
28

Discovering XSD Keys from XML Data

MARCELO ARENAS, PUC Chile and University of Oxford
JONNY DAENEN and FRANK NEVEN, Hasselt University and Transnational University of
Limburg
MARTIN UGARTE, PUC Chile
JAN VAN DEN BUSSCHE, Hasselt University and Transnational University of Limburg
STIJN VANSUMMEREN, Université Libre de Bruxelles (ULB)

A great deal of research into the learning of schemas from XML data has been conducted in recent years to
enable the automatic discovery of XML schemas from XML documents when no schema or only a low-quality
one is available. Unfortunately, and in strong contrast to, for instance, the relational model, the automatic
discovery of even the simplest of XML constraints, namely XML keys, has been left largely unexplored in
this context. A major obstacle here is the unavailability of a theory on reasoning about XML keys in the
presence of XML schemas, which is needed to validate the quality of candidate keys. The present article
embarks on a fundamental study of such a theory and classifies the complexity of several crucial properties
concerning XML keys in the presence of an XSD, like, for instance, testing for consistency, boundedness,
satisfiability, universality, and equivalence. Of independent interest, novel results are obtained related to
cardinality estimation of XPath result sets. A mining algorithm is then developed within the framework of
levelwise search. The algorithm leverages known discovery algorithms for functional dependencies in the
relational model, but incorporates the properties mentioned before to assess and refine the quality of derived
keys. An experimental study on an extensive body of real-world XML data evaluating the effectiveness of
the proposed algorithm is provided.

Categories and Subject Descriptors: H.2.8 [Information Systems]: Database Management—Database Ap-
plications, Data mining

General Terms: Algorithms, Languages, Experimentation, Theory

Additional Key Words and Phrases: XML key

ACM Reference Format:
Marcelo Arenas, Jonny Daenen, Frank Neven, Martin Ugarte, Jan van den Bussche, and Stijn Vansummeren.
2014. Discovering XSD keys from XML data. ACM Trans. Datab. Syst. 39, 4, Article 28 (December 2014), 49
pages.
DOI: http://dx.doi.org/10.1145/2638547

The authors used the infrastructure of the VSC- Flemish Supercomputer Center, funded by the Hercules
Foundation and the Flemish Government. The authors acknowledge the financial support of the Fondecyt
grant no. 1131049, FP7-ICT-233599, FWO G082109, and ERC grant agreement DIADEM, no. 246858.
Authors’ addresses: M. Arenas, Pontificia Universidad Catolica de Chile (PUC Chile), Av Libertador Bernardo
O Higgins 340, Santiago, Region Metropolitana, Chile and University of Oxford, Wellington Square, Oxford
OX1 2JD, UK; J. Daenen, F. Neven (corresponding author), Hasselt University and Transnational Uni-
versity of Limburg, Agoralaan D, 3900 Diepenbeek, Belgium; email: frank.neven@uhasselt.be; M. Ugarte,
Pontificia Universidad Catolica de Chile (PUC Chile), Av Libertador Bernardo O Higgins 340, Santiago,
Region Metropolitana, Chile; J. van den Bussche, Hasselt University and Transnational University of
Limburg, Agoralaan D, 3900 Diepenbeek, Belgium; S. Vansummeren, Universite Libre de Bruxelles, Franklin
Rooseveltlaan 50, 1050 Brussels, Belgium.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
c© 2014 ACM 0362-5915/2014/12-ART28 $15.00

DOI: http://dx.doi.org/10.1145/2638547

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

28:2 M. Arenas et al.

1. INTRODUCTION
The automatic discovery of constraints from data is a fundamental problem in the
scientific database literature, especially in the context of the relational model in the
form of key, foreign key, and functional dependency discovery (e.g., [Mannila and Räihä
1991]). Although the absence of DTDs and XML Schema Definitions (XSDs) for XML
data occurring in the wild has driven a multitude of research on learning of XML
schemas [Bex et al. 2009, 2010a, 2010b, 2007, 2008; Garofalakis et al. 2003], the auto-
matic inference of constraints has been left largely unexplored (we refer to Section 2
for a discussion on related work). In this article, we address the problem of XML key
mining whose core formulation asks to find all XML keys valid in a given XML docu-
ment. We use a formalization of XSD keys (defined in Section 3) consistent with the
definition of XML keys by W3C [2004]. We develop a key mining algorithm within
the framework of levelwise search that additionally leverages discovery algorithms
for functional dependencies in the relational model. Our algorithm iteratively refines
keys based on a number of quality requirements; a significant portion of the article is
devoted to a study of the complexity of testing these requirements.

To illustrate the challenges of key mining in the presence of a schema, we first
introduce the following example.

Example 1.1. Consider the key

φ := ((order, qorder)︸ ︷︷ ︸
context c

, .//book︸ ︷︷ ︸
target path τ

, (.//title, .//year)︸ ︷︷ ︸
key paths p1, p2, . . .

).

Here, the pair (order, qorder) is a context consisting of the label “order” and the state or
type1 qorder that identifies the context nodes for which φ is to be evaluated. Further,
.//book is an XPath expression, called target path, selecting within every context node
a set of target nodes. The key constraint now states that every target node must be
uniquely identified by the record determined by the key paths .//title and .//year,
which are XPath expressions as well. In other words, no two target nodes should have
both the same title and the same year. A schematic representation of the semantics of
a key is given in Figure 2. So, over the XML document t displayed in Figure 1, the key
φ gives rise to the table Rφ,t as follows.

(order, qorder) .//book .//title .//year
(o1, b1, ‘Movie analysis’, 2012)
(o1, b2, ‘Programming intro’, 2012)
(o2, b3, ‘Programming intro’, 2012)

In Figure 1, the names of the order and book nodes from left to right are o1, o2, and
b1, b2, b3, respectively, and every order node has type qorder. Then, φ holds in t if the
functional dependency

(order, qorder), .//title, .//year → .//book

holds in Rφ,t. That is, within the same context node, “title” and “year” uniquely deter-
mine the “book” element.

As a necessary condition for a key to be valid on a tree t, the XML key specification
[W3C 2004, Section 3.11.4] requires every key path to always select precisely one node

1Types are defined in the accompanying schema, which is not given here but discussed in Section 3.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

Discovering XSD Keys from XML Data 28:3

Fig. 1. An example XML tree (order and book nodes are named o1, o2 and b1, b2, b3 from left to right,
respectively).

carrying a data value.2 The key is then said to qualify on t. As an example,

φ′ := ((bookshop, qbookshop), .//order, (.//address)),

qualifies for the particular tree given in Figure 1 (assuming every node labeled “book-
shop” has type qbookshop) since every target node o1 and o2 has precisely one address
node. But, the accompanying XSD might allow XML documents without or with mul-
tiple addresses, for which φ′ would not qualify. So, qualifying for the given document
does not necessarily entail qualifying for every document in the schema. We say that
a key is consistent with respect to an XSD if the key qualifies on every document sat-
isfying the XSD. As a quality criterion for keys, we want our mining algorithm to only
consider consistent keys. We therefore start by studying the complexity of deciding
consistency and obtain the pleasantly surprising result that consistency can be tested
in polynomial time for keys disallowing disjunction on the topmost level. We show that
consistency for general keys is CONP-hard and even PSPACE-hard for keys with regular
expressions (that are not allowed in W3C keys).

In addition to consistency, we want to enforce a number of additional quality re-
quirements on keys. In particular, we want to disregard keys that can only select an a
priori bounded number of target nodes independent of the size of the input document.
Since the main purpose of a key is to ensure uniqueness within a collections of nodes,
it does not make sense to consider bounded keys for which the size of this collection is
fixed in advance and cannot grow with the size of the document. Similarly, we want to
ignore so-called universal keys that hold in every document. We obtain that testing for
bounded and universal keys is tractable.

A final theoretical theme of this article is that of reasoning about keys. On the
negative side and in strong contrast to reasoning about relational keys [Abiteboul
et al. 1995; Ramakrishnan and Gehrke 2003] or XML keys without an accompanying
schema [Buneman et al. 2002, 2003], we show that testing satisfiability, equivalence,
and implication between keys is EXPTIME-hard. As an aside, we show that a milder
form of equivalence, namely that of target path equivalence (i.e., determining that two
target paths always select the same set of target nodes over documents satisfying the
schema), is tractable. The latter can be used as an instrument to reduce the number of
candidate target paths.

After laying the theoretical groundwork given before, we turn to the theme of mining.
Example 1.1 indicates how XML key mining can leverage algorithms for the discovery
of functional dependencies (FDs) over a relational database. Indeed, once a context c
and a target path τ are determined, any FD of the form c, p1, . . . , pn → τ that holds
in the relational encoding R(c,τ,P),t entails the key (c, τ, (p1, . . . , pn)) in t where P is
a sequence consisting of all possible consistent key paths. Of course, it remains to

2Actually, the specification is a bit more general in allowing the use of attributes. For ease of presentation,
we disregard attributes and let leaf nodes carry data values. We note that all the results in the article can
be easily extended to include attributes.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

28:4 M. Arenas et al.

investigate how to efficiently explore the search space of candidate contexts c, target
paths τ , and consistent key paths p. To this end, we embrace the framework of levelwise
search (as, e.g., described by Mannila and Toivonen [1997]) to enumerate target and
key paths. The components of this framework consist of a search space U , a Boolean
search predicate q, and a specialization relation # that is a partial order on U and
monotone with respect to q. In particular, the partial order arranges objects from most
general to most specific and when q holds for an object then q should also hold for all
generalizations of this object. The solution then consists of all objects u ∈ U for which
q(u) holds, enumerated according to the specialization relation while avoiding testing
objects for which q cannot hold anymore given already obtained information.

We define a target path miner within the framework just described as follows: the
search predicate holds for a target path when the number of selected target nodes
exceeds a predetermined threshold value, and the partial order # is determined by
containment among target paths. To streamline computation, we utilize a syntactic one-
step specialization relation ≺1 that we prove optimal with respect to the considered
partial order. Furthermore, the search predicate can be solely evaluated on a much
smaller prefix tree representation of the input document and that therefore does not
need access to the original document. In addition, we define a one-key path miner that
searches for all consistent single-key paths p (with respect to the already determined
context and target path). Specifically, the search predicate holds for a key path p when
p selects at most one key node (with respect to the given context and target path). Even
though consistency requires the selection of exactly one key node, this mismatch can be
solved by confining the search space to all key paths that appear as paths from target
nodes in the prefix tree. Even though the search predicate cannot always be computed
on the much smaller prefix tree without access to the original document, we provide
sufficient conditions for when this is the case. The partial order is defined as the set
inclusion relation defined on key paths for which the one-step specialization relation
is the inverse of ≺1. Once all consistent one-key paths are determined, as explained
earlier, a functional dependency miner can be used to determine the corresponding
XML key (e.g., [Bitton et al. 1989; Mannila and Räihä 1989, 1994]).

Contributions. To summarize, our contributions are as follows.

(1) We characterize the complexity of the consistency problem for XML keys with
respect to an XSD for different classes of target and key paths (Theorem 4.6). As
a basic building block and of independent interest, we study the complexity of
cardinality estimation of those XPath fragments in the presence of a schema (an
overview is given in Table II). Moreover, we study the complexity of analogous
cardinality estimation problems for the same XPath fragments but considering
strings instead of trees and DFAs instead of XSDs (results are summarized in
Table I). In addition, we characterize the complexity of boundedness, satisfiability,
universality, and implication of XML keys (Theorem 4.32) as well as equivalence of
target paths (Theorem 4.46).

(2) We develop a novel key mining algorithm leveraging on those for the discovery of
relational functional dependencies and on the framework of levelwise search by
employing an optimal one-step specialization relation for which the search relation
can be computed, if not completely, then at least partly on a prefix tree representa-
tion of the document (Section 5).

(3) We experimentally assess the effectiveness of the proposed algorithm on an exten-
sive body of real-world XML data.

Outline. In Section 2, we discuss related work and in Section 3 we introduce the
necessary definitions. In Section 4, we investigate the complexity of decision problems

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

Discovering XSD Keys from XML Data 28:5

concerning keys in the presence of XSDs. In Section 5, we discuss the XML key mining
algorithm, while in Section 6 we experimentally validate our algorithm. We conclude
in Section 7. Due to space limitations, some proofs are moved to an online appendix
accessible in the ACM Digital Library.

2. RELATED WORK
XML keys. One of the first definitions of keys for XML was introduced by Buneman
et al. [2002, 2003]. These keys are of the form (Q, (Q′, P)), where Q is the context path,
Q′ the target path, and P a set of key paths. Although the W3C definition of keys
was largely inspired by this work, there are some important differences. First, Bune-
man et al.’s keys allow more expressive target and key paths by allowing several oc-
currences of the descendant operator. Context paths, however, are less expressive since
W3C keys allow the context to be defined by an arbitrary Deterministic Finite state
Automaton (DFA), while Buneman et al.’s keys limit themselves to path expressions.
Furthermore, Buneman et al.’s key paths are allowed to select several nodes whereas
W3C keys paths are restricted to select precisely one node. We stress that, in this
article, we follow the W3C specification for the definition of keys. As is the case for the
relational model, much is known about the complexity of key inference for Buneman et
al.’s keys [Buneman et al. 2002, 2003; Hartmann and Link 2009]. Unfortunately, these
results do not carry over to W3C keys as the latter are defined with respest to an XML
schema but the former are not.

Decision problems in the presence of a schema. A number of consistency problems of
XML keys with respest to a DTD have been considered by Fan and Libkin [2002]. They
have shown, for instance, that key implication in the presence of a DTD is decidable in
polynomial time. The keys that they consider, however, are much simpler than the W3C
keys considered in the present article. Basically, a key in their setting is determined
by an element name and a number of attributes. Their model is subsumed by ours
since each such key can be defined by an XML key and every DTD can be represented
by an XSD. We point out that Fan and Libkin [2002] provide many more results on
the interplay between keys, foreign keys, inclusion dependencies, and DTDs. Arenas
et al. [2002] discuss satisfiability3 of XML keys with respect to a DTD. The result
most relevant to the present article is NP-hardness of satisfiability with respect to a
nonrecursive DTD and for keys with only one key path. We show that the problem
becomes hard for EXPTIME in the presence of XSDs.

XML constraint mining. The automatic discovery of Buneman et al.’s keys from XML
data has previously been considered by a number of researchers. Grahne and Zhu
[2002] considered mining of approximate keys and proposed an Apriori-style algorithm
which uses the inference rules of Buneman et al. [2003] for optimization. Necaský
and Mlýnková [2009] ignore the XML data but present an approach to infer keys and
foreign keys from element/element joins in XQuery logs. Fajt et al. [2011] consider the
inference of keys and foreign keys building further on algorithms for the relational
model. The algorithms mentioned earlier cannot be used for W3C keys since they do
not take the presence of XSDs into account and keys are not required to be consistent.
Yu and Jagadish [2008] consider discovery of functional dependencies (FDs) for XML.
Similar to Buneman et al.’s keys, the considered FDs have paths that can select multiple
data elements, and contexts are defined using a selector expression as opposed to using
a DFA. For these reasons, W3C keys cannot be encoded as a special case of FDs.
Barbosa and Mendelzon [2003] proposed algorithms to find ID and IDREFs attributes
in XML documents. They show that the natural decision problem associated to this

3We note that satisfiability is called consistency in Arenas et al. [2002].

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

28:6 M. Arenas et al.

Fig. 2. Schematic representation of a key.

discovery problem is NP-complete, and present a heuristic algorithm. Abiteboul et al.
[2012] consider probabilistic generators for XML collections in the presence of integrity
constraints but do not consider the mining of such constraints.

The present article expands upon the conference version [Arenas et al. 2013] by
providing all proofs; no proofs were present in Arenas et al. [2013]. The obtained
results are nontrivial and use a variety of advanced techniques including tiling games
and finite automata of bounded degree of ambiguity, both in the string and in the tree
domain.

3. DEFINITIONS
In this section, we introduce the required definitions concerning trees, XSDs, and XML
keys, and formally define the XML key mining problem. The correspondence between
our definition of XML keys and the W3C definition is discussed in Section 3.3.

For a finite set R, we denote by |R| the cardinality of R.

3.1. Trees and XML
As is standard, we represent XML documents by means of labeled trees. Formally, for
a set S, an S tree is a pair (t, labt), where t is a finite tree and labt maps each node of t
to an element in S. To reduce notation, we identify each tree simply by t and leave labt
implied. We assume the reader to be familiar with standard common terminology on
trees like child, parent, root, leaf, and so on. For a node v, we denote by anc-stringt(v)
the string formed by the labels on the unique path from t’s root to (and including) v,
called the ancestor string of v. By child-stringt(v), we denote the string obtained by
concatenating the labels of the children of v. If v is a leaf, then child-stringt(v) is the
empty string, denoted by ε. Here, we assume trees are sibling ordered. We fix a finite
set of element names $ and an infinite set Data of data elements. An XML tree is a
($ ∪ Data) tree where non-leaf nodes are labeled with $ and leaf nodes are labeled
with elements from ($ ∪Data). As the XSD specification does not allow mixed content
models for fields in keys [W3C 2004], we ignore “mixed” content models altogether to
simplify presentation and assume that, when a node is labeled with a Data element, it
is the only child of its parent. We then denote by valuet(v) the Data label of v’s unique
child when it exists; otherwise we define valuet(v) = ⊥, with ⊥ a special symbol not in
Data. When valuet(v) ∈ Data, we also say that v is a Data node.

Example 3.1. Figure 1 displays an XML tree t. In this tree, anc-stringt(b1) =
bookshop order items book, and also child-stringt(b1) = title year price quantity.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

Discovering XSD Keys from XML Data 28:7

Furthermore, every node labeled id, person, address, title, year, price, or quantity
is a Data node, while, for instance, b1 is not.

3.2. XSDs
XML keys are defined within the scope of an XSD. We make use of the DFA-based
characterization of XSDs introduced by Martens et al. [2007]. An XSD is a pair X =
(A, λ) where A = (Types, $ ∪ {data}, δ, q0) is a Deterministic Finite Automaton (or DFA
for short) without final states (called the type automaton) and λ is a mapping from Types
to deterministic4 regular expressions over the alphabet $ ∪ {data}. Here, Types is the
set of states, data is a special symbol (not in $) which will serve as a placeholder for
Data elements, δ : Types×$ ∪ {data} → Types is the (partial) transition function, and
q0 ∈ Types is the initial state. Additionally, the labels of transitions leaving q should be
precisely the symbols in λ(q). That is, for every q ∈ Types, Out(q) = Symb(λ(q)), where
Out(q) = {σ ∈ $ ∪ {data} | δ(q, σ) is defined} and Symb(r) consists of all ($ ∪ {data})
symbols in regular expression r.

A context c = (σ, q) is a pair in $×Types. By CNodest(c), we denote all nodes v of t for
which labt(v) = σ and A halts in state q when started in q0 on the string anc-stringt(v).
Let L(r) denote the language defined by the regular expression r. We say that the tree t
adheres to X, if for every context c = (σ, q) and every v in CNodest(c) one of the following
holds:

—valuet(v) ∈ Data and data ∈ L(λ(q)); or
—valuet(v) = ⊥ and child-stringt(v) ∈ L(λ(q)).

