
15

On the Expressive Power of Query Languages for Matrices

ROBERT BRIJDER, Hasselt University, Belgium

FLORIS GEERTS, University of Antwerp, Belgium

JAN VAN DEN BUSSCHE and TIMMY WEERWAG, Hasselt University, Belgium

We investigate the expressive power of MATLANG, a formal language for matrix manipulation based on
common matrix operations and linear algebra. The language can be extended with the operation inv for
inverting a matrix. In MATLANG + inv,we can compute the transitive closure of directed graphs, whereas we
show that this is not possible without inversion. Indeed, we show that the basic language can be simulated in
the relational algebra with arithmetic operations, grouping, and summation. We also consider an operation
eigen for diagonalizing a matrix. It is defined such that for each eigenvalue a set of mutually orthogonal
eigenvectors is returned that span the eigenspace of that eigenvalue. We show that inv can be expressed in
MATLANG + eigen. We put forward the open question whether there are Boolean queries about matrices,
or generic queries about graphs, expressible in MATLANG + eigen but not in MATLANG + inv. Finally, the
evaluation problem for MATLANG + eigen is shown to be complete for the complexity class ∃R.

CCS Concepts: • Information systems → Query languages; • Theory of computation → Database

query languages (principles); • Computing methodologies → Linear algebra algorithms;

Additional Key Words and Phrases: Matrix query languages, relational algebra with aggregates, query eval-
uation problem, graph queries

ACM Reference format:

Robert Brijder, Floris Geerts, Jan Van Den Bussche, and Timmy Weerwag. 2019. On the Expressive Power of
Query Languages for Matrices. ACM Trans. Database Syst. 44, 4, Article 15 (October 2019), 31 pages.
https://doi.org/10.1145/3331445

1 INTRODUCTION

In view of the importance of large-scale statistical and machine learning (ML) algorithms in the
overall data analytics workflow, database systems are in the process of being redesigned and ex-
tended. The aim is to allow for a seamless integration of ML algorithms and mathematical and
statistical frameworks, such as R, SAS, and MATLAB, with existing data manipulation and data
querying functionality [7, 12, 15, 31, 33, 39, 44, 48, 49, 52, 60, 69]. In particular, data scientists of-
ten use matrices to represent their data, as opposed to using the relational data model, and create
custom data analytics algorithms using linear algebra, instead of writing SQL queries. Here, linear
algebra algorithms are expressed in a declarative manner by composing basic linear algebra con-
structs. Examples of such constructs are: matrix multiplication, matrix transposition, element-wise

Authors’ addresses: R. Brijder, J. Van den Bussche, and T. Weerwag, Hasselt University, Martelarenlaan 42, 3500 Hasselt,
Belgium; emails: {robert.brijder, jan.vandenbussche}@uhasselt.be; F. Geerts, University of Antwerp, Middelheimlaan 1, 2020
Antwerp, Belgium; email: floris.geerts@uantwerpen.be.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0362-5915/2019/10-ART15 $15.00
https://doi.org/10.1145/3331445

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 15. Publication date: October 2019.

https://doi.org/10.1145/3331445
mailto:permissions@acm.org
https://doi.org/10.1145/3331445

15:2 R. Brijder et al.

operations on the entries of matrices, solving nonsingular systems of linear equations (matrix
inversion), diagonalization (eigenvalues and eigenvectors), singular value decomposition, just to
name a few. The main challenges from a database system’s perspective are to ensure scalability.
We identify two general approaches in this direction: (i) to provide physical data independence
and (ii) to provide optimizations. The former is to relieve users from the manual handling of data
distribution, communication, fault tolerance, among other things. The second is to compile linear
algebra algorithms into efficient programs hereby mimicking cost-based query optimization used
to evaluate SQL queries. We refer to [62] for an overview of the different systems addressing these
challenges.

In this context, the following natural questions arise: Which linear algebra constructs need to be
supported to perform specific data analytical tasks? Does the additional support for certain linear
algebra operations increase the overall functionality? When are two linear algebra algorithms
equivalent (perform the same task)? Such questions have been extensively studied for classical
query languages (fragments and extensions of SQL) in database theory and finite model theory [1,
38]. Indeed, the questions raised all relate to the expressive power of query languages. In this article,
we enroll in the investigation of the expressive power of matrix query languages.

As a starting point, we focus on matrices and matrix query languages alone, leaving the study
of the expressive power of languages that operate on both relational data and matrices for future
work. Even this “matrix only” setting turns out to be quite interesting and challenging on its own.

To set the stage, we need to formally define what we mean by a matrix query language.
There has been work in finite model theory and logic to understand the capability of certain
logics to express linear algebra operations [18–20, 26, 29, 32]. In particular, the extent to which
fixpoint logics with counting and their extension with so-called rank operators can express linear
algebra has been considered. The motivation for that line of work is mainly to find a logical
characterization of polynomial-time computability and less so in understanding the expressive
power of specific linear algebra operations.

In this article, we take the opposite approach in which we define a basic matrix query language,
referred to as MATLANG, which is built up from basic linear algebra operations, supported by lin-
ear algebra systems such as R and MATLAB, and then closing these operations under composition.
Throughout this article, we consider matrices with entries in the complex field C, unless specified
otherwise. Let us have a sneak preview of MATLANG.

Example 1.1 (Google Matrix). Let A be the adjacency matrix of a directed graph (modeling the
Web graph) on n nodes numbered 1, . . . ,n. Let 0 < d < 1 be a fixed “damping factor”. Let ki denote
the outdegree of node i . For simplicity, we assume ki to be nonzero for every i . Then the Google
matrix [8, 11] of A is the n × n matrix G defined by

Gi, j = d
Ai j

ki
+

1 − d
n
.

To perform the calculation of G from A, we can formulate the following MATLANG expression:

apply[+](d � apply[/](X ,X · 1(X) · (1(X))∗),

(1 − d) � (apply[1/x]((1(X))∗ · 1(X))) � (1(X) · (1(X))∗)).

Let us unfold this expression to understand its meaning. The basic operations in MATLANG used
in this expression are: (i) a matrix variable, denoted byX , which is to be instantiated with the input
matrixA; (ii) matrix multiplication, denoted by “·”; (iii) matrix transposition, denoted by “∗”; (iv) the
one-vector, denoted by 1(·), returning the column vector with each entry equal to “1” and with
dimension equal to the number of rows of the input matrix; and (v) pointwise function applications,

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 15. Publication date: October 2019.

On the Expressive Power of Query Languages for Matrices 15:3

denoted by apply[f](·), whose semantics will be explained below. In this expression, we also find
the operation “�”. This is a shorthand notation for scalar multiplication. As we will see later in this
article, it can be expressed in terms of the basic operations in MATLANG.

