reduces to a scalar multiplication of the value
of the empty tuple with the tuple values of the other relation. In the translation, this scalar
multiplication is simulated using the abbreviation s explained above and the Hadamard
product. Observe that we need to distinguish two cases, sinceK-multiplication is not nec-
essarily commutative. The fourth and fifth cases concern the join of two disjoint unary
relations, which results in considering all possible combinations of tuples and associat-
ing with them the product of their values. In the translation, this is simulated by a matrix
product. Depending on the order of the attributes involved, a transpose may be in order,
which is why there are again two cases here. The remaining cases involve the join of a
binary relation and a unary relation over one of the attributes of the binary relation. To
obtain the correct result, the value of each tuple of the binary relation must be multiplied,
in the correct order, with the value of the corresponding tuple of the unary relation. In the
translation, this is simulated using diagonalization and matrix multiplication. We need
to distinguish four cases, since the order of the join matters (binary with unary or unary
with binary), and since it also matters whether the unary relation is defined over the first
or the second attribute (with respect to their mutual order) of the binary relation.

Composition. If e1 and e2 are (ARA + ζ2)(2) expressions over S with S(e1) = {A1, A3},
and S(e2) = {A2, A3}, and A1, A2, A3 pairwise different, then

Φ(ζA3,2(e1, e2)) :=
((

Φ(e1)
)T (A1,A3) · (

Φ(e2)
)T (A3,A2)

)T (A1,A2)

,

where, for attributes A and B and MATLANG expression f ,

f T (A,B) :=
{

f if A < B;
f T if A > B.

As may be expected, this operation can be simulated straightforwardly with matrix mul-
tiplication. Depending on the order of the attributes, however, transpositions may be in
order.

Notice that we have only covered the case where |S(e1) �S(e2)| = 2, where �
denotes symmetric difference. If |S(e1) �S(e2)| ≤ 1, then ζA3,2(e1, e2) ≡ π̂A3(e1 ��

e2) is expressible in ARA(2) (since then |S(e1 �� e2)| ≤ 2) . In this case, we first replace
ζA3,2(e1, e2) by its defining expression π̂A3(e1 �� e2) and then proceed using the cases
for projection and join above.

Observe that, in the above proof, the number of cases in the expression of Φ(e1 �� e2)

can be significantly reduced if the semiring K is commutative (in which case join is
commutative).
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Example 9 Consider again database schema S , domain assignment D, and database
instance I of S with respect to D from Examples 1 and 2 and Fig. 1. Consider the (ARA +
ζ2)(2) expression e = no courses �� course fee over S . We have S(e) = {student, dptm}
and

e(I) =

student dptm K

1 1 1500
1 2 500
1 3 0
2 1 600
2 2 250
2 3 990

and MatD(e(I)) =
(
1500 500 0
600 250 990

)
.

By Lemma 3 and its proof, we have that MatD(e(I)) is equal to e′(MatD(I)) with e′ =
no courses · diag(course fee).

4.4 Relationship with ARA(3)

Corollary 1, Lemma 3, and Lemma 4 together establish the equivalence of MATLANG with
the language ARA(3) restricted to database schemas and output relations of arity at most 2.

Theorem 2 If K is commutative, then, for each ARA(3) expression of arity at most 2 over
a database schema S of arity at most 2, there exists a MATLANG expression e′ such that
MatD(e(I)) = e′(MatD(I)) for all consecutive domain assignments D and instances I
with respect to S over D.

Conversely, for each MATLANG expression e over a matrix schema S , there exists an
ARA(3) expression e′ such that RelS(e),σ (e(I)) = e′(RelS,σ (I)) for all size assignments σ

and matrix instances I of S with respect to σ .

4.5 Complexity of the translations

Now that we have established translations from MATLANG to ARA(3) via (ARA + ζ2)(2) as
an intermediate step, we also want to look at the complexity of these translations, in terms
of the lengths of the expressions involved.

First of all, we note that the translations Υ from MATLANG to (ARA+ζ2)(2) and Φ from
(ARA + ζ2)(2) to MATLANG provided in the proofs of Lemmas 3 and 4, respectively, are
strictly speaking exponential. They can, however, be readily adapted to become linear, pro-
vided the schema is considered to be fixed. (If the schema is not fixed and considered to be
part of the input, these adaptations result in quadratic translations.) The required adaptations
are the following.

We first consider the translation from MATLANG to (ARA + ζ2)(2). For a MATLANG
expression e with S(e) = α × 1 with α �= 1, there is a constant-length expression Tpα

with S(Tpα) = α × 1. Indeed, since α is a size symbol of S(e) distinct from 1, there
is a matrix variable M with S(M) equal to either α × β or β × α for some β. Taking
Tpα := 1(M) in the former case and Tpα := 1(MT ) in the latter case, we have S(Tpα) =
α × 1 as desired. The only source of exponential growth in Lemma 3 is in the expression
σ{rowα,colα}(Υ (e) �� 1(ρrowα→colα (Υ (e)))) appearing in the diagonalization case, which is
equivalent to σ{rowα,colα}(Υ (e) �� ρrowα→colα (Υ (Tpα))).