Intuitively, A determines the vertical context of a node v by the state q it reaches in
processing anc-stringt(v). When v is a Data node, the content model specified by q,
that is λ(q), should contain the placeholder data. Otherwise, when v is not a Data
node, child-stringt(v) should satisfy the content model λ(q). Recall that we do not
allow for mixed content models. We stress that this DFA-based characterization of
XSDs corresponds precisely to the more traditional abstraction in terms of single-type
grammars [Martens et al. 2006; Murata et al. 2005]. We let L(X) denote the set of all
trees adhering to XSD X. We assume that an XSD always defines trees with the same
root label. In this way, the root is always assigned the same context, also referred to as
the root context croot.

Example 3.2. Let Xbookshop = (A, λ) be the XSD where A is given in Figure 3 and λ
is defined as follows.

q0)→ bookshop

qbookshop)→ order+

qorder)→ id person address items+

qitems)→ book+

qbook)→ title year? price quantity

For all other types q, λ(q) = data. Here, r+ and r? are the usual abbreviations for rr∗
and r + ε, where r is a regular expression.

Then tree t in Figure 1 adheres to Xbookshop. Moreover, b1 ∈ CNodest(book, qbook) and
child stringt(b1) ∈ L(λ(qbook)).

4Also referred to as 1-unambiguous regular expressions [Brüggemann-Klein and Wood 1998].

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

28:8 M. Arenas et al.

Fig. 3. The type automaton of Xbookshop.

3.3. XML Keys
A selector expression is a restricted XPath expression of the form ./l1/l2/ . . . /lk (starting
with the child axis) or .//l1/l2/ . . . /lk (starting with the descendant axis), where k ≥ 1,
and l1, . . . , lk are element names or the wildcard symbol “*”. A string w = w1 · · ·wk,
where each wi is an element name, is said to match ./l1/l2/ . . . /lk when wi = li or
li = * for each i. For selector expressions starting with the descendant axis, we say
that w matches .//l1/l2/ . . . /lk if a suffix of w matches ./l1/l2/ . . . /lk. For a tree t, a
node v of t, and a selector expression τ , the set τ (t, v) contains all nodes v′ such that
v′ is a descendant of v and the path of labels from v (but excluding the label of v)
to (and including) v′ matches τ . A disjunction of selector expressions is of the form
τ = τ1 | · · · | τm, where each τi is a selector expression. In this case, τ (t, v) is defined as
the union of all τi(t, v). When v is the root of the document, we simply write τ (t) for τ (t, v).
We denote by SE and DSE the class of selector expressions and disjunctions of selector
expressions, respectively. In proofs, we sometimes omit the leading dot in selector
expressions and simply write /l1/l2/ . . . /lk (or even l1/l2/ . . . /lk) or //l1/l2/ . . . /lk to
denote ./l1/l2/ . . . /lk and .//l1/l2/ . . . /lk, respectively.

Definition 3.3. An XML key, defined with respect to an XSD X, is a tuple φ =
(c, τ, P), where: (i) c is a context in X, (ii) τ ∈ DSE is called the target path, and (iii) P
is an ordered sequence of expressions in DSE called key paths.

To emphasize that φ is defined with respect to X, we sometimes write a key simply as
a pair (φ, X).

We stress that the definition of XML keys given before corresponds to the definition
of keys in XML schema [W3C 2004]. In particular, the context is given implicitly by
declaring a key inside an element and an element has a label and a certain type. Target
paths are called selector paths [W3C 2004, Section 3.11.6.2] and key paths are called
fields. They obey the same grammar as used here with the difference that we do not
make use of attributes but require key paths to select data nodes.

The semantics of an XML key is as follows. The context c defines a set of context
nodes that divides the document into separate (but not necessarily disjoint) parts.
Specifically, each node in CNodest(c) = {v1, . . . , vn} can be considered as the root of a
separate tree. For each of these trees, that is, for each i ∈ {1, . . . , n}, every node in
τ (t, vi) should uniquely define a record. Such a record is determined by the key paths in
P = (p1, . . . , pk). That is, each v in τ (t, vi) defines the record [valuet(u1), . . . , valuet(uk)],

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

Discovering XSD Keys from XML Data 28:9

denoted by recordP(t, v), where pj(t, v) = {uj} for all j ∈ {1, . . . , k}. We graphically
illustrate the preceding in Figure 2.

Note that pj(t, v) might select more than one node, a node u for which valuet(u)
is undefined, or might select nothing; these three cases are disallowed by the XML
schema specification.

Definition 3.4. A key φ = (c, τ, P) qualifies in a document t if, for every v ∈
CNodest(c), every u ∈ τ (t, v), and every p ∈ P, p(t, u) is a singleton containing a
Data node.

Finally, following the W3C specification, we define satisfaction of an XML key with
respect to a document.

Definition 3.5. An XML tree t satisfies a key φ = (c, τ, P) or a key is valid with
respect to t, denoted by t |= φ, iff: (i) φ qualifies in t and (ii) for every node v in
CNodest(c), recordP(t, u) ,= recordP(t, u′), for every two different nodes u and u′ in
τ (t, v).

Notice there can be two causes for a key to be invalid: (i) the key does not qualify in
the document and actually is ill defined with respect to the document, or (ii) the data
values in the document invalidate the key. The first cause can be seen as structural
invalidation, while the second is semantical and more informative.

In this article, we are interested in inferring keys that always qualify to a document
satisfying the schema. We call such keys consistent. In Section 4, we show that con-
sistency can be decided efficiently for target and key paths in SE , and is intractable
otherwise.

Definition 3.6. A key is consistent with respect to a schema if the key qualifies in
every document adhering to the schema.

Example 3.7. Consider the key φ from Example 1.1. Then φ is valid with respect to
the tree in Figure 1 but φ is not consistent with respect to Xbookshop. Indeed, Xbookshop
defines the “year” element of a “book” element to be optional.

3.4. XML Key Mining
Given an XML document t adhering to a given XSD, we want to derive all supported
XML keys φ that are valid with respect to t.5 We define the support of a key as the
quantity measuring the number of nodes captured by the key. Define TNodest(φ) as the
set of target nodes selected by φ = (c, τ, P) on t. That is,

TNodest(φ) =
⋃

v∈CNodest(c)

τ (t, v).

Then, following Grahne and Zhu [2002], we define the support of φ on t to be the total
number of selected target nodes: supp(φ, t) = | TNodest(φ)|. Since this support only
depends on the context c and the target path τ of φ, we also write supp(c, τ, t) for
supp(φ, t).

Example 3.8. Consider the document t depicted in Figure 1 and the key φ from
Example 1.1. The context nodes are those that match the context (order, qorder). There
are two such nodes in t, both are labeled order and are direct children of the root node.
The target nodes are those that can be selected from the two context nodes, using a

5Without loss of generality and to simplify presentation, we restrict attention to a single document as
multiple XML documents can always be combined into one by introducing a common root.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

28:10 M. Arenas et al.

path that matches .//book. There are three such target nodes, two for the first and
one for the second context node. Therefore, the support of φ on t equals 3, that is,
supp(φ, t) = 3.

We are now ready to define the problem central to this article.

Definition 3.9. (XML Key Mining Problem). Given an XSD X, an XML document
t adhering to X, and a minimum support threshold N, the XML key mining problem
consists of finding all keys φ consistent with X such that t |= φ and supp(φ, t) > N.

This is only the core definition of the XML key mining problem. We will discuss some
quality requirements in the next section.

4. DECISION PROBLEMS
A basic problem in data mining is the abundance of found patterns. In this section,
we address a number of fundamental decision problems relevant to identifying low-
quality keys that can then be removed from the output of the key mining algorithm.
In Section 4.1, we provide some additional definitions and properties. Consistency is
a problem fundamental to this article. We therefore discuss testing for consistency in
a separate section (Section 4.2) where we also give an overview of all related results
(as summarized in Table I and Table II). These results are then formally proved in
the following two sections. We start by considering the analogous case on strings (in
Section 4.3), as these results are interesting in their own right and because they provide
a starting ground for the more general case of trees which is treated in Section 4.4. The
main result here is that consistency as defined in Definition 3.6 is tractable when target
paths and key paths are restricted to selector expressions. Finally, in Section 4.5, we
consider general decision problems. We obtain that universality and boundedness are
tractable and show that testing for satisfiability and implication of keys is EXPTIME-hard
even when disallowing disjunction, which complicates the inference of minimal keys.

4.1. Preliminaries
We assume the reader is familiar with basic concepts from formal language theory like
nondeterministic finite automata (NFA), regular expressions, pumping lemma, product
construction, complement construction for NFAs and DFAs, and refer the interested
reader to a textbook (e.g., [Hopcroft et al. 2003]).

We introduce some definitions. Let A = ($, Q, q0, δ, F) be an NFA and s = σ0σ1 · · · σn−1
a string in $∗. A run of A on s is defined as a function ρ : {0, 1, . . . , n} → Q such that:

—ρ(0) = q0; and
—for every i ∈ {1, 2, . . . , n− 1}, (ρ(i), σi, ρ(i + 1)) ∈ δ.

An accepting run of A on s is a run ρ such that ρ(n) ∈ F. It is clear from the previous
definition that L(A) is the set of strings s in $∗ for which there exists an accepting run
of A with input s. Of course, A is a DFA when |δ(q, a)| ≤ 1 for all q ∈ Q and a ∈ $. For a
language L⊆ $∗, we denote by L = $∗ \ L the complement of L. Similarly, for an NFA
A, we denote by A the automaton accepting L(A). The size of A, denoted |A|, is defined
as |Q| + $q,a|δ(q, a)|.

The following theorem states some well-known complexity results for finite automata
that we will use in the sequel.

THEOREM 4.1. Let A and A′ be two NFAs.

(1) Deciding whether L(A) = ∅ is in PTIME [Hopcroft et al. 2003].
(2) Deciding whether L(A) = L(A′) is PSPACE-complete [Stockmeyer and Meyer 1973].

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

Discovering XSD Keys from XML Data 28:11

(3) An NFA accepting the language L(A) ∩ L(A′) can be constructed in time polynomial
in the sizes of A and A′ [Hopcroft et al. 2003].

(4) When A is a DFA, a DFA accepting L(A) can be constructed in time polynomial in
the size of A [Hopcroft et al. 2003].

For the remainder, it will be convenient to work with trimmed XSDs. Intuitively, we
call an XSD trimmed if it does not contain useless states or transitions. The formal
definition is as follows.

Definition 4.2. Let X be an XSD and let q0 be its initial state. We call a context
c = (σ, q) well formed (with respect to X) if there exists a type q′ in X such that
δ(q′, σ) = q, where δ is the transition function of the type automaton of X. For type q in
X, let Xq be the XSD obtained from X by replacing its start state by q. Then X is trimmed
if: (1) L(Xq) ,= ∅ for all q ,= q0, and (2) there is a tree t ∈ L(X) with CNodest(σ, q) ,= ∅,
for every well-formed context (σ, q) of X.

That is, there can be no state (except possibly the initial state q0) that defines the
empty tree language and every well-formed context in A should be realized in at least
one tree in L(X).

The next lemma says that we can restrict attention to trimmed XSDs. A proof can be
found in Appendix A.

LEMMA 4.3. Every XSD can be converted in PTIME to a trimmed XSD defining the
same language.

The following lemma states that in trimmed XSDs we can always find XML trees
adhering to the XSD that realize a given desired context in a node with a given desired
child string. The proof is given in Appendix A.

LEMMA 4.4. Let X = (A, λ) be a trimmed XSD and let c = (σ, q) a well-formed context
of X. Let w ∈ $∗ be a word in L(λ(q)). Then there exists t ∈ L(X) and v ∈ CNodest(c)
such that child stringt(v) = w.

4.2. Consistency
As detailed in Section 3.3, the W3C specification requires keys to be consistent. We
therefore define CONSISTENCY as the problem to decide whether φ is consistent with
respect to X, given a key φ and an XSD X. In this section, we show that CONSISTENCY
is in fact solvable in PTIME when patterns in keys are restricted to SE . The proof of
this result is the most technical result of the article. Actually, the PTIME result is also
surprising since a minor variation of consistency is known to be EXPTIME-hard, as we
explain next.

Consistency requires that, on every document adhering to X, every key path must
select precisely one data node for every target node. This is related to deciding whether
an XPath selector expression selects at least and at most a given number of nodes, on
every document satisfying a given XSD. Indeed, define ∀•k

tree with k ∈ N and • ∈ {<,=,>}
to be the problem of deciding, given an XSD X and a selector expression p, whether it
holds that |p(t)| • k, for every t ∈ L(X). We show in Lemma 4.5 that CONSISTENCY can
be easily reduced to ∀=1

tree. Although Björklund et al. [2013] showed that ∀>k
tree is EXPTIME-

complete, we obtain shortly that ∀=k
tree can in fact be solved in polynomial time through

an intricate translation to the equivalence test for unambiguous tree automata [Seidl
1990].

In order to obtain these complexity results, we first focus on analogous problems
considering DFAs instead of XSDs, and strings instead of trees. We define the problem
∀•k

string with k ∈ N and • ∈ {<,=,>} as the problem of deciding, given a DFA A and a

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

28:12 M. Arenas et al.

Table I. Complexity of ∀•k,P
string

P ∀>k,P
string ∀<k,P

string ∀=k,P
string

RE PSPACE-complete in PTIME PSPACE-complete
CSE PSPACE-complete in PTIME PSPACE-complete
DSE PSPACE-complete in PTIME CONP-complete
SE PSPACE-complete in PTIME in PTIME

SE∗ in PTIME in PTIME in PTIME

SE// in PTIME in PTIME in PTIME

Table II. Complexity of ∀•k,P
tree

P ∀>k,P
tree ∀<k,P

tree ∀=k,P
tree

RE EXPTIME-complete in PTIME
in EXPTIME

PSPACE-hard (k≥ 1)

CSE EXPTIME-complete in PTIME
in EXPTIME

PSPACE-hard (k≥ 1)

DSE EXPTIME-complete in PTIME
in EXPTIME

CONP-hard (k≥ 1)
SE EXPTIME-complete in PTIME in PTIME

SE∗ in EXPTIME in PTIME in PTIME

SE// in PTIME in PTIME in PTIME

selector expression p, whether it holds that |p(s)| • k, for every s ∈ L(A). The results over
strings are important for our investigation not only because they can be used to obtain
lower bounds for the complexity of the problems ∀•k

tree, but also because the extension
of some of the techniques developed to prove them played a key role in pinpointing the
complexity of some of the problems ∀•k

tree, most notably in the problem ∀=k
tree when target

and key paths are restricted to SE .
Because of its relevance to cardinality estimation of XPath result sets, we extend

the problems ∀•k
tree and ∀•k

string by restricting target and key paths to different fragments
of SE . To obtain a more complete picture, we also consider the class of all regular
expressions, denoted by RE . For a regular expression r and a tree t, r(t) then selects all
nodes whose ancestor string6 matches r. Furthermore, denote by SE// and SE∗ the set
of all selector expressions without descendant and wildcard, respectively (recall that
SE denotes the set of all selector expressions). In addition, we consider concatenations
of selector expressions, as they are a natural extension to selector expressions. Denote
by CSE the class of all expressions of the form p1 p2 · · · pn, where each pi (1 ≤ i ≤ n) is a
selector expression (this allows for arbitrarily many descendant axes). The semantics
for this fragment is inherited from the semantics for regular expressions.

For a class of patterns P ∈ {RE,DSE, CSE,SE,SE//, SE∗}, we denote by ∀•k,P
tree the

problem ∀•k
tree where expressions are restricted to the class P. Analogously, ∀•k,P

string is the
problem ∀•k

string where expressions are restricted to the class P. In the next two sections
we treat the complexity of these decision problems which are summarized in Table I
and Table II. Note that these results also provide an upper bound for testing whether
the number of nodes selected by a selector expression always lies within a fixed interval
[k, k′].

Before proving the results stated in Tables I and II, we explain how to apply them
to obtain complexity results for the consistency problem. We introduce the following

6Defined in Section 3.2 as the string formed by the labels on the path from the root to the considered node.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

Discovering XSD Keys from XML Data 28:13

definition. Let k ∈ N, • ∈ {<,=,>}, and R,S be two pattern languages. We denote by
∀•k,R,S

key the problem to decide whether, for a given XSD X and a key φ = (c, τ, (p)) with
τ ∈ R and p ∈ S, it holds that |p(t, u)| • k for every t ∈ L(X), every node v in CNodest(c),
and for every target node u in τ (t, v).

The following lemma now allows to transfer upper and lower bounds from Table I
and Table II.

LEMMA 4.5. Let k ∈ N, let • ∈ {<,>,=}, and let P ∈ {RE,DSE, SE,SE//,SE∗}. Then:

(1) ∀•k,RE,P
key is polynomial-time reducible to ∀•k,P

tree ; and
(2) ∀•k,P

tree is polynomial-time reducible to ∀•k,SE,P
key .

PROOF. (1) Let φ = (c, τ, (p)) be a key and let X = (A = (QX, $, δX, qX
0), λ) be an

XSD. Now, define Qτ,c as the maximal subset of states q ∈ QX for which there is a tree
t ∈ L(X), a node v in CNodest(c), and a node u in τ (t, v) such that A when executed on
the ancestor string of u ends in state q. This means that q is a state of the XSD that
can be reached when evaluating τ from a node in CNodest(c), for some t ∈ L(X). Denote
by Xq the XSD X with start type q. Then

⋃
q∈Qτ,c

L(Xq) is the set of trees on which the
number of matches of p needs to be tested. Therefore, (X, φ) is in ∀•k,RE,P

key iff (Xq, p) is in
∀•k,P

tree for every q ∈ Qτ,c. It remains to explain how to compute Qτ,c. We can assume that
X is trimmed (see Definition 4.2). We also assume that c = (qc, σc) is well formed. That
is, there is a state q′ such that δ(q′, σc) = qc. Let τ ∈ RE and let Aτ = (Qτ , $, δτ , qτ

0 , Fτ) be
the DFA accepting L(τ). Define)0 = {(qc, qτ

0)} and)i = {(δX(q1, σ), δτ (q2, σ)) | (q1, q2) ∈
)i−1, σ ∈ $}. Then, Qτ,c = {q | ∃(q, q′) ∈)|QX|×|Qτ | and q′ ∈ Fτ }.

(2) Assume given (X, p). Let #1 be a new symbol and X# be the XSD defining the set
{#1((t)) | t ∈ L(X)}. Then (X, p) ∈ ∀•k,P

tree iff (X#, (croot, ./∗, p)) is in ∀•k,SE,P
key where croot is the

root context.

We finally present the main result of this section. Given a class of patterns P, we
denote by CONSISTENCY(P) the problem CONSISTENCY restricted to keys using expressions
in P.

THEOREM 4.6.

(1) CONSISTENCY(SE) is in PTIME;
(2) CONSISTENCY(DSE) is CONP-hard and in EXPTIME; and
(3) CONSISTENCY(RE) is PSPACE-hard and in EXPTIME.

PROOF. Let X be an XSD and φ = (c, τ, P) be a key. Then (X, φ) is consistent iff
(X, (c, τ, (p))) is consistent for every p ∈ P. The results then follow by Lemma 4.5 and
the corresponding results in Table II.

Section 4.3 is devoted to proving the complexity results stated in Table I, while the
proofs for trees mentioned in Table II can be found in Section 4.4.

4.3. Proofs for Results on Strings Mentioned in Table I

In this section, we prove the complexity of decision problems ∀•k,P
string with k ∈ N,

• ∈ {<,=,>} and P ∈ {RE,DSE, CSE,SE,SE//, SE∗}, which is summarized in Table I.