Given this, the sub-expression 1(X) · (1(X))∗ will evaluate, whenX is assigned toA, to the n × n
matrix J in which every entry equals to one. Similarly, (1(X))∗ · 1(X), when X is assigned to A,

returns the dimension n of A. Furthermore, the result of apply[1/x]
(
(1(A))∗ · 1(A)

)
is obtained by

applying the function x �→ 1/x to every (non-zero) element in its input, in this case only to the
value n, resulting in 1/n. The second term in the Google matrix G is thus obtained by multiplying
J , as previously computed, by 1/n and 1 − d using scalar multiplication �.

We next consider the first term of G. The sub-expression apply[/](X ,X · 1(X) · (1(X))∗) eval-
uates, when A is assigned to X , to the n × n matrix B which holds Ai j/ki in entry (i, j). Indeed,
A · 1(A) · (1(A))∗ = A · J consists of the n × n-matrix K in which the ith row consists solely of the
number ki . The pointwise function application has now two arguments, X and X · 1(X) · (1(X))∗.
For every entry in these two inputs (Ai j and Ki j = ki) it applies the function (x ,y) �→ x/y. This
results in the matrix B. Finally, a scalar multiplication by d provides the first term in G. It remains
to sum up both terms to obtain G. This is done by a final pointwise function application mapping
each of its two input entries to the sum of those entries, using the function (x ,y) �→ x + y.

In the previous example, we actually used almost all basic operations (matrix variables, matrix
multiplication, transpose, one-vector, function applications) in MATLANG. Missing here is the
diagonalization operation (diag(·)) turning a column vector into a diagonal matrix. All six basic
linear algebra operations supported in MATLANG stem from “atomic” operations supported in
popular linear algebra packages. While many other operations are supported by these packages,
we feel that they are somewhat less atomic. We present more examples later on, showing that
MATLANG is indeed capable of expressing common matrix manipulations. In fact, we propose
MATLANG as an analog for matrices of the relational algebra for relations. With MATLANG as the
starting point, what can we say about its expressive power?

To answer this question, we relate MATLANG to the relational algebra with aggregates [37,
43], using a standard representation of matrices as relations. The only aggregate function that
is needed is summation. In fact, it turns out that MATLANG is already subsumed by aggregate
logic with only three nonnumerical variables. Conversely, MATLANG can express all queries from
graph databases (binary relational structures) to binary relations that can be expressed in first-
order logic with three variables. In contrast, the four-variable query asking if the graph contains a
four-clique, is not expressible. We note that the connection with three-variable logics has recently
been strengthened [23]. Indeed, it has been shown that two undirected graphs are indistinguish-
able by means of sentences in MATLANG if and only if they are indistinguishable by means of
sentences in the three-variable fragment of first-order logic with counting. A MATLANG sentence
here refers to an expression that always returns single (complex) numbers. We observe that as a
direct consequence from the locality of relational algebra with aggregates [43], it follows that the
transitive closure of graph is also not expressible in MATLANG given its adjacency matrix.

We thus see that, for example, when data analysts want to check for four-cliques in a graph, more
advanced linear algebra operations than those in MATLANG need to be considered when building
scalable linear algebra systems. Similarly, extracting information related to the connectivity of
graphs requires extending MATLANG. We consider two such extensions in this article:

• MATLANG + inv: The extension of MATLANG with an operation (inv) for inverting a ma-
trix. We show that MATLANG + inv is strictly more expressive than MATLANG. Indeed,
the transitive closure of binary relations becomes expressible. The possibility of reducing

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 15. Publication date: October 2019.

15:4 R. Brijder et al.

transitive closure to matrix inversion has been pointed out by several researchers [16, 17,
41, 57]. We show that the restricted setting of MATLANG suffices for this reduction to
Work.

• MATLANG + eigen: The extension of MATLANG with an operation (eigen) which returns
eigenvectors and eigenvalues. There are various ways to define this operation formally. Since
no unique set of eigenvectors exists, the eigen operation is intrinsically non-deterministic.
We show that the resulting language MATLANG + eigen can express inversion and this by
using a deterministic MATLANG + eigen expression (i.e., despite it using eigen, it always
deterministically returns the inverse of a matrix, if it exists). The argument is well known
from linear algebra, but our result shows that starting from the eigenvalues and eigenvec-
tors, MATLANG is expressive enough to construct the inverse. It once more attests that we
have defined an adequate matrix language for performing common matrix manipulations.

It is natural to conjecture that MATLANG + eigen is actually strictly more powerful than
MATLANG + inv in expressing, say, boolean queries about matrices. Proving this is an interest-
ing open problem.

We conclude the introduction by going back to our earlier question regarding the equivalence of
linear algebra algorithms. Here, one would like to know, at the very least, whether the equivalence

of linear algebra expressions is decidable. We answer this question affirmatively for expressions
in our most expressive matrix query language MATLANG + eigen. Related to this is the question
whether the evaluation of expressions in MATLANG + eigen is effectively computable. This may
seem like an odd question, since linear algebra computations are done in practice. These evalu-
ation algorithms, however, often use techniques from numerical mathematics [25], resulting in
approximations of the precise result. We are interested in the exact result.

We show that the input-output relation of an expression e in MATLANG + eigen, applied to
input matrices of given dimensions, is definable in the existential theory of the real numbers, by a
formula of size polynomial in the size of e and the given dimensions. Here, we encode complex
numbers in input matrices by pairs of real numbers. The existential theory of the reals is decidable;
actually, the full first-order theory of the reals is decidable [3, 5]. More specifically, the class of
problems that can be reduced in polynomial time to the existential theory of the reals forms a
complexity class on its own, known as ∃R [58, 59]. To situate ∃R among classical complexity
classes: It is known to contain NP (this follows easily from the definition of ∃R) and is contained in
PSPACE [14]. We thus place natural decision versions of the evaluation problem for MATLANG +

eigen in the complexity class ∃R (combined complexity). We obviously restrict ourselves in this
setting to pointwise function applications that are definable in the existential theory of the real
numbers.

We show, moreover, that there exists a fixed expression (data complexity) in MATLANG + eigen

for which the evaluation problem is ∃R-complete, even when restricted to input matrices with
integer entries. We remark that the ∃R-hardness proof heavily relies on the non-deterministic
character of the eigen operation. The precise complexity of the evaluation problem for determin-
istic MATLANG + eigen expressions is left open.

