From complex-object
to semistructured
query languages

Complex objects

Types:

T —0

|[7-7°°°77-]

|17}

Values of type O are atomic data elements

Values of type [rq,...,m] are tuples [vq,...,vn]
with v; a value of type 7;

Values of type {7} are finite sets of values of
type T

e Relational algebra knows only “flat” types:
of the form {[0,...,0]}

Operations on complex objects

Tuples: projection, tuple formation

Sets: union, singleton formation

= Build a programming language around these
operations by adding

e if-then-else

e structural recursion

Structural recursion

Any function f of type 7 — {o} vields a func-

tion f of type {r} — {o} by structural recur-
sion:

f(@) =9

f{z}) = {f(x)}

f(s1Us2) := f(s1) U f(s2)
Equivalently:

f(s) :==U{f(@) |z € s}

[Backus; Bird; Meertens]

The nested relational calculus (NRC)
[Buneman, Tannen, Wong]

Typed variables =7 : T

€1, .0 e€e3,e4 . T
if e1 =e> then ez else e4 @ 7

Tuples:
e:[r1,...,m] (i=1)
7'('@'(6)17'7; T
61 7_1 .« o e en Tn

[61,...,677,] [Tl,...,Tn]

Sets:

e:T e1 {7} ex:{r}

o {r} {e} : {7} ey Uep : {7}

Structural recursion:

e1 {0} ex:{7}
Ule1 |z € e} : {0}

(z becomes bound)

An expression e . T
with free variables z1!, ..., z;*
expresses a function of type

TL X+ XTph =T

Example

f: {{0}} x {{0}} — {[{0}, {0}, {0}]}

z,y — {[u,v,unv] |u€ex&v ey}

U{U{{lwv,unl} [uea} | vey)

| J{if z € v then {z} else & | z € u}

| J{if 2’ = 2z then {:} else & | 2’ € v} = {2}

NRC is the “right” extension of FO to
complex objects

In particular, the expressions of type

TL X+ X Tp =T

where

1. 7, ..., T, T are flat

2. types of all bound variables are also flat

correspond exactly to FO.

From complex objects
to semistructured data

Strict typing implies limitations on data struc-
tures:

e NO heterogeneous sets

e fixed bound on height

= Arbitrary hereditarily finite sets with ure-
lements:

e U ¢ HF(U)

o ifay, ..., am €U and sy, ..., sp € HF(U)
then also {a1,...,am,s1,...,sn} € HF(U)

9

Going all the way: untyped NRC
e Untyped variables
o Iif e1 =e> then e3 else ey
o {e}, eqUep
e {er|x€en}

“Rudimentary” or “basic” set-theoretic oper-
ations [Jensen; Gandy]

Basis for suite of “A-languages” [Sazonov, Lisitsa]

10

An intermediate:
semistructured query languages

Two sorts of variables: atomic (“label”) and
set (“tree”)

Allow equality test on atomic variables only

= Satisfiability becomes decidable when U is
finite

“Surface syntax” of UnQL [Buneman, Fernan-
dez, Suciu]

11

Vertical and horizontal transitive closure

We can still dive only until a fixed depth inside
the data structures = add recursion

Basic, ‘“vertical” TC operator is very typical:

TC({{{a}}}) = {{{a}} {a},a}

For more power:

e “Horizontal” TC operator, as in FO(TC),
in A-languages

e In StruQL the same is achieved by com-
posSing queries

e Alternatively, UnQL proposes a more pow-
erful form of structural recursion on trees
(and even graphs), but this becomes very
messy

12

Bounded-height creation

Output is always a set constructed from sets
in the TC of input.

Not counting heights of these sets, height of
output is bounded by a constant fixed by the

query.

= Cannot express transformation:
{[CL]_, CL2], [CL2, a3]7 L [an—17 a’n]a [a’n7 b]}

— {---{b}---} (height n)

A-languages provide “Mostowski collapsing”
operator for going from the e-graph of a set
to the set itself

13

Stepping back

A HF set over U is nothing but a tree with two
kinds of nodes: sets (“objects”) and elements
of U (“values")

No reason not to generalize this to arbitrary
two-sorted structures

Mappings among such structures can then be
expressed using interpretations in, say, FO(TC)

e Need notion of interpretation where input
values retain their identity in the output

= Refine basic isomorphism to U-isomorphism
StruQL [Fernandez, Florescu, Levy, Suciu]

OO query languages! [e.g., GOOD]

14