4.3.1. Proofs for ∀>k,P
string. We start by considering the problem ∀>k,P

string. The following lemma
is used to pinpoint the exact complexity of this problem for selector expressions, dis-
junctions of selector expressions, concatenations of selector expressions, and regular
expressions. The proof of the next lemma can be found in Appendix B.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

28:14 M. Arenas et al.

LEMMA 4.7. Let k ≥ 0 be a constant. There exists a polynomial-time algorithm that,
given an NFA A and a regular expression r, constructs an automaton A′ accepting
precisely all strings s in L(A) for which |r(s)| ≥ k.

We can now prove the first four results in Table I concerning the problem ∀>k,P
string. We

gratefully acknowledge that the specific encoding of tiles and the selector expression
used in the lower bound proof that follows is borrowed from the EXPTIME-hardness result
in Björklund et al. [2013].

THEOREM 4.8. Let k ≥ 0 be a fixed constant. Then ∀>k,SE
string , ∀>k,DSE

string , ∀>k,CSE
string , and ∀>k,RE

string
are all PSPACE-complete.

PROOF. For the upper bound it suffices to prove that ∀>k,RE
string is in PSPACE. Thereto,

let A be a DFA, let r be a regular expression, and let A′ be the automaton accepting
precisely all strings in L(A) for which r selects at least k+ 1 distinct positions (as given
in Lemma 4.7). Then, (A, r) ∈ ∀>k,RE

string if and only if L(A′) = L(A) which, by Theorem 4.1,
is in PSPACE [Stockmeyer and Meyer 1973].

For the lower bound, it suffices to prove PSPACE-hardness for ∀>k,SE
string . We show that

the complement of ∀>0,SE
string , denoted by ∀>0,SE

string , is PSPACE-hard through a reduction from
CORRIDOR TILING, a well-known PSPACE-complete problem [van Emde Boas 1997]. As
PSPACE is closed under complement, ∀>0,SE

string is PSPACE-hard as well. Afterwards, we will
show that ∀>k,SE

string is hard for every k.
An instance of CORRIDOR TILING is a tuple T = (D, H, V, ā, b̄, n), where D is a set

of tiles, H, V ⊆ D × D are the horizontal and vertical constraints, ā = (a1, . . . , an),
b̄ = (b1, . . . , bn) are n-tuples of tiles, and n is a natural number. The decision problem
consists of deciding whether T has a valid tiling of a board with m rows and n columns
for some m∈ N. A tiling is said to be valid if:

—the first row is ā;
—the last row is b̄;
—For each pair of tiles (x, y), if (x, y) are horizontally adjacent then (x, y) ∈ H; and
—For each pair of tiles (x, y), if (x, y) are vertically adjacent then (x, y) ∈ V .

Let T = (D, H, V, ā, b̄, n) be a tiling instance. We construct a DFA A and a selector
expression p such that there is a valid tiling for T if and only if there is a string s in
L(A) such that p(s) = ∅.

The idea is to encode every tiling for T as a string. The encoding of a tiling will be
the concatenation of the encodings of its tiles, which are defined next. Assume without
loss of generality that D = {1, 2, . . . , k} and let vi, j be defined as

vi, j =
{

t if (i, j) ∈ V, and
f if (i, j) ,∈ V .

The encoding of i ∈ D is defined as

ei = σi0i−110k−ivi,1vi,2 · · · vi,k,

where σi is a new alphabet symbol for every i. So, here σi denotes that the next tile is
i, 0i−110k−i denotes tile number i in unary, and vi,1vi,2 · · · vi,k encodes which tiles satisfy
the vertical constraints when placed on top of the current tile in the row.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

Discovering XSD Keys from XML Data 28:15

For example, if we have four tiles and the vertical constraints are V = {(1, 2), (1, 4),
(2, 4)} then the encodings are as follows.

e1 = σ11000ftft e2 = σ20100ffft
e3 = σ30010ffff e4 = σ40001ffff

Notice that |ei| = 2k + 1 for every i. A tiling (i1, i2, . . . , in·m) (where i1, i2, . . . , in is the
first row of the tiling, in+1, in+2, . . . , i2n the second row, and so on) has as encoding the
string ei1ei2 . . . einm.

The DFA A is constructed such that it accepts precisely all encodings of tilings
satisfying the following requirements: (1) the first row is ā, (2) the final row is b̄,
(3) no horizontal constraint is violated, (4) the input is a sequence of encodings ei, and
(5) every row has the correct length n. Clearly, A can be constructed as the intersection
of five automata, each one taking care of one of the requirements just given. Note that
each such requirement can be checked by a simple linear scan of the input string using
a number of states linear in the size of T .

It remains to verify the vertical constraints. Next, we create the selector expression,
which is defined as

p = // f / ∗ / ∗ / · · · / ∗ /︸ ︷︷ ︸
n·(2k+1)−k−1 times

1.

It is important to understand that, in the encoding of a tiling, n · (2k + 1)− k positions
after an f there is a 1 if and only if the tiling violates a vertical constraint in the current
column. For example, consider the tiling instance (D, H, V, ā, b̄, n) with D = {1, 2, 3, 4},
H = {(1, 2), (3, 4)}, V = {(1, 1), (2, 2), (1, 4), (2, 4)}, ā = (1, 2), b̄ = (3, 4), and n = 2. Then,
k = 4 and n · (2k + 1) = 18 and

p = // f / ∗ / ∗ / ∗ / ∗ / ∗ / ∗ / ∗ / ∗ / ∗ / ∗ / ∗ / ∗ / ∗ /︸ ︷︷ ︸
n · (2k + 1)− k− 1 = 13 times

1.

Now, consider the string

e1e2e3e4 = σ11000tff
13 positions

tσ20100ftftσ30010ffffσ40001ffff
encoding a tiling consisting of two rows. The first row consists of tiles 1 and 2, while
the second row contains the tiles 3 and 4. The tiling begins with ā, ends with b̄, and
respects every horizontal constraint. Thus, by definition of the DFA A in the reduction,
we have that e1e2e3e4 ∈ L(A). The tiling is not valid as the first column contains the
tiles 1 and 3 but the pair (1, 3) is not in V . The expression p now matches at the second
symbol f (which encodes that (1, 3) ,∈ V) and the symbol 1 encoding that tile 3 is the
first tile in row 2.

It remains to argue the correctness of the reduction. Suppose there is a valid tiling
for T . Then the encoding for this valid tiling is a string in L(A) for which p does not
select any position, that is, (A, p) ∈ ∀>0,SE

string . Conversely, if (A, p) ∈ ∀>0,SE
string , then there is

a string accepted by A for which p selects no position. By definition of A and p, this
string encodes a valid tiling for T .

To finish the proof, we show that ∀>k,SE
string is PSPACE-hard for every k. To this end, we show

that ∀>0,SE
string can be reduced in polynomial time to ∀>k,SE

string . Given the preceding reduction,
it suffices to only consider selector expressions of the form //a/∗/∗/ · · · /∗/b with a ,= b.
The whole construction is based on padding. Let Abe a DFA and p a selector expression
of the form //a/ ∗/ ∗ / · · · /∗︸ ︷︷ ︸

n times

/b. For a string s, define ext(s) = (a XX · · · XX︸ ︷︷ ︸
n times

b)ks, where

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

28:16 M. Arenas et al.

X is a fresh symbol. Let k > 0. Now, define A′ as the DFA accepting the language
{ext(s) | s ∈ L(A)}. Note that A′ can be constructed in time polynomial in |A| + n. It now
readily follows that (A, p) ∈ ∀>0,SE

string iff (A′, p) ∈ ∀>k,SE
string .

The next theorem states that both ∀>k,SE∗
string and ∀>k,SE//

string are tractable. A proof can be
found in Appendix B.

THEOREM 4.9. For every k ≥ 0:

(1) ∀>k,SE//

string is in PTIME; and
(2) ∀>k,SE∗

string is in PTIME.

4.3.2. Proofs for ∀<k,P
string. We continue our study by considering the problem ∀<k,P

string. All
results in Table I concerning ∀<k,P

string follow from the tractability of ∀<k,RE
string .

THEOREM 4.10. For every k ≥ 0, ∀<k,RE
string is in PTIME.

PROOF. If k = 0, then the property trivially holds. For k ≥ 1, ∀<k,RE
string reduces to

emptiness of NFAs. Indeed, for a DFA A and a regular expression r, let A′ be the
automaton accepting every string in L(A) for which r selects at least k distinct positions,
as shown in Lemma 4.7. Then (A, r) ∈ ∀<k,RE

string iff L(A′) = ∅.

4.3.3. Proofs for ∀=k,P
string . Finally, we study the complexity of ∀=k,P

string. We start by prov-
ing that this problem is, in general, PSPACE-complete for concatenations of selector
expressions and regular expressions. Tractability of ∀=k,SE

string is handled at the end of this
section.

THEOREM 4.11. ∀=0,RE
string and ∀=0,CSE

string are in PTIME. Moreover, ∀=k,RE
string and ∀=k,CSE

string are
PSPACE-complete, for every k≥ 1.

PROOF. Given that ∀=0,RE
string = ∀<1,RE

string , we conclude from Theorem 4.10 that ∀=0,RE
tree is

in PTIME, from which we can also conclude that ∀=0,CSE
string is in PTIME. Thus, assume that

k > 0. Deciding (A, r) ∈ ∀=k,RE
string reduces to testing whether (A, r) ∈ ∀<k+1,RE

string and (A, r) ∈
∀>k−1,RE

string . Given that the former test can be done in polynomial time (by Theorem 4.10)
and the latter in polynomial space (by Theorem 4.8), we conclude that ∀=k,RE

string is in
PSPACE. Hence it follows that ∀=k,CSE

string is in PSPACE as well.
Next, we prove that ∀=k,CSE

string is PSPACE-hard, from which we conclude that ∀=k,RE
string is also

PSPACE-hard. We reduce from ∀>0,SE
string , which is a PSPACE-hard problem by Theorem 4.8.

Let Abe a DFA over an alphabet $ and p a selector expression over the same alphabet.
Given that the selector expressions used in the proof of Theorem 4.8 are of the form
//a/ ∗ / · · · / ∗ /b with b ,= ∗, we can assume that p = //a1/ · · · /an with an ,= ∗. We need
to construct a DFA B and an expression d ∈ CSE such that (A, p) ∈ ∀>0,SE

string if and only
if (B, d) ∈ ∀=k,CSE

string . Assume that x is a new symbol (x ,∈ $), and then define B as a DFA
over $ ∪ {x} accepting the language {w ∈ ($ ∪ {x})∗ | w = w0xk for some w0 ∈ L(A)}.
Further, define the expression d ∈ CSE as

d = p//x.

Next we argue that (A, p) ∈ ∀>0,SE
string if and only if (B, d) ∈ ∀=k,CSE

string .

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

Discovering XSD Keys from XML Data 28:17

(⇒) If (A, p) ∈ ∀>0,SE
string , then for every word in L(A) the expression p selects at least one

position. Thus, it is clear by the definition of B that d will select exactly the last k
positions of each word in L(B). Therefore (B, d) ∈ ∀=k,CSE

string .
(⇐) We prove this direction by considering the contrapositive. Assume that (A, p) ,∈
∀>0,SE

string , and let w ∈ L(A) be a string such that |p(w)| = 0. Then d cannot select any
position of the word wxk, given that |p(w)| = 0 and p = //a1/ · · · /an with an ,= ∗ and
an ,= x. Thus, given that wxk ∈ L(B) by definition of B, we conclude that (B, d) ,∈
∀=k,CSE

string .

Limiting to disjunctions of selector expressions reduces the complexity of ∀=k,RE
string to

CONP. The proof for this theorem can be found in Appendix B.

THEOREM 4.12. ∀=0,DSE
string is in PTIME. Moreover, ∀=k,DSE

string is CONP-complete, for every k≥ 1.

We conclude this section by proving that ∀=k,SE
string is in PTIME. Notice this also implies that

∀=k,SE∗
string and ∀=k,SE//

string are in PTIME. This proof makes use of a result over finite automata
of bounded degree of ambiguity, which is defined next. Let A be an NFA. Given a value
c > 0, automaton A is said to be c-ambiguous if, for every s ∈ L(A), there exists at most
c accepting runs of A on s. In particular, if c = 1, then A is said to be an unambiguous
finite automaton (UFA). The following is a well-known result about the containment
problem for finite automata of bounded degree of ambiguity.

THEOREM 4.13 ([STEARNS AND HUNT III 1985]). Let c > 0 be a fixed constant. There
exists a polynomial-time algorithm that, given two c-ambiguous NFAs A and B, verifies
whether L(A) ⊆ L(B).

The following lemma forms a cornerstone in the proof of Theorem 4.15. Its proof can
be found in Appendix B.

LEMMA 4.14. Let k > 0 be a fixed constant. There exists a polynomial-time algorithm
that, given a selector expression p, generates an NFA Bk

p such that:

(1) for every string s, s ∈ L(Bk
p) if and only if |p(s)| ≥ k, and

(2) for every string s ∈ L(Bk
p), the number of accepting runs of Bk

p on s is

|p(s)|!
(|p(s)| − k)!

.

THEOREM 4.15. For every k ≥ 0, it holds that ∀=k,SE
string is in PTIME.

PROOF. If k = 0, then the property is a corollary of Theorem 4.12. Thus, assume that
k ≥ 1. Let A be a DFA and p a selector expression. By Lemma 4.14, we know it is
possible to construct in polynomial time an NFA Bk

p such that, for every string s, it
holds that s ∈ L(Bk

p) if and only if |p(s)| ≥ k. Thus, to know whether (A, p) is in ∀=k,SE
string ,

it suffices to check whether (A, p) ∈ ∀<k+1,SE
string and L(A) ⊆ L(Bk

p). Notice that the latter
condition is equivalent to checking whether L(A) ⊆ L(A× Bk

p), where A× Bk
p denotes

the standard product construction of A and Bk
p computing L(A) ∩ L(Bk

p). With this in
mind, we can decide in polynomial time whether (A, p) ∈ ∀=k,SE

string by using the following
algorithm.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

28:18 M. Arenas et al.

(1) Check whether (A, p) ∈ ∀<k+1,SE
string . If this condition holds, then go to step (2);

otherwise, return false. Notice this step can be executed in polynomial time by
Theorem 4.10.

(2) Compute A× Bk
p.

(3) Check whetherL(A) ⊆ L(A×Bk
p). Given that (A, p) ∈ ∀<k+1,SE

string , we have that |p(s)| ≤ k
for every string s ∈ L(A). Moreover, by Lemma 4.14 it follows that, for every string
s ∈ L(Bk

p), |p(s)| ≥ k and the number of accepting runs of Bk
p on s is

|p(s)|!
(|p(s)| − k)!

.

Therefore, for every string s that belongs to L(A× Bk
p), it holds that |p(s)| = k and

the number of accepting runs of A× Bk
p on s is bounded by (given that A is a DFA)

k!
(k− k)!

= k!.

We conclude that A×Bk
p is k!-ambiguous. Thus, given that A is a DFA, we have that

A is also k!-ambiguous, and hence we can verify whether L(A) ⊆ L(A× Bk
p) by using

the polynomial-time algorithm mentioned in Theorem 4.13 (for the containment
problem for NFAs with bounded degree of ambiguity).

4.4. Proofs for Results on Trees Mentioned in Table II
In this section we present formal proofs for the results shown in Table II. Most of
these proofs require definitions of unranked and binary tree automata. We start by
presenting these definitions, recalling some of their basic properties and proving some
elementary lemmas.

4.4.1. Tree Automata. A nondeterministic unranked tree automaton (UTA) is a tuple
A = (Q,*, δ, F), where Q is a finite set of states, * a finite alphabet, F ⊆ Q the set of
final states, and δ : Q×*→ 2(Q∗) a function mapping each (q, σ) ∈ Q×* to a regular
language over Q. A run of A = (Q,*, δ, F) on a tree t is a function λ : nodes(t) → Q
that assigns a state in Q to each node v of t such that, for every v ∈ nodes(t) with
children v1, v2, . . . , vn (noted in the order in which they appear in t), it is the case that
λ(v1)λ(v2) · · · λ(vn) ∈ δ(λ(v), labt(v)). A run is accepting if the root of t is labeled by a
state in F. If an accepting run of A exists for tree t then we say that t is accepted by A.
The set of all trees accepted by A is denoted by L(A). We say that A is deterministic iff
δ(q, a) ∩ δ(q′, a) = ∅ for all q ,= q′ ∈ Q and a ∈ *.

We will also make use of binary tree automata that operate in a top-down fashion
over trees where every inner node has precisely two children. Formally, a binary (top-
down) tree automaton is a tuple A = (Q,*, q0, δ, F) where Q is the set of states, * the
alphabet, q0 ∈ Q the start state, δ : Q×*→ 2Q×Q the transition function, and F ⊆ Q
the set of final states. A run of A on a tree t is a function λ : nodes(t)→ Q that assigns
a state in Q to each node v of t such that the root of t is labeled by q0 and for every
inner node v with children v1 and v2 it is the case that (λ(v1), λ(v2)) ∈ δ(λ(v), labt(v)). A
run is accepting if, for every leaf v, δ(λ(v), labt(v)) ∈ (F × F). If an accepting run of A
exists for tree t then we say that t is accepted by A. The set of all trees accepted by
A is denoted by L(A). We say that A is deterministic iff |δ(q, a)| ≤ 1 for all a ∈ * and
q ∈ Q. Finally, A is k-ambiguous for a natural number k if, for every t ∈ L(A), there are
at most k distinct accepting runs of A on t.

The following theorem lists well-known results on the complexity of tree automata
that will be used in the sequel.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

Discovering XSD Keys from XML Data 28:19

THEOREM 4.16. Let A and A′ be two tree automata that are either both unranked or
both binary.

(1) Deciding whether L(A) = ∅ is in PTIME.
(2) A tree automaton B with L(B) = L(A)∩L(A′) can be constructed in time polynomial

in the sizes of A and A′. Furthermore, when A and A′ are deterministic binary
automata, then so is B.

(3) Deciding whether L(A) = L(A′) is EXPTIME-complete [Seidl 1990].
(4) Assume k is fixed. When A and A′ are binary tree automata and k-ambiguous, then

deciding whether L(A) = L(A′) is in PTIME [Seidl 1990].

Note that the tree automaton B computing L(A) ∩ L(A′) is simply the usual product
construction between A and A′, which we also denote by A× A′.

For an XML tree t, we denote by fcns(t) the usual first-child next-sibling encoding of
t, defined as follows. To facilitate the definition, we define fcns on ordered forests, which
consists of concatenations of trees. By ε we denote the empty forest. By h := t1 · · · tn, we
denote the concatenation of the trees t1, . . . , tn. Then, define

—fcns(ε) = #; and
—fcns(a(h)h′) = a(fcns(h), fcns(h′)), for forests h and h′.

Note that fcns(t) is always a binary tree. We denote $ ∪ {#} by $#.
To simplify notation, we assume in the following that data always belongs to $.

Therefore we write $ rather than $ ∪ {data}.
The next lemma says we can always assume that an XSD is represented as a deter-

ministic tree automaton. A proof can be found in Appendix C.

LEMMA 4.17. Let X be an XSD. A deterministic binary tree automaton AX can be
constructed in time polynomial in the size of X such that, for every XML tree t,

t ∈ L(X) if and only if fcns(t) ∈ L(AX).