Organization of this Article. We discuss related work in Section 2 and introduce the syn-
tax, semantics, and type-checking system for MATLANG in Section 3. The expressive power of
MATLANG is considered in Section 4, followed by an investigation of the extensions MATLANG +

inv, in Section 5, and of MATLANG + eigen, in Section 6. The evaluation problem for expressions
in MATLANG + eigen is treated in Section 7. We compare the efficiency of computing the transi-
tive closure of graphs by means of specialized algorithms with the evaluation of the corresponding
MATLANG + inv expression in Section 8. Finally, in Section 9, we conclude this article.

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 15. Publication date: October 2019.

On the Expressive Power of Query Languages for Matrices 15:5

2 RELATED WORK

Programming languages to manipulate matrices trace back to the APL language [34]. Providing
database support for matrices and multidimensional arrays has been a long-standing research topic
[55], originally geared towards applications in scientific data management.

In [39], Lara is proposed as a domain-specific programming language written in Scala that pro-
vides both linear algebra (LA) and relational algebra (RA) constructs. This is done by introducing
three core types corresponding to bags, matrices, and vectors with various operations for each
type. This approach is taken one step further in [33] where it is shown that the RA operations and
a number of LA operations can be defined in terms of three core operations called Ext, Union,
and Join. The resulting language (although different from Lara of [39]) is also called Lara. Using
these three core operations, the RA operations and some LA operations can be combined in a sin-
gle language that can be implemented efficiently. Similarly to what we show in this article for the
language MATLANG, it seems that the expressive power of the language formed by Ext, Union,
and Join is subsumed by the relational algebra with aggregates.

Another relevant related work is the FAQ framework [2], which focuses on the project-join frag-
ment of the algebra for K-relations [28] (relations where the tuples are annotated with elements
from some commutative semiring K). The connection between MATLANG and the algebra for
K-relations is more deeply investigated in a forthcoming article [10]. Yet another related formal-
ism is that of logics with rank operators [18, 19, 26, 29, 32, 54]. These operators solve 0,1-matrices
over finite fields, and increase the expressive power of established logics over abstract structures.
In contrast, in this article, we are interested in queries on arbitrary matrices.

Modest changes to SQL in order to perform LA operations in a scalable way within relational
databases are proposed in [45]. In this way, various linear algebra operations are implemented
in an efficient way using the relational algebra. The exact scope of the linear algebra operations
that can be implemented in this way remains to be formally understood. More generally, various
systems are being developed in which relational and linear algebra functionalities are combined [7,
12, 15, 31, 33, 39, 44, 48, 49, 52, 60, 69].

In this vein, we investigate in this article the expressive power of common linear algebra oper-
ations, and we relate MATLANG to the relational algebra. While the previous work is focused on
showing that relational algebra (appropriately extended) can serve as a platform for supporting
large-scale linear algebra operations, the focus of our work here is complementary. Indeed, we
want to understand the precise expressive power of common linear algebra operations, as ade-
quately formalized in the language MATLANG and its extensions. In particular, we compare the
expressive power of matrix queries to that of relational queries.

A conference version of this article was presented at ICDT 2018 [9]. In this journal version,
we provide detailed proofs of all results and report on some preliminary experiments in which
we investigate the efficiency of computing the transitive closure of graph using linear algebra
operators.

3 MATLANG

We start by defining the language MATLANG in Section 3.1, provide its semantics in Section 3.2,
and conclude by describing a type-checking system for MATLANG expressions in Section 3.3.

3.1 Syntax of MATLANG Expressions

We assume a sufficient supply of matrix variables, which serve to indicate the inputs to expressions
in MATLANG. The syntax of MATLANG expressions is defined by the grammar:

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 15. Publication date: October 2019.

15:6 R. Brijder et al.

e ::= M (matrix variable)

| let M = e1 in e2 (local binding)

| e∗ (conjugate transpose)

| 1(e) (one-vector)

| diag(e) (diagonalization of a vector)

| e1 · e2 (matrix multiplication)

| apply[f](e1, . . . , en) (pointwise application, f ∈ Ω)

In the last rule, f is the name of a function f : C
n → C, where C denotes the complex numbers.

Formally, the syntax of MATLANG is parameterized by a repertoire Ω of such functions, but for
simplicity we will not reflect this in the notation. We will see various examples of MATLANG

expressions below.

Remark. As can be seen in the grammar, variables can also be introduced in let-constructs inside
expressions as a way to give names to intermediate results. This makes it easier to write expres-
sions. When considering MATLANG and its extension MATLANG + inv (to be defined in Section 5),
the let-construct is not an essential operation and can be easily eliminated from expressions. We
will see later, however, that it plays an important role when considering MATLANG + eigen (see
Section 6).

3.2 Semantics of MATLANG Expressions

In defining the semantics of the language, we begin by defining the basic matrix operations. Fol-
lowing practical matrix sublanguages such as those of R or MATLAB, we will work throughout
with matrices over the complex numbers. However, a real-number version of the language could
be defined as well. The semantics of the different operations is:

Transpose: If A is a matrix, then A∗ is its conjugate transpose. So, if A is an m × n matrix,
then A∗ is an n ×m matrix and the entry A∗i, j is the complex conjugate of the entry Aj,i .

One-Vector: If A is an m × n matrix, then 1(A) is the m × 1 column vector consisting of all
ones.

Diag: If v is an m × 1 column vector, then diag(v) is the m ×m diagonal square matrix with
v on the diagonal and zero everywhere else.

Matrix Multiplication: IfA is anm × n matrix and B is an n × p matrix, then the well-known
matrix multiplicationAB is defined to be them × p matrix where (AB)i, j =

∑n
k=1 Ai,kBk, j .

In MATLANG, we explicitly denote this as A · B.
Pointwise Application: If A(1), . . . ,A(n) are matrices of the same dimensions m × p, then

apply[f](A(1), . . . ,A(n)) is them × p matrix C where Ci, j = f (A(1)
i, j , . . . ,A

(n)
i, j).

Example 3.1. The operations are illustrated in Figure 1. In the pointwise application example, we
use the function−̇defined by x −̇y = x − y if x and y are both real numbers and x ≥ y, and x −̇y = 0
otherwise.

The formal semantics of MATLANG expressions is defined in a straightforward manner, as
shown in Figure 2. Expressions will be evaluated over instances where an instance I is a func-
tion, defined on a nonempty finite set var(I) of matrix variables, that assigns a matrix to each
element of var(I). Figure 2 provides the rules that allow to derive that an expression e , on an in-
stance I , successfully evaluates to a matrix A. We denote this success by e (I) = A. The reason why
an evaluation may not succeed can be found in the rules that have a condition attached to them.

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 15. Publication date: October 2019.

