From complex-object to semistructured query languages

Complex objects

Types:

$$au o 0$$

$$\mid [au, \dots, au]$$

$$\mid \{ au\}$$

Values of type 0 are atomic data elements

Values of type $[\tau_1, \ldots, \tau_n]$ are tuples $[v_1, \ldots, v_n]$ with v_i a value of type τ_i

Values of type $\{\tau\}$ are finite sets of values of type τ

• Relational algebra knows only "flat" types: of the form $\{[0,...,0]\}$

Operations on complex objects

Tuples: projection, tuple formation

Sets: union, singleton formation

⇒ Build a programming language around these operations by adding

• if-then-else

structural recursion

Structural recursion

Any function f of type $\tau \to \{\sigma\}$ yields a function \overline{f} of type $\{\tau\} \to \{\sigma\}$ by structural recursion:

$$\bar{f}(\varnothing) := \varnothing
\bar{f}(\lbrace x \rbrace) := \lbrace f(x) \rbrace
\bar{f}(s_1 \cup s_2) := \bar{f}(s_1) \cup \bar{f}(s_2)$$

Equivalently:

$$\bar{f}(s) := \bigcup \{ f(x) \mid x \in s \}$$

[Backus; Bird; Meertens]

The nested relational calculus (NRC)

[Buneman, Tannen, Wong]

Typed variables x^{τ} : τ

$$\frac{e_1,e_2:\sigma\quad e_3,e_4:\tau}{\text{if }e_1=e_2\text{ then }e_3\text{ else }e_4:\tau}$$

Tuples:

$$\frac{e : [\tau_1, \dots, \tau_n]}{\pi_i(e) : \tau_i} \quad (i = 1, \dots, n)$$

$$\frac{e_1 : \tau_1 \quad \dots \quad e_n : \tau_n}{[e_1, \dots, e_n] : [\tau_1, \dots, \tau_n]}$$

Sets:

$$\frac{e : \tau}{\varnothing^\tau : \{\tau\}} \quad \frac{e : \tau}{\{e\} : \{\tau\}} \quad \frac{e_1 : \{\tau\} \quad e_2 : \{\tau\}}{e_1 \cup e_2 : \{\tau\}}$$

Structural recursion:

$$\frac{e_1:\{\sigma\} \quad e_2:\{\tau\}}{\bigcup\{e_1\mid x\in e_2\}:\{\sigma\}} \quad (x \text{ becomes bound})$$

An expression e: τ with free variables $x_1^{\tau_1}$, ..., $x_k^{\tau_k}$ expresses a function of type

$$\tau_1 \times \cdots \times \tau_n \to \tau$$

Example

$$f: \{\{0\}\} \times \{\{0\}\} \to \big\{ [\{0\}, \{0\}, \{0\}] \big\} \\ x, y \mapsto \{[u, v, u \cap v] \mid u \in x \& v \in y \} \\ \bigcup \big\{ \bigcup \big\{ \{[u, v, \underline{u \cap v}]\} \mid u \in x \big\} \mid v \in y \big\} \\ \bigcup \{ \text{if } \underline{z \in v} \text{ then } \{z\} \text{ else } \varnothing \mid z \in u \} \\ \bigcup \{ \text{if } z' = z \text{ then } \{z\} \text{ else } \varnothing \mid z' \in v \} = \{z\}$$

NRC is the "right" extension of FO to complex objects

In particular, the expressions of type

$$\tau_1 \times \cdots \times \tau_k \to \tau$$

where

- 1. τ_1 , ..., τ_k , τ are flat
- 2. types of all bound variables are also flat

correspond exactly to FO.

From complex objects to semistructured data

Strict typing implies limitations on data structures:

- no heterogeneous sets
- fixed bound on height
- ⇒ Arbitrary hereditarily finite sets with urelements:
 - $\varnothing \in \mathsf{HF}(\mathbf{U})$
 - if $a_1, \ldots, a_m \in \mathbf{U}$ and $s_1, \ldots, s_n \in \mathsf{HF}(\mathbf{U})$ then also $\{a_1, \ldots, a_m, s_1, \ldots, s_n\} \in \mathsf{HF}(\mathbf{U})$

Going all the way: untyped NRC

- Untyped variables
- if $e_1 = e_2$ then e_3 else e_4
- $\{e\}$, $e_1 \cup e_2$
- $\bullet \quad \{e_1 \mid x \in e_2\}$

"Rudimentary" or "basic" set-theoretic operations [Jensen; Gandy]

Basis for suite of " Δ -languages" [Sazonov, Lisitsa]

An intermediate: semistructured query languages

Two sorts of variables: atomic ("label") and set ("tree")

Allow equality test on atomic variables only

 \Rightarrow Satisfiability becomes decidable when U is finite

"Surface syntax" of UnQL [Buneman, Fernandez, Suciu]

Vertical and horizontal transitive closure

We can still dive only until a fixed depth inside the data structures \Rightarrow add recursion

Basic, "vertical" TC operator is very typical:

$$\mathsf{TC}\Big(\Big\{\{\{a\}\}\Big\}\Big) = \Big\{\{\{a\}\}, \{a\}, a\Big\}$$

For more power:

- "Horizontal" TC operator, as in FO(TC), in Δ -languages
- In StruQL the same is achieved by composing queries
- Alternatively, UnQL proposes a more powerful form of structural recursion on trees (and even graphs), but this becomes very messy

Bounded-height creation

Output is always a set constructed from sets in the TC of input.

Not counting heights of these sets, height of output is bounded by a constant fixed by the query.

⇒ Cannot express transformation:

$$\{[a_1, a_2], [a_2, a_3], \dots, [a_{n-1}, a_n], [a_n, b]\}\$$

 $\mapsto \{\dots \{b\} \dots \} \text{ (height } n)$

 Δ -languages provide "Mostowski collapsing" operator for going from the \in -graph of a set to the set itself

Stepping back

A HF set over ${\bf U}$ is nothing but a tree with two kinds of nodes: sets ("objects") and elements of ${\bf U}$ ("values")

No reason not to generalize this to arbitrary two-sorted structures

Mappings among such structures can then be expressed using interpretations in, say, FO(TC)

- Need notion of interpretation where input values retain their identity in the output
- \Rightarrow Refine basic isomorphism to U-isomorphism

StruQL [Fernandez, Florescu, Levy, Suciu]

OO query languages! [e.g., GOOD]