The next lemma shows that the set of fcns encodings of all trees is in fact a regular
tree language.

LEMMA 4.18. There is a deterministic binary tree automaton A# such that t′ ∈ L(A#)
if and only if t′ = fcns(t) for some XML tree t.

PROOF. Let AX = ({q0, q1, qstop, qf }, $#, q0, {qf , qstop}). Then define δ as follows.

δ(a, q0) = (q1, qstop) for every a ∈ $

δ(a, q1) = (q1, q1) for every a ∈ $

δ(#, q1) = δ(#, qstop) = (qf , qf)

Basically, the automaton enforces the right child of the root to be a #-labeled node.
It also enforces every $-labeled node distinct from the root to have two children, and
every leaf to be #-labeled.

It should be noticed that the following lemma is a well-known result about tree
automata. Nevertheless, we show its proof as some of the results in the next section
use the given construction.

LEMMA 4.19. Let k ≥ 2 be a fixed constant. There is a polynomial-time algorithm
that, given the UTAs A1, A2, . . . , Ak, returns an UTA B such that L(B) =

⋂k
i=1 L(Ai).

PROOF. We begin by showing there is a polynomial-time algorithm that, given two
regular expressions r1, r2 over alphabets $ and *, respectively, returns an automaton

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

28:20 M. Arenas et al.

Ar1,r2 over $×* accepting the set of strings (a1, b1)(a2, b2) · · · (a+, b+) such that a1a2 · · · a+ ∈
L(r1) and b1b2 · · · b+ ∈ L(r2).

Let Ar1 = (Q, $, δ, q0, Fr1) and Ar2 = (P,*, ρ, p0, Fr2) be two automata accepting the
languages L(r1) and L(r2), respectively. It is well known that these automata can be
constructed in polynomial time. Define Ar1,r2 as (Q× P, $ × *,µ, (p0, q0), Fr1 × Fr2),
where µ is defined as

µ((q, p), (a, b)) = δ(q, a)× ρ(p, b).

Then, it is easy to prove this automaton accepts the set of strings (a1, b1) · · · (a+, b+)
such that a1a2 · · · a+ ∈ L(r1) and b1b2 · · · b+ ∈ L(r2).

We use the previous construction in the proof of the lemma. More precisely, given
two UTAs A1, A2, we show how to construct an UTA B such that L(B) = L(A1) ∩
L(A2). The extension of this construction for a fixed k > 2 can be easily obtained by
associating automata in pairs. Assume A1 = (Q,*, δ1, F1) and A2 = (P,*, δ2, F2). The
new automaton accepting L(A1)∩L(A2) is denoted by B = (Q× P,*,µ, F1× F2), where
µ is defined by including the transition

µ((q, p), σ) = L
(
Aδ1(q,σ),δ2(p,σ)

)

for every (p, q) ∈ P × Q and σ ∈ *.
It is clear that all of the preceding can be done in polynomial time. Now we prove that

a tree t is accepted by B if and only if it is accepted by both A1 and A2. Suppose that t
is accepted by B. Then there is an accepting run ρ : nodes(t)→ Q× P of B on t. By the
definition of transition function µ, we know that, for every node v ∈ nodes(t), it is the
case that child stringt(v) belongs to δ1(ρ1(v), labt(v)), where ρ1 denotes the projection
of ρ over its first component. Thus, the projection of ρ to its first component is a run
for the automaton accepting L(A1). Moreover, it is an accepting run given that the first
coordinate of ρ(root) belongs to F1, from which we conclude that t ∈ L(A1). For A2 the
proof is analogous by taking the projection over the second component, and the converse
is proved analogously. Let t be a tree and ρ1, ρ2 be accepting runs of A1 and A2 on t,
respectively. Then it is clear that ρ : nodes(t)→ Q× P defined by ρ(v) = (ρ1(v), ρ2(v))
is an accepting run of B on t.

4.4.2. Proofs for ∀>k,P
tree . Next, we proceed to prove the results in Table II. We first consider

the problem ∀>k,P
tree . The following lemma is instrumental for the proof of Theorem 4.21

(its proof can be found in Appendix C).

LEMMA 4.20. Let k ≥ 1 be a fixed constant. There is a polynomial-time algorithm
that, given a regular expression r over an alphabet *, constructs an UTA Ar,k such that
for every *-tree t, it holds that t ∈ L(Ar,k) if and only if |r(t)| ≥ k.

We now have the necessary ingredients to prove the first three results in Table II
concerning ∀>k,P

tree .

THEOREM 4.21. For every k ≥ 0, ∀>k,SE
tree , ∀>k,DSE

tree , ∀>k,CSE
tree , and ∀>k,RE

tree are all EXPTIME-
complete.

PROOF. EXPTIME-hardness of ∀>k,SE
tree follows from results proved in Björklund et al.

[2013]. It remains to show membership of ∀>k,RE
tree in EXPTIME. Let X be an XSD and r a

regular expression. From Lemma 4.20, we can construct in polynomial time an UTA
Ar,k+1 accepting every tree t such that |r(t)| ≥ k + 1. Verifying whether (X, r) ∈ ∀>k,RE

tree
then reduces to testing whether L(X) ⊆ L(Ar,k+1), which, according to Theorem 4.16, is
in EXPTIME.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

Discovering XSD Keys from XML Data 28:21

Of course, Theorem 4.21 implies that ∀>k,SE∗
tree is in EXPTIME. Finally, we show that the

problem ∀>k,SE//

tree is tractable.
To prove this result, we need to introduce some terminology and prove two technical

lemmas. Given a tree t and n ≥ 1, we denote by t|n the tree obtained by keeping the
nodes from t up to depth n (that is, the tree resulting from removing from t every node
at depth n + 1 along with its corresponding subtree).

LEMMA 4.22. There is a polynomial-time algorithm that, given an XSD X and a
number n ≥ 1 given in unary, generates an XSD X|n such that, for every tree t, it is the
case that

t ∈ L(X|n) iff there is a tree t′ ∈ L(X) such that t = t′|n.

PROOF. Let X = (A, λ) be an XSD. The type automaton A′ and the function λ′ for the
new XSD X|n = (A′, λ′) are defined next. Assume that A = (Q, $, q0, δ), and then let
A′ = (Q× [0, n], $, (q0, 0), δ′), where δ′ is defined as

δ′((q, i), a) = (δ(q, a), i + 1) for every q ∈ Q, i ∈ [0, n− 1] and a ∈ $.

Now let λ be defined as follows.

λ(q, i) = λ(q) for every q ∈ Q and i ∈ [0, n− 1]
λ(q, n) = ε for every q ∈ Q

Notice that the previous automaton can be generated in polynomial time since n is
given in unary notation. It is straightforward to prove that X|n satisfies the property in
the statement of the lemma.

In what follows, we make use of binary tree automata that operate in a bottom-
up fashion over trees. Formally, a binary bottom-up tree automaton is a tuple A =
(Q, $, q0, δ, F), where Q is the set of states, $ is the alphabet, q0 ∈ Q is the start state,
δ : Q×Q×$→ 2Q is the transition function, and F ⊆ Q is the set of final states. A run
of A on a tree t is a function ρ : nodes(t)→ Q that assigns a state in Q to every node v
of t such that: (1) if v is a leaf, then ρ(v) ∈ δ(q0, q0, labt(v)), and (2) if v is an inner node
with children v1 and v2, then ρ(v) ∈ δ(ρ(v1), ρ(v2), labt(v)). A run is accepting if, for the
root v of t, it holds that ρ(v) ∈ F. Finally, we say A is deterministic iff |δ(q1, q2, a)| ≤ 1
for all a ∈ $ and q1, q2 ∈ Q.

The proof of the next lemma can be found in Appendix C.

LEMMA 4.23. Let k ≥ 0 be a fixed constant. There is a polynomial-time algorithm
that, given a selector expression p = /a0/a1/ · · · /an−1, computes a bottom-up determinis-
tic binary tree automaton Ap,k

|n such that, for every pair of trees t, t′ for which t = fcns(t′|n),
it holds that

t ∈ L
(
Ap,k

|n
)

if and only if |p(t′)| > k.

THEOREM 4.24. For every k ≥ 0, ∀>k,SE//

tree is in PTIME.

PROOF. Let X be an XSD and let p be a selector expression that does not mention
the descendant axis. Assume p = /a0/ · · · /an−1. Clearly, (X, p) ∈ ∀>k,SE//

tree if and only if
(X|n, p) ∈ ∀>k,SE//

tree . Let A# be the deterministic binary tree automaton such that t ∈ L(A#)
if and only if t = fcns(t′) for some XML tree t′ constructed in Lemma 4.18. Let AX|n be a
deterministic binary tree automaton such that, for every tree t ∈ L(A#),

t ∈ L(AX|n) if and only if there exists t′ ∈ L(X) such that t = fcns(t′|n).

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

28:22 M. Arenas et al.

This automaton can be constructed by first computing the XSD provided by
Lemma 4.22, and then generating the deterministic binary tree automaton provided
by Lemma 4.17. Moreover, let Ap,k

|n be the bottom-up deterministic tree automaton pro-

vided by Lemma 4.23. To decide whether (X|n, p) ∈ ∀>k,SE//

tree , it suffices to check whether
L(AX|n) ⊆ L(Ap,k

|n). Given that AX|n, A# and Ap,k
|n can be constructed in polynomial time

in the size of A and p (recall that p mentions n symbols, so n can be assumed given
in unary when using Lemma 4.22) and that all these automata are deterministic, we
conclude that it can be checked in polynomial time whether L(AX|n) ∩ L(A#) ⊆ L(Ap,k

|n).

Thus, it can be checked in polynomial time whether (X|n, p) ∈ ∀>k,SE//

tree , which was to be
shown.

4.4.3. Proofs for ∀<k,P
tree . We now study the complexity of the problem ∀<k,P

tree . The results
in Table II concerning this problem all follow from the next theorem.

THEOREM 4.25. For every k ≥ 0, ∀<k,RE
tree is in PTIME.

PROOF. For k = 0 the theorem trivially holds. Thus assume that k ≥ 1. Let X be an
XSD and r a regular expression. From Lemma 4.20, we can construct in polynomial
time an UTA Ar,k accepting every tree t for which |r(t)| ≥ k. Then verifying whether
(X, r) ∈ ∀<k,RE

tree reduces to testing whether L(Ar,k)∩L(X) = ∅, which, by Lemma 4.19 and
Theorem 4.16, can be tested in PTIME.

4.4.4. Proofs for ∀=k,P
tree . Finally, we study the complexity of the problems ∀=k,P

tree . The proofs
in some of the following theorems reduce from the corresponding string problems as
treated in Section 4.3. Therefore, we need the following lemma to transfer a DFA to a
corresponding XSD. It should be noticed that every string s can be naturally viewed
as a tree, where each node has a single child except for the last element of s that is a
leaf. Thus, given a string s and an XSD X, we use notation s ∈ L(X) to indicate that s
viewed as a tree conforms to X.

LEMMA 4.26. Let A be a DFA over an alphabet $ and σ a symbol not in $. Then,
there exists a polynomial-time algorithm that returns an XSD such that L(XA) = {σs |
s ∈ L(A)}.

PROOF. Let A = (Q, $, q0, δ, F), and assume that q′0 is a state not mentioned in Q.
Then define XA as (A′, λ), where DFA A′ and function λ are defined as follows.

—The set of states, the alphabet, and the initial states of A′ are (Q∪ {q′0}), ($ ∪ {σ }),
and q′0, respectively.

—Transition function δ′ of A′ is defined as follows.

δ′(q′0, σ) = q0

δ′(q, a) = δ(q, a) for every q ∈ Q and a ∈ $

—Finally, for every q ∈ Q, if {a1, . . . , an} is the set of symbols a ∈ $ for which δ(q, a) is
defined, then

λ(q) =
{

(a1 + · · · + an) q ∈ (Q ! F)
(ε + a1 + · · · + an) q ∈ F

.

It is straightforward to prove that L(XA) = {σs | s ∈ L(A)}.

The following theorem treats the case where P equals RE .

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

Discovering XSD Keys from XML Data 28:23

THEOREM 4.27. ∀=0,RE
tree is in PTIME and, for every k ≥ 1, ∀=k,RE

tree is in EXPTIME and is
PSPACE-hard.

PROOF. As ∀=0,RE
tree = ∀<1,RE

tree , it follows from Theorem 4.25 that ∀=0,RE
tree is in PTIME. For

k > 0, ∀=k,RE
tree = ∀<k+1,RE

tree ∩∀>k−1,RE
tree . As ∀<k+1,RE

tree is in PTIME by Theorem 4.25 and ∀>k−1,RE
tree

is in EXPTIME by Theorem 4.21, it follows that ∀=k,RE
tree is in EXPTIME.

By Theorem 4.11, we know that ∀=k,RE
string is PSPACE-complete. In fact, from the proof

of this theorem, PSPACE-hardness already follows when restricted to expressions of the
form //a/ ∗ / · · · / ∗ /b//c, where a, b, and c are different from ∗.

Let A be a DFA and p an expression of the form mentioned earlier as //a/ ∗ / · · · / ∗
/b//c. We assume σ is a symbol occurring in neither A nor in p. By Lemma 4.26, we
can construct in polynomial time an XSD XA for which L(XA) = {σs | s ∈ L(A)}. Given
that p is an expression of the form //a/ ∗ / · · · / ∗ /b//c, where a, b, and c are different
from σ , it follows that p(s) = p(σs) for every string s ∈ L(A). Therefore, (A, p) ∈ ∀=k,RE

string

if and only if (XA, p) ∈ ∀=k,RE
tree , which shows that ∀=k,RE

tree is PSPACE-hard.

Next, we consider disjunctions and concatenation of selector expressions.

THEOREM 4.28.

(1) ∀=0,DSE
tree is in PTIME and, for every k≥ 1, ∀=k,DSE

tree is in EXPTIME and is CONP-hard.
(2) ∀=0,CSE

tree is in PTIME and, for every k≥ 1, ∀=k,CSE
tree is in EXPTIME and is PSPACE-hard.

PROOF. (1) Membership of ∀=0,DSE
tree in PTIME is a corollary of Theorem 4.27. For k > 0,

membership of ∀=k,DSE
tree in EXPTIME follows from Theorem 4.27 as well, so we only need

to show that ∀=k,DSE
tree is CONP-hard. By Theorem 4.12 it follows that ∀=k,DSE

string is CONP-
complete. In fact, from the proof the CONP-hardness already follows when restricted
to expressions of the form (p1 | p2 | · · · | pk), where each pi (1 ≤ i ≤ k) is a selector
expression not mentioning //.

Let A be a DFA and p be a disjunction of selector expressions of the form
(p1 | p2 | · · · | pk), where each pi (1 ≤ i ≤ k) does not mention //, and assume that σ
is a symbol mentioned neither in A nor in p. Define q as the disjunction of selector
expressions (σ/p1 | σ/p2 | · · · | σ/pk) (notice that this expression is well defined as each
pi does not mention //). By Lemma 4.26, we can construct in polynomial time an
XSD XA such that L(XA) = {σs | s ∈ L(A)}. Then, by definition of p and q, we have
that p(s) = q(σs) for every string s ∈ L(A). Therefore, (A, p) ∈ ∀=k,DSE

string if and only if
(XA, q) ∈ ∀=k,DSE

tree . Hence ∀=k,DSE
tree is CONP-hard.

(2) It follows as before from Theorem 4.27 and Theorem 4.11.

We conclude this section by showing that ∀=k,SE
tree is in PTIME, which implies membership

of ∀=k,SE∗
tree and ∀=k,SE//

tree in PTIME as well. In this proof, we need two technical lemmas whose
proof can be found in Appendix C.

LEMMA 4.29. There exists a polynomial-time algorithm that, given a selector expres-
sion p, computes a binary tree automaton Ap such that for every XML tree t it holds that
|p(t)| is equal to the number of accepting runs of Ap on fcns(t).

The following lemma is the counterpart of Lemma 4.14 for trees.

LEMMA 4.30. Let k ≥ 1 be a fixed constant. There is a polynomial-time algorithm
that, given a selector expression p, computes a binary tree automaton Bk

p such that for
every XML tree t:

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

28:24 M. Arenas et al.

(1) fcns(t) ∈ L(Bk
p) if and only if |p(t)| ≥ k, and

(2) if t ∈ L(Bk
p), then the number of accepting runs of Bk

p on t is

|p(t)|!
(|p(t)| − k)!

.

We are now ready to prove our main tractability result.

THEOREM 4.31. For every k ≥ 0, ∀=k,SE
tree is in PTIME.

PROOF. If k = 0, then the property is a corollary of Theorem 4.28. Thus assume that
k ≥ 1. Let X be an XSD and p a selector expression. By Lemma 4.30, we know it is
possible to construct in polynomial time a binary tree automaton Bk

p such that, for
every XML tree t, it holds that fcns(t) ∈ L(Bk

p) if and only if |p(t)| ≥ k. Moreover, by
Lemma 4.29, we know it is possible to construct a deterministic binary tree automaton
AX such that, for every XML tree t, it holds that fcns(t) ∈ L(AX) if and only if t ∈ L(X).
Let A# be the deterministic binary tree automaton such that t′ ∈ L(A#) if and only if
t′ = fcns(t) for some XML tree t, as shown in Lemma 4.18. Now, to know whether (X, p)
is in ∀=k,SE

tree , it suffices to check whether (X, p) ∈ ∀<k+1,SE
tree and L(A#× AX) ⊆ L(Bk

p). Notice
that the latter condition is equivalent to checking whether L(A# × AX) ⊆ L(AX × Bk

p).
With this in mind, we can decide in polynomial time whether (X, p) ∈ ∀=k,SE

tree by using
the following algorithm.

(1) Check whether (X, p) ∈ ∀<k+1,SE
tree . If this condition holds, then go to step (2); oth-

erwise, return false. Notice that this step can be executed in polynomial time by
Theorem 4.25, since every selector expression is a regular expression.

(2) Compute A# × AX and AX × Bk
p.

(3) Check whether L(A#× AX) ⊆ L(AX× Bk
p). Given that (X, p) ∈ ∀<k+1,SE

tree , we have that
for every XML tree t in L(X), it holds that |p(t)| ≤ k. Moreover, by Lemma 4.30
we have that for every XML tree t accepted by Bk

p, it holds that |p(t)| ≥ k and the
number of accepting runs of Bk

p on t is

|p(t)|!
(|p(t)| − k)!

.

Therefore, for every XML tree t that belongs to L(AX × Bk
p), it holds that |p(t)| = k

and the number of accepting runs of AX× Bk
p on t is bounded by (given that AX is a

deterministic binary tree automaton):
k!

(k− k)!
= k!.

We conclude that AX×Bk
p is k!-ambiguous. Thus, given that A#×AX is a deterministic

binary tree automaton, we have that A#×AX is also k!-ambiguous and hence we can
verify whether L(A# × AX) ⊆ L(AX × Bk

p) by using the polynomial-time algorithm
mentioned in Theorem 4.16.

4.5. Determining the Quality of Keys
In this section, we investigate a number of additional criteria to determine the quality of
keys. Since the number of keys mined from a given document can be quite large, we are
interested in identifying irrelevant keys that can be disregarded from the output of any
key mining algorithm. Examples are keys that hold in any document (called universal
keys), keys that can only address a bounded number of target nodes independent of

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

Discovering XSD Keys from XML Data 28:25

the size of the input document (called bounded keys), keys that are implied by keys
that have already been found, and keys that are not satisfied by any document (called
unsatisfiable keys). Whether bounded keys should be considered irrelevant is perhaps
debatable but, intuitively, since the main purpose of a key is to ensure uniqueness of
nodes within an a priory unbounded collection of nodes, we consider bounded keys to
not be semantically very interesting.