On the Expressive Power of Query Languages for Matrices 15:7

Fig. 1. Basic matrix operations of MATLANG.

Fig. 2. Big-step operational semantics of MATLANG. The notation I [M := A] denotes the instance that is

equal to I , except that M is mapped to the matrix A.

The rule for variables fails when an instance simply does not provide a value for some input vari-
able. The rules for diag, apply, and matrix multiplication have conditions on the dimensions of
matrices, that need to be satisfied for the operations to be well defined.

Example 3.2 (Scalars). As a first example, we show how to express scalars (elements in C). Ob-
viously, in practice, scalars would be part of the language. In this article, however, we are in-
terested in expressiveness, so we start from a minimal language (MATLANG) and then see what
is already expressible in this language. To express a scalar c ∈ C, consider the constant function
c : C→ C : z �→ c and the MATLANG expression defined as

let N = 1(M)∗ in apply[c](1(N)).

We overload notation a bit and also denote this expression by c . Regardless of the matrix assigned
to M , the expression c evaluates to the 1 × 1 matrix whose single entry equals the scalar c . We
remark that the expression c is actually equivalent to apply[c](1(1(M)∗)) in which we eliminated
the let-construct by plugging in the definition of N = 1(M)∗ into apply[c](1(N)). Let-constructs
can always be eliminated from MATLANG expressions in this way.

Example 3.3 (Scalar Multiplication). We can also express scalar multiplication of a matrix by a
scalar, i.e., the operation which multiplies every entry of a matrix by the same scalar. Indeed, let c
be a scalar and consider the MATLANG expression

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 15. Publication date: October 2019.

15:8 R. Brijder et al.

let O = 1(M) · c (M) · (1(M∗))∗ in apply[×](O,M),

where c is the scalar expression from the previous example. If M is assigned an m × n matrix A,
then c (A) returns the 1 × 1 matrix [c] and in variableO we compute them × n matrix where every
entry equals c . Then pointwise multiplication × which returns xy on input (x ,y) is used to do the
scalar multiplication of A by c . This example generalizes in a straightforward manner to

apply[×]
(
1(e2) · e1 · (1(e∗2))∗, e2

)
,

where e1 and e2 are MATLANG expressions such that e1 (I) is a 1 × 1-matrix for any instance I . It
should be clear that this expression evaluates to the scalar multiplication of e2 (I) by e1 (I) for any
I . We use e1 � e2 as a shorthand notation for this expression. For example, c � e2 represents the
scalar multiplication of e2 by the scalar c .

Example 3.4 (Google Matrix). We have already seen a MATLANG expression for computing the
Google matrix in Example 1.1. The previous example shows that the scalar multiplication � with
1/n and constants 1/n, d and 1 − d used in that expression is indeed expressible in MATLANG.

Example 3.5 (Diag on Matrices). In MATLANG, we only defined the operation diag on column
vectors. Linear algebra packages also allow the application of diag on square matrices. More specif-
ically, diag(A) for an n × n matrix A is defined as the column vector holding the diagonal entries
of A in its entries. We can easily express this in MATLANG, as follows:(

apply[×]
(
M, diag(1(M))

))
· 1(M).

Indeed, in this expression, we first perform pointwise multiplication of the input matrix with the
identity matrix to extract the entries on the diagonal, followed by the multiplication with the one
vector to return the desired column vector.

Example 3.6 (Minimum of a Vector). A less obvious example is the following: Let v =
(v1, . . . ,vn)∗ be a column vector of real numbers; we would like to extract the minimum from
v . This can be done as follows:

let V = v · 1(v)∗ in

let C =
(
apply[≤](V ,V ∗)

)
· 1(v) in

let N = 1(v)∗ · 1(v) in

let S = apply[=](C, 1(v) · N) in

let M = apply[1/x](S∗ · 1(v)) in M · v∗ · S
The pointwise functions applied are ≤, which returns 1 on (x ,y) if x ≤ y and 0 otherwise; =,
defined analogously; and the reciprocal function. The expression works as follows: In variable V ,
we compute a square matrix holding n copies of v . Then, in variable C, we compute the n × 1
column vector, where Ci counts the number of vj such that vi ≤ vj . If Ci = n, then vi equals the
minimum. Variable N computes the scalar n and column vector S is a selector where Si = 1 if vi

equals the minimum, and Si = 0 otherwise. Since the minimum may appear multiple times in v ,
we compute in M the inverse of its multiplicity. Finally, we sum the different occurrences of the
minimum in v and divide by the multiplicity.

The naive evaluation of the MATLANG expression in Example 3.6 yields a quadratic time al-
gorithm, whereas the minimum can clearly be computed in linear time. An analogous situation
occurs in SQL, where an explicit MIN function is present to avoid this problem. It is an interesting
problem to formally prove that the minimum of a set of ordered elements is not expressible in the

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 15. Publication date: October 2019.

On the Expressive Power of Query Languages for Matrices 15:9

Fig. 3. Type-checking MATLANG. The notation S[M := τ] denotes the schema that is equal to S, except

that M is mapped to the type τ .

relational algebra with order comparisons, without generating an intermediate result of quadratic
size.

3.3 Types and Schemas

We now introduce a notion of schema, which assigns types to matrix names, so that expressions
can be type-checked against schemas. We already remarked the need for this. Indeed, due to condi-
tions on the dimensions of matrices, MATLANG expressions are not well defined on all instances.
For example, if I is an instance where I (M) is a 3 × 4 matrix and I (N) is a 2 × 4 matrix, then the
expression M · N is not defined on I . The expression M · N ∗, however, is well defined on I .

Our types need to be able to guarantee equalities between numbers of rows or numbers of
columns, so that apply and matrix multiplication can be type-checked. Our types also need to be
able to recognize vectors, so that diag can be type-checked.

Formally, we assume a sufficient supply of size symbols, which we will denote by the letters α , β ,
γ . A size symbol represents the number of rows or columns of a matrix. Together with an explicit
1, we can indicate arbitrary matrices as α × β , square matrices as α × α , column vectors as α × 1,
row vectors as 1 × α , and scalars as 1 × 1. Formally, a size term is either a size symbol or an explicit
1. A type is then an expression of the form s1 × s2 where s1 and s2 are size terms. Finally, a schema

S is a function, defined on a nonempty finite set var(S) of matrix variables, that assigns a type to
each element of var(S).

The type-checking rules for expressions are shown in Figure 3. The figure provides the rules
that allow to infer an output type τ for an expression e over a schema S. To indicate that a type
can be successfully inferred, we use the notation S
 e : τ . When we cannot infer a type, we say e is
not well typed over S. For example, when S (M) = α × β and S (N) = γ × β , then the expression
M · N is not well typed over S. The expression M · N ∗, however, is well typed with output type
α × γ .