For the converse translation, from (ARA + ζ2)(2) to MATLANG, we observe that, for an
ARA expression e with S(e) := X ⊆ {A1, A2}, there is a constant-length expression TpX
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with S(TpX) = X. Indeed, if A ∈ S(e), then there exists A′ ∈ S(RA′) for some relation
name RA′ such that A′ is compatible with A. Taking TpX :=��A∈X ρA′→A(π{A′}(RA′)) if
X �= ∅ and Tp∅ := π∅(R) for some relation name R, we have S(TpX) = X as desired.
Replacing each occurrence of 1(Φ(e)) by the equivalent expression 1(Φ(TpS(e))) and each

occurrence of 1
((

Φ(e)
)T )

by the equivalent expression 1
((

Φ(TpS(e))
)T )

in the proof of
Lemma 4 avoids exponential growth.

We remind the reader that (ARA+ζ2)(2) is subsumed by ARA(3), and, hence, the “trans-
lation” from (ARA + ζ2)(2) to ARA(3) comes for free. The translation from ARA(3) to
(ARA + ζ2)(2) is exponential, however (Remark 4). In summary, we have provided linear
translations in the following directions: MATLANG ↔ (ARA + ζ2)(2) → ARA(3).

4.6 Indistinguishability

Using a recent result by Geerts on indistinguishability in MATLANG [6], we can also relate
ARA(3) to C3, the three-variable fragment of first-order logic with counting [15]. LetA1 and
A2 be matrices of the same dimensions m×n. We view A1 and A2 as instances of a schema
S on a single matrix nameM with S(M) = α×β, with respect to the size assignment σ that
maps α to m and β to n. We say that A1 and A2 are indistinguishable in MATLANG, denoted
by A1 ≡MATL A2, if for each MATLANG expression e over S with S(e) = 1 × 1, we have
e(A1) = e(A2). Similarly, one can define indistinguishability of binary K-relations r1 and
r2 in ARA(3), denoted by r1 ≡ARA(3) r2. This leads to the following corollary to Theorem 2.

Corollary 2 A1 ≡MATL A2 if and only if Rels,σ (A1) ≡ARA(3) Rels,σ (A2).

Geerts’s result concerns finite undirected graphs G1 and G2 with the same number of
nodes. Recall that G1 and G2 are called indistinguishable in C3, denoted by G1 ≡C3 G2, if
each C3-sentence over a single binary relation variable has the same truth value on G1 and
G2. Denote the adjacency matrix of G by Adj(G).

Theorem 3 [6] If K is the field of complex numbers, then Adj(G1) ≡MATL Adj(G2) if and
only if G1 ≡C3 G2.

We can immediately conclude the following, for suitable s and σ :

Corollary 3 If K is the field of complex numbers, then G1 ≡C3 G2 if and only if Rels,σ
(Adj(G1)) ≡ARA(3) Rels,σ (Adj(G2)).

5 Conclusion

In related work, Yan, Tannen, and Ives consider provenance for linear algebra operators [20].
In that approach, provenance tokens represent not the matrix entries (as in our work), but
the matrices themselves. Polynomial expressions (with matrix addition and matrix multi-
plication) are derived to show the provenance of linear algebra operations applied to these
matrices.

Our result that every matrix query expressible in ARA(3) is also expressible in MAT-
LANG provides a partial converse to the observation already made in the original paper [4],
to the effect that MATLANG can be expressed in LAggr(3): the relational calculus with
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summation and numerical functions [11], restricted to three base variables.4 This observa-
tion was made in the extended setting of MATLANG that allows arbitrary pointwise functions
(Remark 6). For the language considered here, ARA(3) provides a more appropriate upper
bound for comparison, and ARA(3) is still a natural fragment of LAggr(3).

When allowing arbitrary pointwise functions in MATLANG, we actually move beyond
the positive relational algebra, as queries involving negation can be expressed. For example,
applying the function x ∧ ¬y pointwise to the entries of two n × n Boolean matrices rep-
resenting two binary relations R and S on {1, . . . , n}, we obtain the set difference R \ S. It
is an interesting research question to explore expressibility of queries in MATLANG in this
setting. For example, consider the following LAggr(3) query on two matrices M and N :

∀i∃j∀k∀x
(
M(i, k, x) → ∃i N(j, i, x)

)

Here, M(i, k, x) means that Mi,k = x, and similarly for N(j, i, x).
The above query, which does not even use summation, reuses the base variable i and

checks whether each row of M , viewed as a set of entries, is included in some row of N ,
again viewed as a set of entries. We conjecture that the query is not expressible in MAT-
LANG with arbitrary pointwise functions. Developing techniques for proving this conjecture
is an interesting direction for further research.

Finally, recall that our main result Corollary 1 assumes that K is commutative. It should
be investigated whether or not this result still holds in the noncommutative case.
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