Throughout our development we restrict our attention to keys already known to be
consistent. Thereto, let X be an XSD, φ a key and , be a set of keys such that every
key in , ∪ {φ} is consistent with respect to X. Then:

—UNIVERSALITY is the problem to decide whether t |= φ for every tree in t ∈ L(X).
—BOUNDEDNESS is the problem to decide whether there is an N ∈ N such that, for every

tree t ∈ L(X), | TNodest(φ)| ≤ N.
—KEY IMPLICATION, denoted by , ⇒ φ, is the problem to decide whether, for all trees

t ∈ L(X) such that
∧

ψ∈, t |= ψ , it holds that t |= φ.
—SATISFIABILITY is the problem to decide whether there is a tree t ∈ L(X) with t |= φ.

We will show that identifying universal and bounded keys is algorithmically feasible,
while determining implication and even satisfiability of keys is intractable. Therefore,
determining a smallest set of keys (also known as a cover) is practically infeasible.
It should be noted, however, that while the EXPTIME-completeness of SATISFIABILITY is
discouraging, it does not pose a problem for key mining algorithms in practice. Indeed,
by Definition 3.9 a key mining algorithm will, on input (X, t) with t ∈ L(X), only return
keys φ with t |= φ (which can efficiently be checked since t is given). As such, the keys
φ it returns are necessarily satisfiable.

The fact that a smallest set of keys cannot be found efficiently is more problematic
from a practical viewpoint. Fortunately, there is a sufficient condition for key implica-
tion, called target path equivalence, that can be solved efficiently and that can hence
be used to prune the set of mined keys. Formally, given an XSD X, a context c, and
two selector expressions τ and τ ′, TARGET PATH CONTAINMENT is the problem to decide
whether, for every tree t ∈ L(X) and every node v ∈ CNodest(c), τ (t, v) ⊆ τ ′(t, v). We
denote the latter condition by τ ⊆X,c τ ′. By TARGET PATH EQUIVALENCE we denote the
decision problem of checking containment in both directions, that is, whether τ ⊆X,c τ ′

and τ ′ ⊆X,c τ . TARGET PATH EQUIVALENCE is a particularly relevant problem for key min-
ing since it allows to identify, within the mined set of keys, the semantically equivalent
but distinct keys (c, τ, P) and (c, τ ′, P) with τ target path equivalent to τ ′. In this sense,
target path equivalence is a sufficient condition for key implication.

In the following sections we will establish the following complexity results concerning
the problems introduced previously. Similar to the previous section, we parametrize the
prior problems by a class P of expressions so as to restrict attention to input keys that
only use expressions in P.

THEOREM 4.32. The following hold.

(1) UNIVERSALITY(DSE) is in PTIME.
(2) BOUNDEDNESS(DSE) is in PTIME.
(3) KEY IMPLICATION(SE) is EXPTIME-hard.
(4) SATISFIABILITY(SE) is EXPTIME-complete.
(5) TARGET PATH CONTAINMENT(SE) and TARGET PATH EQUIVALENCE(SE) are in PTIME.

4.5.1. Universality. We first prove that UNIVERSALITY(DSE) is in PTIME. We start with the
following observation.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

28:26 M. Arenas et al.

LEMMA 4.33. Let t1 and t2 be two XML trees that only differ on Data-labeled nodes,
that is, t1 and t2 have the same sets of nodes, the same sets of edges (which in particular
respects the ordering of children), and for all nodes n:

—labt1 (n) ∈ $ if and only if labt2 (n) ∈ $; and
—if labt1 (n) ∈ $ then labt1 (n) = labt2 (n).

Then, for every XSD X, every selector expression p, and every node n, we have:

(1) t1 ∈ L(X) if and only if t2 ∈ L(X);
(2) p(t1, n) = p(t2, n).

The proof is straightforward. Note in particular that by this property every XML
tree t can be transformed into an XML tree t′ in which distinct Data nodes carry
distinct labels such that t and t′ are invariant with respect to XSD membership and
selector expression evaluation. Likewise, t can be transformed into a tree t′′ in which
all Data nodes carry the same label. We will use both transformations in what follows.

PROPOSITION 4.34. UNIVERSALITY(DSE) is in PTIME.

PROOF. First observe a necessary and sufficient condition for the universality of key
φ = (c, τ, P) in the XSD X is that, for every t ∈ L(X), for every v ∈ CNodest(c), the set
τ (t, vi) is empty or contains exactly one node.

Indeed, suppose (for the purpose of contradiction) that φ is universal but that there
exists t ∈ L(X) and v ∈ CNodest(c) such that τ (t, v) contains at least two distinct nodes,
say n1 and n2. By Lemma 4.33, we may assume without loss of generality that all
Data nodes in t carry the same label, say a ∈ Data. Then clearly recordP(t, n1) =
recordP(t, n2) but n1 ,= n2. Hence t ,|= φ, which yields the desired contradiction.

Conversely, it is straightforward to check that φ is universal if for every t ∈ L(X), for
every v ∈ CNodest(c), the set τ (t, vi) is empty or contains exactly one node.

Now, it is well known that in polynomial time one can construct an XSD X′ from
X such that L(X′) is exactly the set of trees t′ for which there exists t ∈ L(X) and
v ∈ CNodest(c) such that t′ is the subtree rooted at v in t.

As such, by our necessary and sufficient condition as given before, φ is universal if and
only if (X′, τ) ∈ ∀<2,RE

tree , which can be decided in polynomial time by Theorem 4.25.

4.5.2. Satisfiability and Key Implication. Next, we show that KEY IMPLICATION(SE) and
SATISFIABILITY(SE) are EXPTIME-hard and that SATISFIABILITY(SE) is in EXPTIME. We be-
gin with the hardness results.

PROPOSITION 4.35. KEY IMPLICATION(SE) is EXPTIME-hard.

PROOF. We reduce ∀>1,SE
tree in polynomial time to KEY IMPLICATION(SE). Since the former

is EXPTIME-hard by Theorem 4.21, so is the latter.
Let (X, p) be an input to ∀>1,SE

tree with X an XSD and p ∈ SE a selector expression.
From the results of Björklund et al. [2013], it follows that we may assume without loss
of generality that p is of the form p = .//a/∗ /∗ / . . . /∗ /b with a, b ∈ $ (in other words,
∀,>1

treeSE remains hard when restricted to such inputs).
Let #,#1, and #2 be new symbols not in $. Let, for every t ∈ L(X), t′ be the tree

t′ = #(t, #1(#2), #1(#2)).

Construct from X the XSD X′ that accepts the set of all such trees t′ in which #2 is a
Data node. Let c be the root context of X′.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

Discovering XSD Keys from XML Data 28:27

Note in particular that, when we evaluate p on t′, p can only match in the subtree
t. Hence p(t′) = p(t). Therefore |p(t)| > 1 for every t ∈ L(X) if and only if |p(t′)| > 1 for
every t′ ∈ L(X′).

Now consider the key (φ, X′) with φ = (c, p, P) and P = [] the empty sequence of
key paths. Clearly (φ, X′) is consistent. Moreover, (φ, X′) is unsatisfiable if and only if
|p(t′)| > 1, for every tree t′ ∈ L(X′). Indeed, for every tree t′ ∈ L(X′) and all nodes u1, u2
in t′ we have recordP(t′, u1) = recordP(t′, u2) = [], the empty record. Hence (φ, X′) is
unsatisfiable if, and only if, for every tree t′ ∈ L(X′) and every v ∈ CNodest′ (c), there
are at least two distinct nodes in p(t′, v).

Then let ψ = (c, , ./#1, ./#2). Again, (ψ, X′) is clearly consistent. Moreover, φ ⇒ ψ if
and only if (φ, X) is unsatisfiable. Indeed, if φ is not satisfiable, then any implication
with φ on the left-hand side holds. Conversely, if φ is satisfiable then there is a tree
t′ ∈ L(X) such that t′ |= φ. Then, let t′′ be the tree obtained from t′ by changing the
Data value of both #2-labeled nodes to the same value. Then t′′ |= φ by Lemma 4.33,
but t′′ ,|= ψ .

We conclude that |p(t)| > 1 for every t ∈ L(X) if and only if |p(t′)| > 1 for every t′ ∈
L(X′) if and only if (φ, X′) is unsatisfiable if and only if φ ⇒ ψ . Hence KEY IMPLICATION(SE)
is EXPTIME-hard.

PROPOSITION 4.36. SATISFIABILITY(SE) is EXPTIME-hard.

PROOF. We reduce ∀>1,SE
tree in polynomial time to SATISFIABILITY(SE). Since the former

is EXPTIME-hard by Theorem 4.21, so is the latter.
Let (X, p) be an input to ∀>1,SE

tree with X an XSD and p ∈ SE a selector expression. Let
c be the root context of X. Then |p(t)| > 1 for every t ∈ L(X) if and only if the key (φ, X),
with φ = (c, p, P) and P = [] the empty sequence of key paths, is unsatisfiable. Indeed,
for every tree t ∈ L(X) and all nodes u1, u2 in t we have recordP(t, u1) = recordP(t, u2) =
[], the empty record. Hence (φ, X) is unsatisfiable if and only if, for every tree t ∈ L(X)
and every v ∈ CNodest(c) there are at least two distinct nodes in p(t, v).

To tackle the upper bound of satisfiability, we first observe the following character-
ization of unsatisfiability. We say that a selector expression is descendant based if it
starts with the descendant axis, that is, when it is of the form .//l1/l2/ . . . /lk. An XML
key (φ, X) with φ = (c, τ, P) is descendant based if every p ∈ P is descendant based.
In other words, a key is not descendant based if a selector expression occurring in P
starts with the child axis rather than the descendant axis.

LEMMA 4.37. Let (φ, X) with φ = (c, τ, P) be a consistent XML key such that P is
nonempty and all paths in τ and P are in SE . Then (φ, X) is unsatisfiable if and only if:

(1) (φ, X) is descendant based; and
(2) for every tree t ∈ L(X) there is a node v ∈ CNodest(c) and a pair of distinct nodes

u1, u2 ∈ τ (t, v) with u2 a descendant of u1.

PROOF. (⇐) Let (φ, X) be a consistent XML key and suppose that (1) and (2) hold. We
show that for every tree t ∈ L(X) we have t ,|= φ. Hereto, let t ∈ L(X) be arbitrary. By
(2) we know there exists v ∈ CNodest(c) and a pair of distinct nodes u1, u2 ∈ τ (t, v) with
u2 a descendant of u1. By (1) we know that every p ∈ P is an expression of the form
.//l1/l2/ . . . /lk. Then, since u2 is a descendant of u1, we obtain that p(t, u2) ⊆ p(t, u1),
for every p ∈ P. Now, since (φ, X) is assumed consistent, p(t, u2) and p(t, u1) must
be singleton sets. Hence p(t, u2) = p(t, u1) for every p ∈ P. As such, recordP(t, u1) =
recordP(t, u2) but u1 ,= u2. Therefore t ,|= φ.

(⇒) Suppose for the purpose of contradiction that either (1) or (2) does not hold. We
show that (φ, X) is necessarily satisfiable.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

28:28 M. Arenas et al.

—If (1) does not hold then some p ∈ P is of the form p = ./l1/l2/ . . . /lk. Then
let t be an arbitrary tree in L(X) such that distinct Data nodes in t carry
distinct Data labels. Such a tree always exists since XSDs are invariant to the
actual data values used in trees (Lemma 4.33). We show that t |= φ. Hereto, let
v ∈ CNodest(c) be arbitrary and let u1, u2 be distinct nodes in τ (t, v). We need to show
that recordP(t, u1) ,= recordP(t, u2). Since (φ, X) is consistent, p(t, u1) and p(t, u2) are
singletons, say p(t, u1) = {n1} and p(t, u2) = {n2} for some nodes n1, n2 in t. We will
show that n1 ,= n2. Then, since distinct Data nodes carry distinct labels, we have
valuet(n1) ,= valuet(n2) and recordP(t, u1) ,= recordP(t, u2), as desired. We distinguish
two cases.
(i) Case u1 is not a descendant of u2 and u2 is not a descendant of u1. Then, since t

is a tree, the set of nodes p(t, u1) = {n1} reachable by p from u1 in t is necessarily
disjoint with p(t, u2) = {n2}, that is, n1 ,= n2, as desired.

(ii) Case u1 is a descendant of u2 or u2 is a descendant of u1. Then, since t is a
tree, since u1 and u2 are at different levels in t, and since p is of the form
p = ./l1/l2/ . . . /lk, the set p(t, u1) = {n1} of Data nodes reachable by p starting
from u1 in t is necessarily disjoint with p(t, u2) = {n2}, that is, n1 ,= n2, as desired.

—If (2) does not hold then there exists t ∈ L(X) such that, for all v ∈ CNodest(c) and
all pairs of distinct nodes u1, u2 ∈ τ (t, v), u2 is not a descendant of u1, nor is u2 a
descendant of u1.
By Lemma 4.33 we may assume without loss of generality that each Data node
in t carries a distinct Data element. We will show that t |= φ. Hereto, let v ∈
CNodest(c) be arbitrary and let u1, u2 be distinct nodes in τ (t, v). We need to show
that recordP(t, u1) ,= recordP(t, u2). Hereto, let p ∈ P ,= ∅ be arbitrary. Since (φ, X) is
consistent, p(t, u1) and p(t, u2) are singletons, say p(t, u1) = {n1} and p(t, u2) = {n2} for
some nodes n1, n2 in t. Observe that, since t is a tree, since u1 isn’t a descendant of u2,
and since u2 isn’t a descendant of u1, it follows that n1 ,= n2. Hence since distinct Data-
labeled nodes carry distinct labels, valuet(n1) ,= valuet(n2). Hence recordP(t, u1) ,=
recordP(t, u2), as desired.

PROPOSITION 4.38. SATISFIABILITY(SE) is in EXPTIME.

PROOF. Let (φ = (c, τ, P), X) be a consistent key. The algorithm proceeds by a case
analysis to check that (φ, X) is satisfiable.

Case P is empty. First, the algorithm checks whether P is empty. If so, then ob-
serve that, for every tree t ∈ L(X) and all nodes u1, u2 in t, we have recordP(t, u1) =
recordP(t, u2) = [], the empty record. Hence (φ, X) is unsatisfiable if and only if, for
every tree t and every v ∈ CNodest(c), there are at least two distinct nodes in τ (t, v).

Now, it is well known that in polynomial time one can construct an XSD X′ from
X such that L(X′) is exactly the set of trees t′ for which there exists t ∈ L(X) and
v ∈ CNodest(c) such that t′ is the subtree rooted at v in t. Then, (φ, X) is satisfiable if
and only if (X′, τ) ∈ ∀>1,DSE

tree , which can be decided in EXPTIME by Theorem 4.21.

Case P is nonempty and P not descendant based. If P is not empty, then the algorithm
checks whether some element of P is not descendant based. If so, φ is satisfiable by
Lemma 4.37.

Case P is nonempty and P is descendant based. Finally, if P is nonempty and de-
scendant based then the algorithm uses the formalism of alternating tree-walking
automata for which containment is known to be in EXPTIME [Bojanczyk 2008].
Basically, the automaton can be constructed as follows: let A1 be an automaton that

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

Discovering XSD Keys from XML Data 28:29

nondeterministically walks to a node and checks that it is in context node c, then it
nondeterministically walks down to a node u1 selected by τ , and finally the automaton
accepts if it finds a descendant u2 of u1 that is also selected by τ starting from the
context node. Then, since X is descendant based, by Lemma 4.37 it suffices to check
whether L(X) ⊆ L(A1), which can be tested in EXPTIME.

4.5.3. Boundedness. Next, we show that BOUNDEDNESS(SE) is in PTIME. Using this result,
we then show that BOUNDEDNESS(DSE) is in PTIME as well. We require the following
notation, insight, and definitions.

Let t be an XML tree and u be a node in t. We write t|u for the subtree rooted at u in
t. Furthermore, we write t[v← t′] for the XML document obtained from t by replacing
the subtree in t rooted at v by t′. Here, we assume without loss of generality that the
set of nodes of t and t′ are disjoint. If this is not the case, we first make an isomorphic
copy of t′, disjoint with t. Clearly, the result of t[v← t′] is unique up to isomorphism.

The following result, due to Martens et al. [2006], states that XSDs are invariant
under the modification of subtrees that have the same context.

PROPOSITION 4.39 (XSD SUBTREE EXCHANGE PROPERTY [MARTENS ET AL. 2006]). Let X
be an XSD and let t1, t2 ∈ L(X) be two XML trees adhering to X. Let c be a context,
let u ∈ CNodest1 (c), and let v ∈ CNodest2 (c). Then t1[u← (t2|v)] adheres to X.

The preceding lemma will be a technical tool to show that unboundedness is decidable
in PTIME. As a first step, we first show that horizonal unboundedness, defined as follows,
is decidable in PTIME.

Definition 4.40. A key (φ, X) is horizontally unbounded if there exists + ∈ N such
that, for every N ∈ N, we can find t ∈ L(X) of depth at most + with | TNodest(φ)| > N.
If a key is unbounded but not horizontally unbounded, then it is called vertically
unbounded.

PROPOSITION 4.41. It is decidable in PTIME whether a given key (φ, X) with φ contain-
ing only selector expressions is horizontally unbounded.

PROOF. The crux of the decision algorithm is an analysis of the set of contexts reach-
able by Xwhile simulating φ. We will need the following concepts to define the algorithm
and prove it correct.

Let X = (A, λ) with A = (Types, $∪{data}, δ, q0) and let φ = ((σc, qc), τ, P) with τ ∈ SE
all p ∈ P in SE . We focus here on the case where τ = .//l1/l2/ . . . /lk; the reasoning
when τ starts with a child axis rather than a descendant axis is similar.

Since XSDs can be trimmed in polynomial time, we assume without loss of generality
in what follows that our input XSD X is trimmed.

Now consider the directed graph GX = (C,→) defined as follows.

—The set of nodes C of GX consists of all well-formed contexts of X (well-formed contexts
are defined in Definition 4.2).

—There is an edge c→ c′ from c = (σ, q) to c′ = (σ ′, q′) in GX if and only if σ ′ ∈ Out(q)
and q′ = δ(q, σ ′). (Recall that Out(q) denotes the set of all $ symbols for which δ(q, σ ′)
is defined or, equivalently, the set of all $ symbols occurring in the regular expression
λ(q).)

Note that, since there are at most |$|× |Types| well-formed contexts, GX can clearly be
constructed in polynomial time.

We write→+ for the transitive closure of the edge relation→. Furthermore, we write
(σ, q) ∞→ (σ ′, q′) when (σ, q)→ (σ ′, q′) and σ ′ appears under the scope of a Kleene-star

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

28:30 M. Arenas et al.

operator in the regular expression λ(q). To illustrate, a, b, and c all appear under the
scope of a Kleene-star in a(b + ca)∗d, but d does not. We write (σ, q) 1→ (σ ′, q′) to indicate
that (σ, q) → (σ ′, q′) but σ ′ does not appear under the scope of a Kleene-star operator
in λ(q). We say that a path c1, c2, . . . , cn from context c1 to context cn in Gx traverses a
∞→ edge if there exists 1 ≤ i ≤ n with ci

∞→ ci+1.
Let the set of initial contexts I be defined by I := {(σ, δ(q0, σ)) | σ ∈ Out(q0)}.
We say that a context c = (σ, q) matches l ∈ $ ∪ {∗} if σ = l or l = ∗.
To obtain the proposition, we use the following characterization of horizontal

unboundedness.