To establish the soundness of the type system, we need a notion of conformance of an instance
to a schema.

Formally, a size assignment σ is a function from size symbols to positive natural numbers. We
extend σ to any size term by setting σ (1) = 1. Now, let S be a schema and I an instance with
var(I) = var(S). We say that I is an instance of S if there is a size assignment σ such that for all
M ∈ var(S), if S (M) = s1 × s2, then I (M) is a σ (s1) × σ (s2) matrix. In that case, we also say that
Iconforms to S by the size assignment σ .

We now obtain the following obvious but desirable property:

Proposition 3.7 (Safety). If S
 e : s1 × s2, then for every instance I conforming to S, by size

assignment σ , the matrix e (I) is well defined and has dimensions σ (s1) × σ (s2).

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 15. Publication date: October 2019.

15:10 R. Brijder et al.

It is clear from the semantics and also from the type-checking rules that MATLANG operations
can only produce matrices with dimensions coming from the input matrices. Consequently, certain
operations supported by linear algebra packages such as the direct sum, the Kronecker product,
or tensor product fall outside the scope of our current formalism.

4 EXPRESSIVE POWER OF MATLANG

In this section, we relate MATLANG to standard relational query languages. In particular, we show
that MATLANG can be simulated in the relational algebra with aggregates (Section 4.2) and the
relational calculus with aggregates in which only three base variables are needed (Section 4.3).
This provides an easy way to implement MATLANG on top of a relational database, although
specific optimizations will still be required to make this scalable [45]. Our main interest in this
article, however, is to use these translations to show the limitations of MATLANG. In particular,
we use the locality of these relational languages to show that the transitive closure of an adjacency
matrix cannot be expressed in MATLANG and similarly, we use the simulation of MATLANG in the
relational calculus with aggregates to show that the existence of a four-clique cannot be detected
in MATLANG (Section 4.4).

4.1 Relational Representation of Matrices

We start by fixing our representation of matrices as relations. It is natural to represent an m × n
matrix A by a ternary relation

Rel2 (A) := {(i, j,Ai, j) | i ∈ {1, . . . ,m}, j ∈ {1, . . . ,n}}.

In the special case where A is an m × 1 matrix (column vector), A can also be represented by a
binary relation Rel1 (A) := {(i,Ai,1) | i ∈ {1, . . . ,m}}. Similarly, a 1 × n matrix (row vector) A can
be represented by Rel1 (A) := {(j,A1, j) | j ∈ {1, . . . ,n}}. Finally, a 1 × 1 matrix (scalar) A can be
represented by the unary singleton relation Rel0 (A) := {(A1,1)}. We remark that the relation rep-
resentation alone does not distinguish between row and column vectors. When carrying out the
translation of MATLANG into the relational algebra with aggregates below, we always know, how-
ever, whether we are dealing with a row or column vector based on the types of the MATLANG

expressions involved. We then manipulate the relations Rel1 (A) accordingly.
Note that, in MATLANG, we perform calculations on matrix entries, but not on row or column

indices. This fits well to the relational model with aggregates as formalized by Libkin [43]. In this
model, the columns of relations are typed as “base”, indicated by b, or “numerical”, indicated by n.
In the relational representations of matrices presented above, the last column is of type n and the
other columns (if any) are of type b. In particular, in our setting, numerical columns hold complex
numbers. We now rephrase our relational encoding more formally in this setting.

More formally, we assume a supply of relation variables, which, for convenience, we can take to
be the same as the matrix variables. A relation type is a tuple of b’s and n’s. A relational schema S
is a function, defined on a nonempty finite set var(S) of relation variables, that assigns a relation
type to each element of var(S).

To define relational instances, we assume a countably infinite universe dom of abstract atomic
data elements. It is convenient to assume that the natural numbers are contained in dom. We stress
that this assumption is not essential but simplifies the presentation. Alternatively, we would have
to work with explicit embeddings from the natural numbers into dom.

Let τ be a relation type. A tuple of type τ is a tuple (t (1), . . . , t (n)) of the same arity as τ , such
that t (i) ∈ dom when τ (i) = b, and t (i) is a complex number when τ (i) = n. A relation of type τ
is a finite set of tuples of type τ . An instance of a relational schema S is a function I defined on
var(S) so that I (R) is a relation of type S (R) for every R ∈ var(S).

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 15. Publication date: October 2019.

On the Expressive Power of Query Languages for Matrices 15:11

The matrix data model can now be formally connected to the relational data model, as follows.
Let τ = s1 × s2 be a matrix type. Let us call τ a general type if s1 and s2 are both size symbols; a
vector type if s1 is a size symbol and s2 is 1, or vice-versa; and the scalar type if τ is 1 × 1. To every
matrix type τ we associate a relation type

Rel (τ) :=
⎧⎪⎪⎨⎪⎪⎩

(b, b,n) if τ is general;
(b,n) if τ is a vector type;
(n) if τ is scalar.

Then to every matrix schema S we associate the relational schema Rel (S) where Rel (S) (M) =
Rel (S (M)) for every M ∈ var(S). For each instance I of S, we define the instance Rel (I) over
Rel (S) by

Rel (I) (M) =
⎧⎪⎪⎨⎪⎪⎩

Rel2 (I (M)) if S (M) is a general type;
Rel1 (I (M)) if S (M) is a vector type;
Rel0 (I (M)) if S (M) is the scalar type.

Remark. The different treatment of matrices, vectors and scalars will allow us to use a “clean”
version of the relational algebra where we do not need constants for base columns. We come back
to this issue after the translation of MATLANG into the relation algebra with aggregates in the
next subsection.

4.2 From MATLANG to Relational Algebra with Summation

Given the representation of matrices by relations, we now show that MATLANG can be simu-
lated in the relational algebra with aggregates. Actually, the only aggregate operation we need
is summation. The relational algebra with summation extends the well-known relational algebra
for relational databases and is defined as follows. For a full formal definition, see [43]. For our
purposes, it suffices to highlight the following about the relational algebra with summation:

• Expressions are built up from relation names using the classical operations union, set dif-
ference, cartesian product (×), selection (σ), and projection (π), plus two new operations:
function application and summation.

• For selection, we only use equality and nonequality comparisons on base columns. No se-
lection on numerical columns will be needed in our setting.

• For any function f : C
n → C, the operation apply[f ; i1, . . . , in] can be applied to any re-

lation r having columns i1, . . . , in , which must be numerical. The result is the relation
{(t , f (t (i1), . . . , t (in))) | t ∈ r }, appending a numerical column to r . We allow n = 0, in
which case f is a constant.

• The operation sum[i; i1, . . . , in] can be applied to any relation r having columns i , i1, . . . , in ,
where column i must be numerical. In our setting, we only need the operation in cases where
columns i1, . . . , in are base columns. The result of the operation is the relation{(

t (i1), . . . , t (in),
∑

t ′ ∈group[i1, ...,in](r,t)

t ′(i)
) ���� t ∈ r

}
,

where

group[i1, . . . , in](r , t) =
{
t ′ ∈ r ��� t ′(i1) = t (i1) ∧ · · · ∧ t ′(in) = t (in)

}
.

Again, n can be zero, in which case the result is a singleton. Note that in the definition of
sum above we are using set semantics.

Given that relations are typed, one can define well-typedness for expressions in the relation
algebra with summation, and define the output type. We omit this definition here, as it follows a

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 15. Publication date: October 2019.

15:12 R. Brijder et al.

well-known methodology [64] and is analogous to what we have already done for MATLANG in
Section 3.3. The simulation of MATLANG into the relational algebra with summation can now be
formally stated:

Theorem 4.1. Let S be a matrix schema, and let e be a MATLANG expression that is well typed

overS with output type τ . Let � = 2, 1, or 0, depending on whether τ is general, a vector type, or scalar,

respectively.

(1) There exists an expression Rel (e) in the relational algebra with summation, that is well typed

over Rel (S) with output-type Rel (τ), such that, for every instance I ofS, we have Rel� (e (I)) =
Rel (e) (Rel(I)).

(2) The expression Rel (e) uses neither set difference nor selection conditions on numerical

columns.

(3) The only functions used in Rel (e) are those used in pointwise applications in e ; complex con-

jugation; multiplication of two numbers; and the constant functions 0 and 1.

Proof. We assign to each MATLANG expression e that is well typed over S, an expression
Rel (e) in the relational algebra with summation by induction on the structure of e . Since the let

operation is syntactic sugar for MATLANG expressions, we do not consider this operation in this
proof. Consider expressions e and e ′ in MATLANG and let τ = s1 × s2 be the output type of e ′.

• If e = M is a matrix variable of S, then Rel (e) := M .
• If e = (e ′)∗, then

Rel (e) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

π1,2,4

(
apply[z; 3]

(
π2,1,3 (Rel (e ′))

))
if τ is a general type;

π1,3

(
apply[z; 2]

(
Rel (e ′)

))
if τ is a vector type;

π2

(
apply[z; 1]

(
Rel (e ′)

))
if τ is the scalar type,

where z denotes the complex conjugate function mapping a complex number z to its com-
plex conjugate z.

• If e = 1(e ′), then

Rel (e) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π1,4

(
apply[1; 3]

(
Rel (e ′)

))
if τ is a general type;

π1,3

(
apply[1; 2]

(
Rel (e ′)

))
if s1 � 1 = s2;

π3

(
apply[1; 2]

(
Rel (e ′)

))
if s1 = 1 � s2;

π2

(
apply[1; 1]

(
Rel (e ′)

))
if τ is the scalar type,

where 1 in the first argument of apply stands for the constant function 1 : C→ C : z �→ 1.
We observe the different treatment of Rel (e ′) depending on whether e ′ is an s1 × 1 column
vector or a 1 × s2 row vector.

• If e = diag(e ′), then we define Rel (e) as

σ1=2

(
π1 (Rel (e ′)) × Rel (e ′)

)
∪ apply[0;]

(
σ1�2

(
π1 (Rel (e ′)) × π1 (Rel (e ′))

))

if s1 � 1 = s2 and as Rel (e ′) if τ is the scalar type. The 0 in the first argument of apply stands
for the constant function 0 : C→ C : z �→ 0.

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 15. Publication date: October 2019.

On the Expressive Power of Query Languages for Matrices 15:13

• If e = e1 · e2 where e1 is of type s1 × s3 and e2 is of type s3 × s2, then Rel (e) is defined as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sum[7; 1, 5]
(
apply[×; 3, 6]

(
σ2=4 (Rel (e1) × Rel (e2))

))
if s1 � 1 � s2 and s3 � 1;

sum[6; 1]
(
apply[×; 3, 5]

(
σ2=4 (Rel (e1) × Rel (e2))

))
if s1 � 1 = s2 and s3 � 1;

sum[6; 4]
(
apply[×; 2, 5]

(
σ1=3 (Rel (e1) × Rel (e2))

))
if s1 = 1 � s2 and s3 � 1;

sum[5;]
(
apply[×; 2, 4]

(
σ1=3 (Rel (e1) × Rel (e2))

))
if s1 = 1 = s2 and s3 � 1;

π1,3,5

(
apply[×; 2, 4](Rel (e1) × Rel (e2))

)
if s1 � 1 � s2 and s3 = 1;

π1,4

(
apply[×; 2, 3](Rel (e1) × Rel (e2))

)
if s1 � 1 = s2 and s3 = 1;

π2,4

(
apply[×; 1, 3](Rel (e1) × Rel (e2))

)
if s1 = 1 � s2 and s3 = 1;

π3

(
apply[×; 1, 2](Rel (e1) × Rel (e2))

)
if s1 = 1 = s2 and s3 = 1.

• Finally, if e = apply[f](e1, . . . , en), then Rel (e) is defined as

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

π1,2,3n+1

(
apply[f ; 3, 6, . . . , 3n]

(
σp1

(
Rel (e1) × · · · × Rel (en)

)))
if τ is a general type;

π1,2n+1

(
apply[f ; 2, 4, . . . , 2n]

(
σp2

(
Rel (e1) × · · · × Rel (en)

)))
if τ is a vector type;

πn+1

(
apply[f ; 1, 2, . . . ,n]

(
Rel (e1) × · · · × Rel (en)

))
if τ is the scalar type,

where p1 is the predicate (1 = 4 = · · · = (3n − 5) = (3n − 2)) ∧ (2 = 5 = · · · = (3n − 4) =
(3n − 1)) and p2 is the predicate 1 = 3 = · · · = (2n − 3) = (2n − 1).

Notice that the only functions used in apply in Rel (e) aside from those used in apply in e are
complex conjugation (z̄), multiplication of two numbers (×), and the constant functions 0 and 1.
Also notice that Rel (e) uses neither set difference, nor selection conditions on numerical columns.