CLAIM 1. Key (φ, X) as given earlier is horizontally unbounded if and only if all of
the following hold:

(1) there exists c0 ∈ I with c0 →+ (σc, qc);
(2) there exist c1, . . . , ck ∈ C such that ci matches li, for 1 ≤ i ≤ k and (σc, qc)→+ c1 →

c2 · · · → ck; and
(3) at least one of the paths in items (1) and (2) traverses a ∞→ edge.

The correctness of this claim follows essentially by a pumping argument: if the path
in condition (1) traverses an ∞→ edge we can arbitrarily pump the number of nodes
that have context (σc, qc) (thereby increasing | TNodest(φ)|); if the path in condition
(2) traverses an ∞→ edge we can arbitrarily pump the number of nodes that are selected
by τ (thereby also increasing | TNodest(φ)| to N). The proof of Claim 1 is provided in
Appendix D.

Observe that condition (1) can easily be verified in polynomial time using a stan-
dard graph reachability algorithm. Condition (2) can be verified in polynomial time by
computing the following sequence of sets T1, . . . , Tk and verifying that Tk is nonempty.

T1 := {c1 | (σc, qc)→+ c1 and c1 matches l1}; and
Ti+1 := {ci+1 | ∃ci ∈ Ti, ci → ci+1 and ci+1 matches li+2}

Finally, condition (3) can be verified in polynomial time by suitably keeping track of
when a ∞→-edge is traversed in the prior algorithms for tracking (1) and (2). As such,
horizontal unboundedness of (ϕ, X) can be checked in PTIME.

PROPOSITION 4.42. Boundedness(SE) is in PTIME.

PROOF. First, we can decide in PTIME whether (φ, X) is horizontally unbouded by
Proposition 4.41. If (φ, X) is horizontally unbouded, then it is clearly also unbouded.

Otherwise, we reason as follows. Since XSDs can be trimmed in polynomial time,
we may assume without loss of generality that X is trimmed. Let φ = ((σc, qc), τ, P)
τ ∈ SE all p ∈ P in SE . We focus on the case where τ = .//a1/a2/ . . . /ak (the case where
τ starts with a child axis is similar). Let C be the set of all well-formed contexts of
X. For an XML tree t ∈ L(X), let ρ(t) be the C tree obtained by labeling each node v
in t by its context according to X, that is, labρ(t)(v) = c where c is the unique context
with v ∈ CNodest(c). Finally, let T = {ρ(t) | t ∈ L(X)} be the set of all context-labeled
versions of trees adhering to X.

We claim that (φ, X) is unbounded if and only if some ρ(t) ∈ T contains a node v
labeled by (σc, qc) such that t|v contains one of the following three tree templates as a
(partial) subtree.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

Discovering XSD Keys from XML Data 28:31

Here, we have omitted states for nodes where the states are not important; q rep-
resents an arbitrary state; and σ, σ1 represent arbitrary alphabet symbols. Also, the
order among siblings is not important.

Indeed, if T contains such a tree ρ(t) then we can show L(X) to be unbounded
as follows. Suppose that t|v contains the first tree template as a subtree (the other
two cases are similar). Let u1 be the (a1, q)-labeled node in t at which this subtree is
rooted and let u2 be the (a1, q)-labeled descendant of u1. Then let t′ := t[u2 ← t|u1].
By the Subtree Exchange Property (Propostion 4.39), t′ ∈ L(X). Moreover, observe that
| TNodest′(φ)| > | TNodest(φ)| > 1. Since t′ still contains a copy of t|u1 as a subtree under
v, we can iterate this reasoning until | TNodest′(φ)| reaches the desired size N.

Conversely, suppose for the purpose of contradiction that (φ, X) is unbounded but
T does not contain a tree ρ(t) as described before. We then derive a contradiction by
showing that (φ, X) is horizontally unbounded (which we assumed not to be the case).
In particular, define for every well-formed context c the natural number mindepth(c)
as

mindepth(c) := min{depth(t|u) | t ∈ L(X), u ∈ CNodest(c)}.
Let mindepth(X) := maxc∈C . mindepth(c), fix + := 2× |$| × |Types| + mindepth(X), and
let N ∈ N be arbitrary but fixed. We will show there exists a tree s in L(X) of depth at
most + with | TNodess(φ)| > N.

Hereto, we reason as follows. Since (φ, X) is unbounded, there exists a tree tN ∈ L(X)
with | TNodess(φ)| > N. For simplicity of illustration we will assume that all of the
nodes in TNodestN (φ) are descendants of a single node vN in tN that has context (σc, qc)
(i.e., labρ(tN)(vN) = (σc, qc)). The reasoning when TNodestN (φ) is distributed over multiple
nodes with context (σc, qc) in tN is similar, but more verbose.

Observe that we may assume without loss of generality that the path from vN to the
root in tN is of size at most |$| × |Types|. Indeed, since there are only |$| × |Types|
distinct contexts, there must exist nodes z and z′, both on this path, that have the same
context (in the sense that labρ(tN)(z) = labρ(tN)(z′)) if this path is of larger size. Assume
without loss of generality that z′ is the descendant of z. Then t1 := tN[z ← tN|z′] still
adheres to X by the Subtree Exchange Property. Moreover, it has the same number of
target nodes as the number of target nodes selected by φ in tN since all of the latter
target nodes belong to tN|zn, which is still present in t1. By iterating this reasoning
until no context is repeated on the path from vN to the root, we obtain a tree in L(X)
in which this path is of length at most |$| × |Types| and that has the same number of
target nodes.

By our assumption that T does not contain a tree ρ(t) as described earlier, we know
in particular that tN|vN does not contain any of the preceding three tree templates
as a subtree. This implies that, for all descendants u of vN, if u has a descendant in
TNodestN (φ) then u does not have another descendant u′ with the same context.

In particular, since there are only |$| × |Types| distinct contexts, the length of the
path from any node in TNodestN (φ) to vN must be of length at most |$| × |Types|. Then

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

28:32 M. Arenas et al.

Fig. 4. Illustration of the construction in the proof of Proposition 4.42.

let U be the set of all nodes that occur on the path from a node in TNodestN (φ) to tN ’s
root. Let Y be the set of child nodes of nodes in TNodestN (φ). Let Z be the set of all
sibling nodes of nodes in U , excluding the nodes in U themselves. Our situation so far
is illustrated in Figure 4.

Now fix, for every node u ∈ Y ∪ Z, a tree tu ∈ L(X) and a node vu ∈ CNodestu(cu) with
cu the context of u in tN, cu = labρ(tN)(u), such that depth(tu|vu) ≤ mindepth(X). Such tu
and vu exist by the definition of mindepth(X) and the fact that X is trimmed.

Then let s be the tree obtained from tN by simultaneously replacing, for every
u ∈ Y ∪ Z, the tree rooted at u in tN by tu|vu. By the Subtree Exchange Property,
s ∈ L(X). Moreover, since we did not touch any of the nodes in tN on the paths
from nodes in TNodestN (φ) to tN ’s root, we have TNodestN (φ) ⊆ TNodess(φ). There-
fore N < | TNodestN (φ)| ≤ TNodess(φ). Finally, we have replaced all children of nodes
in TNodestN (φ) by trees of depth at most mindepth(X). In addition, we have replaced
all siblings of nodes on the path from nodes in TNodestN (φ) also by trees of depth
at most mindepth(X). Then, since all paths from nodes TNodestN (φ) to the root are
of length at most 2 × |$| × |Types|, the resulting tree s must be of depth at most
2× |$| × |Types| + mindepth(X) = +, as desired.

To complete the proof, we need to show that we can check whether T contains a
tree ρ(t) as stated earlier in polynomial time. Hereto, we construct four (unranked)
tree automata, A1, A2, A3, and A4. The first automaton A1 is constructed to recognize
exactly T . It is not hard to verify that this automaton can be constructed from X in
polynomial time. The other three automata A2,A3, and A4 are constructed to accept
trees in which the first, respectively second and third, tree template given before
occurs as a subtree beneath a (σc, qc)-labeled node. It is not hard to verify that these
automatons can be constructed from (φ, X) in polynomial time. Essentially, it suffices
to construct the automatons nondeterministically, guessing the context that needs to
be repeated, and verifying the target path τ . Finally, we check emptiness of L(A1) ∩
(L(A2) ∪ L(A3) ∪ L(A4)), that can be done in polynomial time in the size of A1, A2, A3,
and A4 (that are all of size polynomial in (φ, X)). If the result is empty then the key is
bounded, otherwise it is unbounded.

In the following proposition, we reduce BOUNDEDNESS(DSE) to BOUNDEDNESS(SE).

PROPOSITION 4.43. BOUNDEDNESS(DSE) is in PTIME.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

Discovering XSD Keys from XML Data 28:33

PROOF. Let (φ = (c, τ, P), X) be a key with a target path τ = τ1 | · · · | τn that consists of
a union of selector expressions. Then, clearly (φ, X) is bounded if and only if ((c, τi, P), X)
is bounded for every i ≤ n. Hence BOUNDEDNESS(DSE) is in PTIME.

Next, we prove that TARGET PATH CONTAINMENT(SE) can be solved in PTIME, from which
it immediately follows that TARGET PATH EQUIVALENCE(SE) is also in PTIME.

We start by observing the following characterization of target path containment.
Given a tree t and a context c, define paths(t, c) as the set of strings s for which there
exist nodes u, v in t such that u ∈ CNodest(c), v is a descendant of u in t, and s is the
string formed by the labels on the unique path form u to v (including the labels of u
and v). Moreover, given an XSD X, define paths(X, c) as

⋃
t∈L(X) paths(t, c).

LEMMA 4.44. Let X be an XSD, c a context, and τ , τ ′ selector expressions. Then
τ ⊆X,c τ ′ if, and only if for every s ∈ paths(X, c), it holds that if s ∈ L(τ), then also
s ∈ L(τ ′).

PROOF. (⇒) Assume that (τ, c) is contained in (τ ′, c) with respect to X, and let s ∈
paths(X, c) be such that s ∈ L(τ). We need to prove s ∈ L(τ ′). Given that s ∈ paths(X, c),
there exists a tree t ∈ L(X) such that s ∈ paths(t, c). Thus, there exist nodes u, v in t
such that u ∈ CNodest(c), v is a descendant of u in t, and s is the string formed by the
labels on the unique path from u to v (including the labels of u and v). We conclude
that v ∈ τ (t, u) and therefore we have that v ∈ τ ′(t, u) as (τ, c) is contained in (τ ′, c) with
respect to X. Hence we conclude by definition of paths(t, c) that s ∈ L(τ ′).

(⇐) Assume that (τ, c) is not contained in (τ ′, c) with respect to X. Then we need to
show that there exists s ∈ paths(X, c) such that s ∈ L(τ) and s ,∈ L(τ ′). Given that (τ, c)
is not contained in (τ ′, c) with respect to X, there exists a tree t ∈ L(X) and nodes u,
v in t such that u ∈ CNodest(c), v ∈ τ (t, u) and v ,∈ τ ′(t, u). Let s be the string formed
by the labels on the unique path from u to v (including the labels of u and v). Then we
have that s ∈ paths(t, c), from which we conclude that s ∈ paths(X, c). Moreover, given
that v ∈ τ (t, u), we have that s ∈ L(τ), and given that v ,∈ τ ′(t, u), we have that s ,∈ L(τ ′).
This concludes the proof of the lemma.

PROPOSITION 4.45. TARGET PATH CONTAINMENT(SE) is in PTIME.

PROOF. Assume given an XSD X, a context c, and selector expressions τ , τ ′. To check
that τ ⊆X,c τ ′ it suffices by Lemma 4.44 to check that (paths(X, c) ∩ L(τ)) ⊆ L(τ ′).
We prove in Appendix D that we can construct in polynomial time a DFA AX,c and
UFAs Aτ and Aτ ′ such that L(AX,c) = paths(X, c); L(Aτ) = L(τ); and L(Aτ ′) = L(τ ′).
Thus, the problem of verifying whether (paths(X, c) ∩ L(τ)) ⊆ L(τ ′) can be reduced
in polynomial time to the problem of verifying whether L(AX,c × Aτ) ⊆ L(Aτ ′), where
AX,c × Aτ is the (usual) product automaton of AX,c and Aτ , which can be computed in
polynomial time and accepts L(AX,c)∩L(Aτ). Given that AX,c is a DFA and Aτ is a UFA,
we have that AX,c × Aτ is a UFA. Thus, given that Aτ ′ is also a UFA, we conclude that
L(AX,c × Aτ) ⊆ L(Aτ ′) can be checked in polynomial time, as the containment problem
for UFAs can be solved in polynomial time by Theorem 4.13.

The following theorem then readily follows.

PROPOSITION 4.46. TARGET PATH EQUIVALENCE(SE) is in PTIME.

5. XML KEY MINING ALGORITHM
In this section, we provide an algorithm for solving the XML key mining problem. Recall
from Definition 3.9 that the input to this algorithm is an XSD X, an XML tree t, and a
minimum support threshold N, and that it should output keys that are consistent with

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

28:34 M. Arenas et al.

ALGORITHM 1: XML Key Mining Algorithm
for all c ∈ ContextMinert,X do

for all τ ∈ TargetPathMinert,X(c) do
S = OneKeyPathMinert,X(c, τ)
P = MinimalKeyPathSetMinert,X(c, τ, S)
for each P ∈ P return (c, τ, P)

X, are satisfied by t, and whose support exceeds N.7 For the remainder, let X = (AX, λX)
with the type automaton AX = (Types, $ ∪ {data}, δ, q0).

The overall structure of the XML key mining algorithm is outlined in Algorithm 1.
Basically the algorithm consists of four components.

—ContextMinert,X returns a list of possible contexts based on t and X.
—TargetPathMinert,X(c) returns a list of target paths with minimal support in t given

a context c.
—OneKeyPathMinert,X(c, τ) returns a maximal set S of key paths for which (c, τ, {p})

is consistent for every p ∈ S.
—MinimalKeyPathSetMinert,X(c, τ, S) returns a set P of minimal subsets P of S for

which t |= (c, τ, P).

TargetPathMinert,X(c) and OneKeyPathMinert,X(c, τ) are different instantiations
of levelwise search [Mannila and Toivonen 1997], while the function Minimal-
KeyPathSetMinert,X(c, τ, S) leverages on discovery algorithms for functional depen-
dencies in the relational model. In the remainder, we explain each function in detail.
We will only consider target and key paths up to a given length kmax which can be at
most the maximum depth of the document. Since the presence of top-level disjunction
renders testing for consistency intractable (see Theorem 4.6), we focus on a key mining
algorithm that disregards the union operator.

To illustrate the different parts of the mining algorithm, we will use the XML docu-
ment t depicted in Figure 1 as a running example.

5.1. Prefix Tree and Context Miner
We first define a basic data structure that is used to speed up various parts of the
mining algorithm. Denote by PT(t) the prefix tree obtained from t by collapsing all
nodes with the same ancestor string. Recall that the ancestor string of a node is the
string obtained by concatenating all labels on the unique path from the root to (and
including) this node. Let h be the function mapping each node in t to its corresponding
node in PT(t). Then, we label every node m in PT(t) with a pair (q, i), where q is the
state assigned to mby the type automaton AX and i is the number of nodes in t mapped
to m, that is, |h−1(m)|. Note that PT(t) does not contain data nodes. The prefix tree can
be computed in time linear in the size of t (see, e.g., [Grahne and Zhu 2002]).

We next discuss the context miner. Clearly, the set of all contexts c = (σ, q) with
σ ∈ $ and q ∈ Types can be directly inferred from the given XSD. But, since only
contexts that are effectively materialized in t can give rise to a nonzero support, the
context miner enumerates all unique contexts c occurring in PT(t) through a depth-first
traversal.

Example 5.1. The prefix tree for the XML tree in Figure 1 is shown in Figure 5.
The type automaton depicted in Figure 3 is used to assign a unique state to each node
in the prefix tree. The set of materialised contexts can now be derived by combining,

7If no XSD is available, one can be derived, for example, using algorithms from Bex et al. [2007].

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

Discovering XSD Keys from XML Data 28:35

Fig. 5. Prefix tree for the XML tree in Figure 1. Each node has an associated state and number of matches.

for each node, its label with the assigned context. In this case the context miner yields
the following set:

{(qbook, book), (qbookshop, bookshop), (qorder, order), (qquantity, quantity), (qyear, year),
(qtitle, title), (qperson, person), (qprice, price), (qid, id), (qaddress, address), (qitems, items)}.

5.2. Target Path Miner
Next, we describe the target path miner which finds all target paths exceeding the
support threshold for a given context c. The algorithm follows the framework of level-
wise search described by Mannila and Toivonen [1997]. In brief, the algorithm is of a
generate-and-test style that starts from the most general target path, .//* in our case,
and generates increasingly more specific paths while avoiding paths that cannot be
interesting given the information obtained in earlier iterations.

The components of any levelwise search algorithm consist of a set U called the search
space, a predicate q on U called the search predicate, and a partial order # on U called
the specialization relation. The goal is to find all elements of U that satisfy the search
predicate. Obviously, U in our case is the set of selector expressions up to length kmax. A
standard approach is to use a support threshold for the search predicate. Accordingly,
we define the search predicate as q(τ) := supp(c, τ, t) > N, for the given input threshold
N. That is, τ is deemed interesting when its support exceeds N.

For levelwise search to work correctly, q should be monotone (actually, monotonically
decreasing) with respect to #, meaning that if τ ′ # τ and q(τ) holds, then q(τ ′) holds
as well. The intuition of τ ′ # τ is that τ is more specific than τ ′, or, in other words,
that τ ′ is more general than τ . For our purposes, it would be ideal to use the semantic
containment relation τ ⊆X,c τ ′ in context c (as defined in Section 4.5). Although this
containment relation is shown tractable (Theorem 4.46) through a translation to the
inclusion test of unambiguous string automata, it is not well suited to be used within
the framework of levelwise search that requires fast testing of specialization due to the
large number of such tests. In strong contrast, as we show shortly, the containment of
selector expressions, that disregards the presence of a schema, has a syntactic coun-
terpart which can be implemented efficiently. Therefore we define τ ′ # τ if and only
if, for every XML tree t, the set τ (t) is a subset of τ ′(t). With respect to this definition

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

28:36 M. Arenas et al.

ALGORITHM 2: Basic algorithm for levelwise search [Mannila and Toivonen 1997]
C0 := set of most general elements of U ;
i := 0;
while Ci ,= ∅ do

Fi := {τ ∈ Ci | q(τ)};
Ci+1 := {τ ∈ U | ∀τ ′ ∈ U : τ ′ ≺ τ ⇒ τ ′ ∈

⋃
j≤i Fj} \

⋃
j≤i C j ;

i := i + 1;
return

⋃
j<i Fj ;

it is obvious that the search predicate q is monotone. Notice also that τ ⊆ τ ′ implies
τ ⊆X,c τ ′.