By induction on the structure of e one straightforwardly observes that (1) Rel (e) is well typed
over Rel (S) with output type Rel (τ) and (2) for every instance I of S, we have Rel� (e (I)) =
(Rel (e)) (Rel(I)), where � is 2 if τ is of a general type, 1 if τ is of a vector type, and 0 if τ is of
the scalar type. �

Remark. As mentioned earlier, the different treatment of general types, vector types, and scalar
types allows us to use a “clean” version of the relational algebra, where we do not need constants
for base columns. In contrast, if we had used the relational encoding Rel2 also for vector types, for
example by assuming that the second base attribute is the fixed constant 1, then expressing the 1

operation would require the constant 1 in the second base column:

Rel (1(M)) = π1, ‘1′,4 (apply[1; 3](M)),

withM a matrix variable of general type, cf. the definition of Rel (1(M)) in the proof of Theorem 4.1
above. So, here we would need a generalized projection π that can insert a base column with
constant ‘1′. (This constant 1 in a base column should not be confused with the value 1 in the
numerical column.)

4.3 From MATLANG to Relational Calculus with Summation

We can sharpen Theorem 4.1 by working not in the relational algebra, but in the relational calculus

with aggregates. In this logic, we have base variables and numerical variables. Base variables can be
bound to base columns of relations, and compared for equality. Numerical variables can be bound
to numerical columns, and can be equated to function applications and aggregates. We will not
recall the syntax formally (see [43] for a full definition). As an example expression in the relation

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 15. Publication date: October 2019.

15:14 R. Brijder et al.

calculus with aggregates, we show how matrix multiplication is expressed. Matrix multiplication
M · N with M of type α × β and N of type β × γ can be expressed by the formula

φ (i, j, z) ≡ z = sumk,x ,y.(M (i,k,x) ∧ N (k, j,y),x × y).

Here, i , j, and k are base variables and x , y, and z are numerical variables. The semantics of this
expression is as follows: First, for given i, j, all triples (k,x ,y) that satisfy M (i,k,x) ∧ N (k, j,y) are
collected. Then, the function x × y is applied to all these triples resulting in a multi-set consisting
of the products xy. Finally, summation is applied on this multi-set and the result is assigned to
variable z. We note that of the base variables, only i and j are free. In the subformula M (i,k,x)
only i and k are free, and in N (k, j,y) only k and j are free.

The advantage of the relational calculus is that variables, especially base variables, can be re-

peated and reused. As we show below, this implies that when simulating MATLANG expression in
the relational calculus with aggregates we only need formulas with at most three base variables.
This will give us additional insights into the expressive power of MATLANG in Section 4.4.

To illustrate the reuse of variables, consider again our example expression φ (i, j, z) correspond-
ing to matrix multiplication. We observe that, ifM or N had been a subexpression involving matrix
multiplication in turn, we could have reused one of the three variables. For example, (M · N) · N ′,
where N ′ is of type γ × δ , can be expressed by the formula

φ ′(i, j, z) ≡ z = sumk,x ,y.(M (i,k,x)∧ (y = sum i,x1,x2.(N (k, i,x1)∧N ′(i, j,x2),x1 × x2)),x × y).

We will see that the other operations of MATLANG need only two base variables. We now state
the simulation result more precisely:

Proposition 4.2. Let S, e , τ and � as in Theorem 4.1. For every MATLANG expression e, there is

a formula φe over Rel (S) in the relational calculus with summation, such that

(1) If τ is general, φe (i, j, z) has two free base variables i and j and one free numerical variable

z; if τ is a vector type, we have φe (i, z); and if τ is scalar, we have φe (z).
(2) For every instance I , the relation defined by φe on Rel (I) equals Rel� (e (I)).
(3) The formula φe uses only three distinct base variables. The functions used in pointwise ap-

plications in φe are as in the statement of Theorem 4.1. Furthermore, φe neither uses equality

conditions between numerical variables nor equality conditions on base variables involving

constants.

Proof. The proof is analogous to the proof of Theorem 4.1 and is deferred to the appendix. The
only additional observation is that we only need three base variables, as explained earlier. �

4.4 Expressing Graph Queries

So far, we have looked at expressing matrix queries in terms of relational queries. It is also natural
to express relational queries as matrix queries. This works best for binary relations, or graphs,
which we can represent by their adjacency matrices.

Formally, we define a graph schema to be a relational schema where every relation variable
is assigned the type (b, b) of arity two. We define a graph instance as an instance I of a graph
schema, where the active domain of I equals {1, . . . ,n} for some positive natural number n. The
assumption that the active domain always equals an initial segment of the natural numbers is
convenient for forming the bridge to matrices. This assumption, however, is not essential for our
results to hold. Indeed, the logics we consider do not have any built-in predicates on base variables,
besides equality. Hence, they view the active domain elements as abstract data values.

To every graph schema S, we associate a matrix schema Mat (S), where Mat (S) (R) = α × α
for every R ∈ var(S), for a fixed size symbol α . So, all matrices are square matrices of the same

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 15. Publication date: October 2019.

On the Expressive Power of Query Languages for Matrices 15:15

dimension. Let I be a graph instance of S, with active domain {1, . . . ,n}. We will denote the n × n
adjacency matrix of a binary relation r over {1, . . . ,n} by AdjI (r). Now any such instance I is
represented by the matrix instance Mat (I) over Mat (S), where Mat (I) (R) = AdjI (I (R)) for every
R ∈ var(S).

A graph query over a graph schema S is a function that maps each graph instance I of S to a
binary relation on the active domain of I . We say that a MATLANG expression eexpresses the graph
query q if e is well-typed over Mat (S) with output type α × α , and for every graph instance I of
S, we have AdjI (q(I)) = e (Mat (I)).

We can now give a partial converse to Theorem 4.1. We assume active-domain semantics for
first-order logic [1]. Please note that the following result deals only with pure first-order logic,
without aggregates or numerical columns.

Theorem 4.3. Every graph query expressible in FO3 (first-order logic with equality, using at most

three distinct variables) is expressible in MATLANG. The only functions needed in pointwise applica-

tions are boolean functions on {0, 1}, and testing if a number is positive.

Proof. It is known [46, 61] that FO3 graph queries can be expressed in the algebra of binary re-
lations with the operations all, identity, union, set difference, converse, and relational composition.
These operations are well known, except perhaps for all, which, on a graph instance I , evaluates
to the cartesian product of the active domain of I with itself. Identity evaluates to the identity
relation on the active domain of I . Each of these operations is easy to express in MATLANG. For
all we use 1(R) · 1(R)∗, where for R we can take any relation variable from the schema. Iden-
tity is expressed as diag(1(R)). Union r ∪ s is expressed as apply[x ∨ y](r , s), and set difference
r − s as apply[x ∧ ¬y](r , s). Converse is transpose. Relational composition r ◦ s is expressed as
apply[x > 0](r · s), where x > 0 is 1 if x is positive and 0 otherwise. �

We can complement the above theorem by showing that the quintessential first-order query
requiring four variables is not expressible.