Now, levelwise search computes sets Fi iteratively as shown in Algorithm 2. Here, ≺
is the strict version of #, so τ ′ ≺ τ if τ ′ # τ and τ ′ ,= τ . The step computing Ci+1 is called
candidate generation; those candidates that satisfy q then end up in the corresponding
set Fi+1 (the letter F is a shorthand for “frequent”, referring to the support threshold).
It can formally be shown that the union of all sets Fi indeed equals the set of all
elements of U satisfying q [Mannila and Toivonen 1997]. Moreover, the algorithm is
terminated as soon as Ci is empty, because then all later sets Fj and Cj with j ≥ i will
be empty as well.

The abstract framework as given, however, leaves questions to be answered.

(i) How can we efficiently evaluate the search predicate q(τ)?
(ii) How can we efficiently generate candidate sets Ci+1?

We will next answer these questions in detail.
Search predicate. The search predicate supp(c, τ, t) can be entirely evaluated on the

prefix tree PT(t) and does not need access to the original document t. A single XPath
expression can be used to aggregate the counts of all nodes matching τ below nodes
in context c.8 Indeed, for c = (σ, q), the support can be obtained from PT(t) using the
XPath expression

sum(//σ[@state=idq]/τ/@matches),
where idq is the internally used id of the state q. The attributes @state and @matches
contain, respectively, the state id assigned to the node in the prefix tree and the number
of nodes with the same ancestor path in t.

Specialization relation and candidate generation. Since our chosen specialization
relation is purely semantic, we need an equivalent algorithmic definition to show that
containment can be effectively decided. Thereto, we define a one-step specialization
relation whose repeated application corresponds to the semantic specialization relation
as follows: τ ′ ≺1 τ if τ is obtained from τ ′ by one of the following operations: (a) if τ ′

starts with the descendant axis, replace it by the child axis; (b) if τ ′ starts with the
descendant axis, insert a wildcard step right after it; or (c) replacing a wildcard with
an element name.

We establish that τ ′ # τ if and only if τ ′ can be transformed into τ by a sequence of
≺1-steps, or, more formally (a proof can be found in Appendix E), as follows.

PROPOSITION 5.2. The relation # equals the reflexive and transitive closure of the
relation ≺1.

Note that the definition of ≺1 makes it impossible that τ ′ ≺1 τ ′′ ≺1 τ while at the
same time τ ′ ≺1 τ . Hence, Proposition 5.2 implies that ≺1 as defined before really is

8Recall that in the prefix tree every node contains its corresponding context and count.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

Discovering XSD Keys from XML Data 28:37

the “successor” relation of #. More formally, τ ′ ≺1 τ holds precisely if and only if τ ′ ≺ τ
and there exists no intermediate τ ′′ such that τ ′ ≺ τ ′′ ≺ τ . Moreover, ≺1 is very efficient
to compute. Thus armed, we can perform candidate generation in a effective manner
as given in Algorithm 3. Here, candidate generation is split up into two steps, which
in practice can be interleaved. The set Gi+1 takes all successors of the current set Fi;
the set Ci+1 then prunes away those elements that have a predecessor that does not
satisfy q. It can be shown formally that the sets Fi computed in this concrete manner
are exactly the same as those prescribed by the levelwise algorithm (a proof can be
found in Appendix E).

ALGORITHM 3: TargetPathMinert,X(c)
C0 := set of minimal elements of U ;
i := 0;
while Ci ,= ∅ do

Fi := {τ ∈ Ci | q(τ)};
Gi+1 := {τ ∈ U | ∃τ ′ ∈ Fi : τ ′ ≺1 τ };
Ci+1 := {τ ∈ Gi+1 | ∀τ ′ : τ ′ ≺1 τ ⇒ τ ′ ∈

⋃
j≤i Fj};

i := i + 1;
return

⋃
j<i Fj ;

THEOREM 5.3. Algorithms 2 and 3 are equivalent.

Example 5.4. We now illustrate the first iteration of Algorithm 3. Consider the
context c = (order, qorder) from our running example, together with a support threshold
of 3.

The target miner starts with the minimal elements as a set of candidates. In this
case this corresponds to the most general path: C0 = {.//*}. The predicate q is then
checked for .//*. As this path selects all 23 nondata nodes below the order nodes,
it is supported and the predicate evaluates to true. Hence F0 = {.//*}. Next, the
specialization relation is used to generate the next level. Applying the three possible
specialization operations on .//* yields the following set.

G1 = {./*, .//*/*, .//items, .//book, . . .}
For each of these paths it is checked whether all the parent paths are supported (only
.//* in this case). In the next iteration, the predicate will be evaluated for these new
candidates and a new level will be generated (if possible). Note that the sets Ci in
Algorithm 2 would have the same value.

Duplicate elimination. Often, a nuisance in mining logical formulas such as selector
expressions is duplicate elimination: different expressions may be logically equivalent.
Fortunately, in our setting, it follows from Proposition 5.2 that only identical selector
expressions can be equivalent.

Regardless, it can happen that two derived, and therefore inequivalent, target paths
τ and τ ′ select precisely the same set of target nodes on the given document t. As
these paths are equivalent from the perspective of t, it holds that t |= (c, τ, P) iff
t |= (c, τ ′, P) for all sets P. Therefore, with respect to generation of key paths P, it
does not make sense to consider all of these equivalent path separately. Rather, we
should choose among them one canonical path. One possibility, for instance, is to opt
for the most specific path according to ≺1 by minimizing the length and number of
wildcards. Notice that equivalence of target paths on t can be tested on the prefix tree
PT(t) without access to the original document.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

28:38 M. Arenas et al.

Example 5.5. Consider the context qorder and the target paths .//book and
./items/book. When evaluating these target paths on the small prefix tree in
Figure 5, we notice that the same nodes are selected and we can therefore conclude
they are equivalent on the document. Indeed, both target paths will select all the book
nodes in the larger XML document (see Figure 1).

Boundedness elimination. The quality of the mining result can be improved using
the results of Section 4.5. Indeed, target paths that are bounded but still have passed
the support threshold N, which may happen with low values of N, may be eliminated
at this stage.

Example 5.6. Suppose the XSD in our running example would limit the number of
order nodes in a document to a maximum of 10. We could then eliminate those target
paths that select (descendants of) these nodes.

5.3. One-Key Path Miner
Our task here is to find all key paths p for which (c, τ, (p)) is consistent on the given
document, that is, for every v ∈ CNodest(c) and every u ∈ τ (t, v), it holds that p(t, u) is a
singleton containing a Data node. In a second step, the key paths p for which (c, τ, (p))
is consistent with respect to X are selected for further processing. The reason for this
two-step approach is to reduce the number of costly consistency tests. Although testing
for consistency with respect to a schema is in polynomial time (refer to Theorem 4.6), it
can be slow for large schemas and is ill suited to be used directly as a search predicate.
Therefore, we test for document consistency in a first step and make use of the fact
that inconsistency on t implies inconsistency on X. That is, key paths which are not
consistent on t and which are therefore pruned in the first step can never be consistent
with respect to X.

It turns out that, again, a levelwise search may be used, utilizing the converse of the
specialization relation # for target path mining. So, define p′ #key p iff p # p′, that is,
p′ #key p iff p′ ⊆ p. The search predicate qkey

τ (p) is now defined to hold if p selects at
most one node in t for each of the target nodes selected by τ in context c. This qkey

τ is
indeed monotonically decreasing with respect to the converse of containment among
selector expressions: p′ #key p ≡ p′ ⊆ p and qkey

τ (p) together imply qkey
τ (p′). We note

that consistency requires the selection of exactly one (rather than at most one) node.
However, this mismatch can be solved by confining the search space Ukey to all selector
expressions up to length kmax that from a target node select a leaf node in the prefix
tree: these expressions select at least one node by virtue of their being present in the
prefix tree. The “most general” elements from which the levelwise search is started are
then those paths in the prefix tree from target nodes to leafs. Obviously, Ukey can be
computed directly from PT(t).

It remains to discuss how to compute qkey
τ efficiently. Unfortunately, qkey

τ cannot
always be computed solely on PT(t). Indeed, consider the documents t1 = a(b(d), b(d))
and t2 = a(b(d, d), b), where each d node is a Data node. Then, PT(t1) = PT(t2), yet φ is
consistent on t1 but inconsistent on t2 for φ = (croot,./b, (./d)) with croot the root context.

We next present a sufficient condition for inconsistency that can be tested on the
prefix tree. Thereto, consider φ = (c, τ, (p)) and let t′ = PT(t). For a node m in t′, we
denote by #t′ (m) the number assigned to m in t′, that is, |h−1(m)| for h as defined in
Section 5.1. Define the following conditions.

—(C1) There exists a v ∈ CNodest′(c) and a u ∈ τ (t′, v) such that #t′ (u) <
∑

w∈p(t′,u) #t′ (w).
—(C2) There exists a v ∈ CNodest′ (c), a u ∈ τ (t′, v), a w ∈ p(t′, u), and a node m on the

path from u to w such that #t′(m) < #t′ (w).

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

Discovering XSD Keys from XML Data 28:39

Here, (C1) says that the number of target nodes u is strictly smaller than the number
of nodes selected by p, and (C2) says that there is a leaf node selected by p and an
ancestor with a smaller number of corresponding nodes in t. Both conditions imply
there are at least two nodes selected by p that belong to the same target node in t and
which contradict consistency.

The following proposition hence follows.

PROPOSITION 5.7. Given φ = (c, τ, (p)) and a document t. If condition C1 or C2 holds
on PT(t), then φ is inconsistent on t.

So, only when the tests for the two preceding conditions fail do we evaluate p on t to
determine the value of qkey

τ (p).
Finally, define ≺key

1 as the inverse of ≺1, that is, p′ ≺key
1 p iff p ≺1 p′. Then, the first

step of OneKeyPathMinert,X(c, τ) is the same algorithm as depicted in Algorithm 3
with U , q, and ≺1, replaced by Ukey, qkey

τ , and ≺key
1 , respectively. The second step

in OneKeyPathMinert,X(c, τ) retains, from all of the returned key paths p, those for
which (c, τ, (p)) is consistent with respect to X employing the algorithm of Theorem 4.6.
A duplicate elimination step similar to the one of the previous section is performed as
well.

Example 5.8. When considering the context (order, qorder) and the target path
.//book, the one-key path miner will generate candidate paths starting from the leaf
paths in the prefix tree:

{./quantity, ./title, ./year, ./price}.
None of these is found inconsistent by either (C1) or (C2), nor by the XML document
itself (see Figure 1). This is because all of them appear exactly once. But, after the
XSD consistency check, the path ./year is removed. Indeed, when we inspect the XSD
more closely (see Example 3.2), we see that year is optional. This means there are
XML documents that satisfy the XSD, but for which the key is inconsistent. In the next
iterations, the algorithm will generate more general paths by applying the converse
specialization relation, as described earlier. In this case, paths such as ./* will violate
the consistency requirement, while paths of the form .//quantity are equivalent to
their nondescendant counterparts. The final output of this phase is therefore:

{./quantity, ./title, ./price}.

5.4. Minimal Key Path Set Miner
At this point, we have computed the maximal set S for which every p ∈ S, (c, τ, (p))
is consistent with respect to X. Next, we are looking for minimal and meaningful sets
P ⊆ S such that t |= (c, τ, P), that is, such that (c, τ, P) is a key for t. Note that such a
set P can be trivially converted to a sequence to satisfy the definition of an XML key
as defined in Section 3.3.

We capitalize on existing relational techniques for mining functional dependen-
cies (e.g., [Bitton et al. 1989; Mannila and Räihä 1989, 1994]). To this end, we define a
relation RS,t with the schema

(CID, TID, p1, p2, . . . , p|S|),
where CID and TID are columns for the selected context nodes and target nodes,
respectively, and every pi corresponds to the unique Data value selected by the corre-
sponding key path pi. Then, (v, u, ō) ∈ RS,t if and only if v ∈ CNodest(c), u ∈ τ (t, v) and
recordS(t, u) = ō. Now, it follows that t |= (c, τ, P) iff

CID, p1, p2, . . . , pn→ TID

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

28:40 M. Arenas et al.

Table III. Data Table for Key
((order, qorder), .//book, {./title, ./price, ./quantity})

and the XML Document in Figure 1

CID TID title price quantity
o1 b1 Movie analysis 5.63 63
o1 b2 Programming intro 6.72 63
o2 b3 Programming intro 5.63 150

is a functional dependency in RS,t for P = (p1, . . . , pn). We can now plug in any existing
functional dependency discovery algorithm.

Example 5.9. From previous phases we obtain the following consistent candidate
key:

((order, qorder), .//book, {./title, ./price, ./quantity}),
yielding the relation in Table III. We observe that

CID, title→ TID,

CID, price→ TID,

CID, quantity ,→ TID,

and can hence derive the final XML keys for the considered context and target path as

((order, qorder), .//book, (./title)),
((order, qorder), .//book, (./price)).

6. EXPERIMENTS
In this section, we analyse the performance of different parts of the mining algorithm
and also look at different optimizations to understand their impact on the execution
time and number of derived keys.

For our experiments, we use a corpus of 90 high-quality XML documents and as-
sociated XSDs obtained from Grijzenhout and Marx [2010]. The input can therefore
be seen as 90 pairs, each consisting of a unique XML document and a unique XSD.
The maximal and average number of elements occurring in documents is 91K and 5K,
respectively, while the maximal and average number of elements occurring in XSDs is
532 and 52, respectively. All experiments are with respect to to this corpus and were
run on a 3 GHz Mac Pro with 2GB of RAM. In all experiments, we set kmax to 4 for
target paths and to 2 for key paths, unless explicitly mentioned otherwise.

Choosing constants. We need to determine meaningful values for kmax and the support
threshold. In this section we derive suitable bounds. To determine kmax, we examine the
distribution of the target paths’ lengths. To this end, we generated for all documents
the set of target paths up to length 10, having a minimal support of 1, that is, each
target path must select at least one node in the XML document. Already 88.03% of
the (canonical) target paths have a length up to 4, and 96.39% up to 6. But more im-
portantly, when looking at the removal rates from canonization (removal of equivalent
target paths) in Table IV, we see that larger paths have a much higher removal rate.
For example, for length-6 paths, 98.35% are covered by canonical paths of length 6 or
smaller. This means that, especially for larger path lengths, a significant portion of the
candidate target paths are superfluous. The latter is exemplified in Figure 6, which
shows the distribution of the target path length before and after canonization. This
huge amount of unnecessarily generated paths motivates us to pick 2 or 4 as values for

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

Discovering XSD Keys from XML Data 28:41

Table IV. Fraction of Target Paths Removed After a
Path Equivalence Test (without a schema)

length target paths canonical rem. rate
1 10974 3799 65.38%
2 17500 3344 80.89%
3 21929 2318 89.43%
4 27212 1584 94.18%
5 27379 784 97.14%
6 29771 491 98.35%
7 28942 280 99.03%
8 29178 170 99.42%
9 24349 73 99.70%

10 21492 28 99.87%
Total 241105 15250 93.67%

Table V. Fraction of Target Paths Removed After a
Path Equivalence Test (without a schema)

length key paths canonical rem. rate
1 1505 681 54.75%
2 638 130 79.62%
3 421 38 90.97%
4 436 20 95.41%

Fig. 6. Spread of the target paths and their canon-
ical versions for a support threshold of 1 and a max-
imal length of 10.

Fig. 7. Total amount of target paths found for sup-
port thresholds 1, 2, 10, and 50 and a maximal
length of 6.

kmax. Finally, we think that, together with all possible contexts, paths of length up to 4
will provide enough freedom for selecting nodes in the XML document.

For key paths, we make similar observations. An inspection of the percentage of key
paths that are pruned away using path equivalence reveals the numbers in Table V.
These observations motivate us to restrict to maximal key path lengths of 2 or 4.

Next, we derive a suitable value for the support threshold. In Figure 7, we see the
effects of an increasing support threshold on the number of target paths and on the
number of canonical target paths. For larger values, the number of target paths passing
the support threshold stabilizes quickly. This indicates that a large number of paths
only select a few target nodes and that even small support thresholds will prune away
significant parts of the XML key search space. To decide on a good support value, we
should strike a balance between removing paths with low support while still keeping
paths that select a significant portion of small documents. Indeed, small documents
can yield low support values for a large portion of paths. For this reason, we mostly
use support values of 2 and 10.

Finally, based on the observations made, we may already conclude that path equiva-
lence without a schema, in conjunction with our canonisation algorithm, is an effective
way of avoiding an explosion of paths.

Prefix tree. As different parts of the algorithm can avoid access to the input document
t by operating directly on PT(t), it is instrumental to investigate the compression rate
of PT(t) over t. Figure 8 plots the number of nodes in documents versus the number of
nodes in the corresponding prefix trees. Note the scale is logarithmic. In essence, every

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

28:42 M. Arenas et al.

Fig. 8. Number of document nodes versus number of nodes in prefix trees. The prefix trees are considerably
smaller than their full-sized counterparts.

document is compressed to a prefix tree with at most 200 nodes, even large documents
containing up to 91K nodes.

Contexts. A key φ = (c, τ, P) consists of three interdependent components: target
paths need only be considered with respect to a context, and key paths need only be
considered with respect to a context and a target path. To avoid an explosion of the
size of the search space, it is paramount to reduce the number of considered contexts,
target paths, and key paths. We next assess the effectiveness of the algorithm in this
respect.

We start with the number of contexts considered by the algorithm. An analysis
comparing the number of contexts allowed by XSDs with those actually used in the XML
documents shows that, for 40% of the documents, all allowable contexts materialize in
the corresponding XML documents, that is, there is no improvement as no allowable
context can be omitted. Nevertheless, it appears that this mostly happens for smaller
XSDs. Indeed, the total sum of allowable contexts over all 90 documents is 4,639, while
the total sum of contexts found in actual documents is 2,217, indicating that over the
complete dataset 52% of all possible contexts do not have to be considered. Keeping in
mind that every context that can be removed in this step eliminates a call to the target
path and key path miner underlines the effectiveness of context search driven by the
XML data at hand.

Target paths. Next, we discuss the behavior of the target path miner when the
support threshold N equals 10. The results are illustrated in Figure 9 (cases with
kmax = 5 and/or lower support threshold were also tested but are similar and therefore
not shown). For presentation purposes, the x-axis enumerates all document-XSD pairs
increasingly ordered by the size of the XSD. The figure then shows, per pair, the
number of candidate, supported, and nonequivalent derived target paths. Its purpose
is to provide a visual inspection of the considered quantities on a per-document basis.
By candidate target paths we mean those that occurred in a candidate set Ci during
the execution of Algorithm 3, nonequivalent target paths are those which remain after
duplicate elimination (as explained in Section 5.2). The number of possible target paths
to consider (that is, the cardinality of the search space U times the number of allowable
contexts) is not shown as the target path miner only considers a small fraction thereof
(to be precise, only 3% on average). Furthermore, on average, only 7% of all candidate
target paths turn out to be supported and of all supported paths only 27% remain after

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

Discovering XSD Keys from XML Data 28:43

Fig. 9. Behavior of the target path miner. Number of candidate, supported, and nonequivalent target paths
per document for kmax = 4 and support threshold of 10.

Fig. 10. Behavior of one-key path miner for support threshold 10, max target path length 4, and max key
path length 2.

duplicate elimination. To get a feeling for the magnitude of the reduction in Target
Paths (TPs) provided by the algorithm, Table VI shows the absolute numbers, which
are summed up over the whole dataset of document-XSD pairs.

One-key paths. Figure 10 provides a visual interpretation of the reduction in number
of key paths by the consecutive steps of the one-key path miner as described in Sec-
tion 5.3. Again, for presentation purposes, the x-axis enumerates all document-XSD
pairs ordered increasingly by the number of resulting candidate key paths. Specifically,
the figure plots on a per-document basis the following numbers: candidate key paths,
paths for which the inconsistency test fails on the prefix tree, paths that are consis-
tent on the document, and paths consistent with respect to the XSD. We first discuss
the average improvement on a per-document basis. Specifically, on average, 39% of
candidate paths are inconsistent over the prefix tree. This means that, for 61% of the
remaining key paths, consistency needs to be tested on the document. On average, only
6% of key paths are consistent with respect to the document, and of these 68% turn
out to be consistent with respect to the XSD. Table VII shows the absolute numbers

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

28:44 M. Arenas et al.

Table VI. Number of Target Paths
in the Search Space and Those

that are Effectively Considered in
Different Stages of the Target

Path Miner

possible TPs 2.4× 1011

candidate TPs 6.7× 106

supported TPs 8.4× 104

unique TPs 1.3× 104

The values shown are summed
up over the entire dataset.

Table VII. Number of Key Paths (KPs) that are
Effectively Considered in Different Stages of

the One-Key Path Miner

candidate KPs 48144
inconsistent KPs on prefix tree 29190
consistent KPs on document 484
consistent KPs on XSD 288

The values shown are summed up over the
entire dataset.

summed up over the whole dataset of document-XSD pairs, to give an indication of the
effectiveness of the different stages of the one-key path miner.

It is interesting to observe that on the considered sample of real-world documents,
consistency on the document does not always imply consistency with respect to the
associated XSD. Specifically, Table VII shows that, overall, only roughly 60% of key
paths consistent on documents are consistent on the XSD as well.

Keys. Next, we discuss the keys returned by our algorithm. We use the hypergraph
transversal algorithm to mine relational functional dependencies as, for instance, de-
scribed in Mannila and Räihä [1991], but any such algorithm can be readily plugged
in. We consider keys with target path length at most 4 and key path length at most 2.
In the following, we refer to testing the consistency of a key with respect to its XSD,
that is, by applying the algorithm of Theorem 4.6, as the schema consistency test.
Tables VIII and IX then gather some statistics of discovered keys, both without and
with the schema consistency test. First of all, it can be observed that not every doc-
ument contains a key with the required support: only 30% and 16% of all documents
using support 10 and 100, respectively (Table VIII). The latter might seem strange at
first sight, but note that not all XML documents are in fact databases and that the
requirement for a key to qualify (recall, Definition 3.4) is a severe one. Indeed, even
lowering the support threshold to a value of two (experiment not shown here) only pro-
vides a key for 60% of the documents but, of course, a key with support two is not very
relevant. We note that the average support for discovered keys in this section is 404
and 612 for support thresholds equal to 10 and 100, respectively, while the maximum
support encountered is 2011, indicating that the discovered keys indeed cover a large
number of elements.

The figures in the two tables nicely illustrate the effectiveness of schema consistency
as a quality measure. Indeed, without schema consistency, Table VIII shows that 107
and 54 keys are derived for support thresholds 10 and 100, respectively. Interestingly,
in both cases there is a document with a rather large number of keys: 23, to be specific.
But after the schema consistency test, each of these keys is removed as they all contain
a key path that selects elements declared optional in the schema. Of course, one could
debate about whether the schema is actually always correct or may be too liberal. One
could always opt to offer keys that do not pass schema consistency to the user. However,
after an inspection of the derived keys from our corpus, it becomes apparent that in
many cases keys rejected by the schema are probably not keys at all. As an illustrative
example, consider the following three derived keys (all with support 340, and where
root refers to the root context).

(root, ./Products, (./ID))
(root, ./Products, (./Other Information, ./Catalogue-Name))
(root, ./Products, (./Type, ./Other Information))

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

Discovering XSD Keys from XML Data 28:45

Table VIII. Statistics of Mined Keys for Support
Thresholds 10 and 100 Without the Requirement
to be Consistent with Respect to the Associated

XSD

sup10 sup100
derived keys 107 54
docs with keys 27 15
avg nr. of keys per doc 4 3.6
max nr. of keys per doc 23 23
avg nr. of key paths 1.3 1.3
max key nr. of key paths 2 2

Table IX. Statistics of Mined Keys for Support
Thresholds 10 and 100 With the Requirement to

be Consistent with Respect to the Associated
XSD

sup10 sup100
derived keys 43 16
docs with keys 19 10
avg nr. of keys per doc 2.2 1.6
max nr. of keys per doc 9 4
avg nr. of key paths 1.3 1.2
max key nr. of key paths 2 2

After the schema consistency test, only the first key remains. In this case, it should
be clear that the second and third keys are not accurate but are glitches in the data.
Therefore, one could say that the reduction from 107 to 43 and from 54 to 16 keys
in Tables VIII and IX actually improves the quality at the expense of lowering the
quantity, which, in our opinion, can be seen as a good thing as most data mining
problem suffer an explosion in derived patterns.

Quality. It remains to discuss the quality of the keys. When the provided schema
is accurate, the schema consistency test as discussed previously, provides a quality
criterion in its own. A second quality criterion can be the high support of derived keys:
as mentioned earlier, the found support of derived keys is on average 404 and 612
for support thresholds equal to 10 and 100, respectively, while the maximum support
encountered is 2011. Furthermore, when inspecting found keys it appeared that in
many cases keys select elements whose name contains “ID”.

We finish with a discussion on implication of keys. Usually, in key discovery, the goal
is to find a minimal set of keys, called cover, from which all other keys can be derived. For
instance, to this end Grahne and Zhu [2002] make use of the inference algorithms for
XML keys investigated and shown polynomially computable by Buneman et al. [2003].
Unfortunately, Theorem 4.32 shows that key implication in the presence of a schema
is EXPTIME-hard. Still, there is opportunity to detect duplicate keys. For instance, the
next pair of discovered keys turn out to be equivalent (both with support 90).

((State: 188,Symbol: ConstraintID),./*,(./*))
((State: 167,Symbol: PureOrMixtureData), ./Constraint/ConstraintID/*,(./*))

ConstraintID can only occur under a Constraint element. We can therefore consider
the keys equivalent as they select precisely the same set of target nodes.

Running time. We next discuss the running time of the algorithm. Of course, the
previous sections have already illustrated how the different mining steps succeed in
reducing the number of considered contexts, target paths, and key paths and how
every such reduction induces a gain in speed. Figure 12 gives insight on the overall
running time. Here, we can see that a large fraction of the time is taken up by the
schema consistency test. Furthermore, Figure 11 gives an indication of the proportion
of time taken by the schema consistency test with respect to the overall running time.
For presentation purposes, the x-axis enumerates all document-XSD pairs ordered
increasingly by the time required for the schema consistency test. Note that the figure
does not imply an exponential growth of the running time. In fact, as the x-axis does
not correspond to a quantity, no inference can be made about the asymptotic growth of
the running time.

To get more insight on what part of the input controls the running time, we checked
several metrics of the data and the schema’s:

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

28:46 M. Arenas et al.

Fig. 11. Part of the overall running time spent
on the schema consistency test; support threshold
2, max target path length 2, and max key path
length 2.

Fig. 12. Boxplots indicating average running times
for schema consistency by itself, the entire mining
algorithm, and mining without schema consistency;
support threshold 2, max target path length 2, and
max key path length 2, The plots presented use
1.5× the inter-quartile range for determining the
whiskers. The black dots are outliers, each depict-
ing a document-XSD pair.

—XML metrics as the number of nodes, depth, average children, number of labels,
number of leafs, and number of prefix tree nodes;

—XSD metrics as the number of labels, number of states, to and number of contexts.

For the target miner, we found the number of nodes in the prefix tree to be correlated to
the running time and the number of target paths. This is as expected, since the prefix
tree is used for support calculation and equivalence tests; both are used continuously
during in this part. For the key miner, we found that, without XSD consistency tests,
the same correlation is observed. Also, there is a correlation between the number of
labels used in the document and the running time. Sadly, none of these metrics showed
a clear connection to the running time when XSD consistency is used. We stress that
key discovery is not a time-critical task and that the algorithm only has to be run once
for an XML document and XSD. Nevertheless, the figures also show that the most room
for improvement lies within a speedup of the schema consistency test as opposed to
other components of the algorithm.

Optimizations. The execution of the algorithm can be tailored by switching several
optimizations on or off. In this section, we take a look at some key optimizations and
their effect on the running time.

We first focus on optimizations of the target miner. One of the most important opti-
mizations is the duplicate elimination as described in Section 5.2. We consider three
options: (1) no duplicate elimination; (2) duplicate elimination without a schema; and
(3) using duplicate elimination with a schema. Figure 13 shows the running times for
each of these, per document, ordered by (2). Option (1) is the fastest in almost every
case, while (3) is the slowest in almost every case, sometimes even by several orders of
magnitude. Notice that the time for options (2) and (3) is bounded by 10 seconds.

Although (1) may seem the best option for the target miner, it will produce a very
large set of target paths (see the preceding), each of them invoking a new run of the key
path miner. Figure 14 shows the running time of the key miner for the same documents,
this time ordered by the default key miner time. When we compare the default time
to the time where duplicate elimination of the target miner is switched off, we see the
running time increase a lot, sometimes even by an order of magnitude. Note that the key
path miner typically takes up a lot more time, whence it is advised to retain the
duplicate elimination check (2).

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

Discovering XSD Keys from XML Data 28:47

Fig. 13. Per-document running time of equivalence
optimizations in the target miner; XSD consistency
off, support threshold 10, max target path length 4.

Fig. 14. Per-document running time obtained by
switching off different optimizations of the key path
miner; support threshold 2, max target path length
2, max key path length 2.

As we have seen before, the XSD consistency test takes up a large portion of the
running time. When switching this test off and resorting to XML consistency, we
see that the running time improves by several orders of magnitude (Figure 14). Because
of the applicability of the XSD consistency measure as a quality measure, however, we
conclude that future work on the key miner software should make optimizing this part
a priority.

7. DISCUSSION
In this article, we initiated a fundamental study of properties of W3C XML keys in the
presence of a schema and introduced an effective novel key mining algorithm leveraging
on the formalism of levelwise search and on algorithms for the discovery of functional
dependencies in the relational model.

A number of interesting issues remain open and require further investigation. The
most direct one is to close the gaps between some of the obtained lower and upper
bounds. It would be interesting to investigate tractable subcases, especially with re-
spect to key implication. An observed bottleneck of the proposed approach is to check
consistency of a derived key with respect to the associated schema, even though the
number of keys that have to be tested is greatly reduced by testing for inconsistency
on the XML document, it should be investigated how schema consistency can be ac-
celerated. This would require advances in string and tree automata theory. Another
approach would be to try to find fast heuristic algorithms, or to study the problem for
subclasses of XSDs.

Another possible direction would be to investigate how the mining framework could
be extended to top-level union in keys. It would be especially important to avoid an
explosion of the size of the search space. The latter would also require to find heuristics
for consistency testing in the presence of disjunction and a schema, as this problem is
CONP-hard.

It would also be interesting to see how the present framework can be extended to
discover approximate keys. For this, we need a measure f over multisets that expresses
how closely a multiset resembles a set. Then the confidence of the key φ = (c, τ, P) can,
for instance, be obtained by aggv∈CNodest(c) f ({recordP(u) | u ∈ τ (t, v)}), where agg is an
aggregate operator (as, e.g., sum). Our framework would then allow to plug in any
algorithm for deriving relational approximate functional dependencies.

ELECTRONIC APPENDIX
The electronic appendix to this article can be accessed in the ACM Digital Library.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

28:48 M. Arenas et al.

REFERENCES
Serge Abiteboul, Yael Amsterdamer, Daniel Deutch, Tova Milo, and Pierre Senellart. 2012. Finding optimal

probabilistic generators for XML collections. In Proceedings of the 15th International Conference on
Database Theory (ICDT’12). ACM Press, New York, 127–139.

Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases. Addison-Wesley.
Marcelo Arenas, Jonny Daenen, Frank Neven, Martin Ugarte, Jan Van den Bussche, and Stijn

Vansummeren. 2013. Discovering XSD keys from XML data. In Proceedings of the ACM SIGMOD
International Conference on Management of Data (SIGMOD’13). 61–72.

Marcelo Arenas, Wenfei Fan, and Leonid Libkin. 2002. What’s hard about XML schema constraints? In Pro-
ceedings of the 13th International Conference on Database and Expert Systems Applications (DEXA’02).
Lecture Notes in Computer Science, vol. 2453, Springer, 269–278.

Denilson Barbosa and Alberto O. Mendelzon. 2003. Finding id attributes in XML documents. In Proceedings
of the 1st International XML Database Symposium (XSym’03). Lecture Notes in Computer Science,
vol. 2824, Springer, 180–194.

Geert Jan Bex, Wouter Gelade, Wim Martens, and Frank Neven. 2009. Simplifying XML schema: Effortless
handling of nondeterministic regular expressions. In Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD’09). 731–744.

Geert Jan Bex, Wouter Gelade, Frank Neven, and Stijn Vansummeren. 2010a. Learning deterministic regular
expressions for the inference of schemas from XML data. ACM Trans. Web 4, 4.

Geert Jan Bex, Frank Neven, Thomas Schwentick, and Stijn Vansummeren. 2010b. Inference of concise
regular expressions and dtds. ACM Trans. Database Syst. 35, 2.

Geert Jan Bex, Frank Neven, and Stijn Vansummeren. 2007. Inferring XML schema definitions from XML
data. In Proceedings of the 33rd International Conference on Very Large Data Bases (VLDB’07). 998–1009.

Geert Jan Bex, Frank Neven, and Stijn Vansummeren. 2008. SchemaScope: A system for inferring and
cleaning XML schemas. In Proceedings of the ACM SIGMOD International Conference on Management
of Data (SIGMOD’08). 1259–1262.

Dina Bitton, Jeffrey Millman, and Solveig Torgersen. 1989. A feasibility and performance study of depen-
dency inference. In Proceedings of the International Conference on Data Engineering (ICDE’89). 635–641.

Henrik Björklund, Wim Martens, and Thomas Schwentick. 2013. Validity of tree pattern queries with
respect to schema information. In Proceedings of the 38th International Symposium on Mathematical
Foundations of Computer Science (MFCS’13). Lecture Notes in Computer Science, vol. 8087, Springer,
171–182.

Mikolaj Bojanczyk. 2008. Tree-walking automata. In Proceedings of the 2nd International Conference on
Language and Automata Theory and Applications (LATA’08). Lecture Notes in Computer Science,
vol. 5196, Springer, 1–2.

Anne Bruggemann-Klein and Derick Wood. 1998. One-unambiguous regular languages. Inf. Comput. 140, 2,
229–253.

Peter Buneman, Susan B. Davidson, Wenfei Fan, Carmem S. Hara, and Wang Chiew Tan. 2002. Keys for
XML. Comput. Netw. 39, 5, 473–487.

Peter Buneman, Susan B. Davidson, Wenfei Fan, Carmem S. Hara, and Wang Chiew Tan. 2003. Reasoning
about keys for XML. Inf. Syst. 28, 8, 1037–1063.

Stanislav Fajt, Irena Mlynkova, and Martin Necasky. 2011. On mining xml integrity constraints. In Proceed-
ings of the 6th IEEE International Conference on Digital Information Management (ICDIM’11). 23–29.

Wenfei Fan and Leonid Libkin. 2002. On XML integrity constraints in the presence of dtds. J. ACM 49, 3,
368–406.

Minos N. Garofalakis, Aristides Gionis, Rajeev Rastogi, Sridhar Seshadri, and Kyuseok Shim. 2003. XTRACT:
Learning document type descriptors from XML document collections. Data Min. Knowl. Discov. 7, 1, 23–
56.

Gösta Grahne and Jianfei Zhu. 2002. Discovering approximate keys in XML data. In Proceedings of the
International Conference on Information and Knowledge Management (CIKM’02). 453–460.

Steven Grijzenhout and Maarten Marx. 2010. University of amsterdam XML web collection. http://data.
politicalmashup.nl/sgrijzen/xmlweb/.

Sven Hartmann and Sebastian Link. 2009. Efficient reasoning about a robust XML key fragment. ACM
Trans. Database Syst. 34, 2.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. 2003. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

Discovering XSD Keys from XML Data 28:49

Donald E. Knuth, James H. Morris Jr., and Vaughan R. PRATT. 1977. Fast pattern matching in strings.
SIAM J. Comput. 6, 2, 323–350.

Heiki Mannila and Kari-Jouko Räihä. 1989. Practical algorithms for finding prime attributes and testing
normal forms. In Proceedings of the ACM Symposium on Principles of Database Systems (PODS’89).
ACM Press, New York, 128–133.

Heikki Mannila and Kari-Jouko Räihä. 1991. The Design of Relational Databases. Addison-Wesley.
Heikki Mannila and Kari-Jouko Räihä. 1994. Algorithms for inferring functional dependencies from rela-

tions. Data Knowl. Engin. 12, 1, 83–99.
Heikki Mannila and Hannu Toivonen. 1997. Levelwise search and borders of theories in knowledge discovery.

Data Min. Knowl. Discov. 1, 3, 241–258.
Wim Martens, Frank Neven, and Thomas Schwentick. 2007. Simple off the shelf abstractions for XML

schema. SIGMOD Rec. 36, 3, 15–22.
Wim Martens, Frank Neven, Thomas Schwentick, and Geert Jan Bex. 2006. Expressiveness and complexity

of XML schema. ACM Trans. Database Syst. 31, 3, 770–813.
Makoto Murata, Dongwon Lee, Murali Mani, and Kohsuke Kawaguchi. 2005. Taxonomy of XML schema

languages using formal language theory. ACM Trans. Internet Technol. 5, 4, 660–704.
Martin Necaský and Irena Mlýnkova. 2009. Discovering XML keys and foreign keys in queries. In Proceedings

of the ACM Symposium on Applied Computing (SAC’09). ACM Press, New York, 632–638.
Raghu Ramakrishnan and Johannes Gehrke. 2003. Database Management Systems 3rd Ed. McGraw-Hill.
Helmut Seidl. 1990. Deciding equivalence of finite tree automata. SIAM J. Comput. 19, 3, 424–437.
Richard Edwin Stearns and Harry B. Hunt Iii. 1985. On the equivalence and containment problems for

unambiguous regular expressions, regular grammars and finite automata. SIAM J. Comput. 14, 3,
598–611.

Larry J. Stockmeyer and Albert R. Meyer. 1973. Word problems requiring exponential time: Preliminary
report. In Proceedings of the 5th Annual ACM Symposium on Theory of Computing (STOC’73). 1–9.

Peter Van Emde Boas. 1997. The convenience of tilings. In Complexity, Logic, and Recursion Theory, Marcel
Dekker, 331–363.

W3C. 2004. XML Schema Part 1: Structures 2nd Ed. http://www.w3.org/TR/xmlschema-1/#cIdentity-
constraint

Cong Yu and H. V. Jagadish. 2008. XML schema refinement through redundancy detection and normalization.
VLDB J. 17, 2, 203–223.

Received October 2013; revised April 2014; accepted June 2014

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 28, Publication date: December 2014.