Proposition 4.4. The graph query over a single binary relation R that maps I to I (R) if I (R)
contains a four-clique, and to the empty relation otherwise, is not expressible in MATLANG.

To prove Proposition 4.4, we first state the following lemma, which refines Proposition 4.2 in
the setting of graph queries.

Lemma 4.5. If a graph query q is expressible in MATLANG, then q is expressible by a formula

ψq (i, j) in the relational calculus with summation, where i and j are base variables, and ψq uses at

most three distinct base variables.

Proof. Let e be a MATLANG expression that expresses q. Let φe (i, j, z) be the formula given
by Proposition 4.2. This formula does not express the graph query q since it has a free numerical
variable and contains relation variables (of type (b, b,n)) corresponding to the matrix variables
in e . We need to transform φe (i, j, z) into an expression over relation variables (of type (b, b))
in the graph schema and ensure that there are only two free base variables. This can be easily
done, as follows: First, let φ ′e (i, j, z) be the formula obtained from φe (i, j, z) by replacing each
atomic formula of the form R (i ′, j ′,x), where i ′ and j ′ are base variables and x is a numerical
variable, by (x = 1 ∧ R (i ′, j ′)) ∨ (x = 0 ∧ ¬R (i ′, j ′)). Here, we are simply expressing the adjacency
matrix stored in R (i ′, j ′,x) by means of the binary relation R (i ′, j ′). Nowψq (i, j) can be obtained as
∃z (z = 1 ∧ φ ′(i, j, z)). Indeed, it suffices to only list those positions in the result adjacency matrix
that are non-zero. The fact that ψq only uses three base variables is simply because φe only uses
three base variables and in the transformation from φe toψq we did not introduce additional base
variables. �

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 15. Publication date: October 2019.

15:16 R. Brijder et al.

We now show that MATLANG cannot verify the existence of four-cliques.

Proof of Proposition 4.4. Let e be a MATLANG expression expressing some graph query q.
Let ψq be the formula given by Lemma 4.5. Although ψq takes a binary relation of type (b, b)
as input and also returns a binary relation of type (b, b), (non-free) numerical variables may be
present in ψq . To show that the existence of four-cliques cannot be expressed we want to rely
on a result for logics in which only base variables are allowed. The challenge is to eliminate the
numerical variables fromψq .

This can be done as follows: First, we eliminate all pointwise function applications, arithmetic
and summation fromψq (i, j) following a standard method. Indeed, it is known [30, 43] that every
formula in the relational calculus with aggregates can be equivalently expressed by a formula
ψ ◦q (i, j) in infinitary logic with counting. This logic, referred to as LC in [43], works on typed
relations (types b and n) and extends first-order logic with infinitary disjunctions and conjunctions,
and counting quantifiers∃≥m , form ≥ 1, on base variables. We refer to [30] and [43] for the detailed
translation. We observe that the base variables inψ ◦q (i, j) are those in the original formulaψq (i, j)
and thus ψ ◦q (i, j) only uses at most three base variables. Furthermore, we note that in ψ ◦q (i, j) all
numerical variables are quantified. Consider such a numerical variable z and let ∃z φ (x̄ , z, z̄ ′) be
the sub-formula inψ ◦q (i, j) in which z occurs. In this formula, x̄ are base variables and z and z̄ ′ are
numerical variables. Then, to eliminate the variable z it suffices to add one infinitary disjunction
and replace ∃z φ (x̄ , z, z̄ ′) by

∨
c ∈C φ (x̄ , c, z̄ ′). In other words, we replace z by all possible complex

numbers. By doing this for every numerical variable inψ ◦q (i, j) we end up with a formula φq (i, j) in
which no numerical variables are present. Proposition 4.2 further states thatψq (i, j), and thus also
φ◦q (i, j) and φ (i, j), does not involve equality conditions between base variables and constants. So,
φq (i, j) only contains “pure” equalities between variables. This is a consequence of our encoding
of matrices into relations (recall our earlier remark on how we avoided the need for the constant
‘1′ in base columns).

Hence, φq (i, j) is a formula in infinitary counting logic with three distinct variables over a graph
schema. This logic is denoted by C3

∞ω in [53] and the four-clique query is not expressible in C3
∞ω .

Indeed, to see this, consider the four-clique graph G, to which we apply the Cai-Fürer-Immerman
construction [13, 53], yielding graphs G0 and G1 which are indistinguishable in C3

∞ω .1 This con-
struction is such thatG0 contains a “four-clique formed by paths of length three”: four nodes such
that there is a path of length three between any two of them. The graph G1, however, does not
contain four such nodes.

Now suppose, for the sake of contradiction, that there would be a sentence φ in C3
∞ω express-

ing the existence of a four-clique. We can replace each atomic formula R (x ,y) by ∃z (R (x , z) ∧
∃x (R (z,x) ∧ R (x ,y))). The resulting C3

∞ω sentence looks for a four-clique formed by paths of
length three, and would distinguish G0 from G1, which yields our contradiction.

Similarly, suppose that we can express the four-clique graph query q as in the statement of the
proposition by means of a MATLANG expression e . We then consider theC3

∞ω sentence∃i, j φq (i, j)
which returns true on a graph if and only if the graph contains a four-clique, which again leads to
a contradiction. �

We conclude by showing that MATLANG cannot express the transitive-closure graph query
which maps a graph to its transitive closure. Indeed, by Theorem 4.1, any graph query expressible
in MATLANG is expressible in the relational algebra with aggregates. It is known [30, 43] that
such queries are local. We recall the definition of locality. For a graph G, vertices a and b, and a
nonnegative integer r , denote by NG

r (a,b) the subgraph of G induced by the vertices that are at

1Specifically, G0 and G1 are the graphs A and A′ defined by Otto [53, Example 2.7 and Lemma 2.8] for the case m = 3.

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 15. Publication date: October 2019.

On the Expressive Power of Query Languages for Matrices 15:17

most distance r from either a or b, where by distance we mean the shortest path length in the
undirected graph induced by G. A graph query q over a schema with one relation variable R is
said to be local if there is a nonnegative integer r such that for every graph instance I and for

all vertices a,b, c,d , the existence of a graph isomorphism h from N I (R)
r (a,b) to N I (R)

r (c,d) with
h(a) = c and h(b) = d implies that (a,b) ∈ q(I) if and only if (c,d) ∈ q(I). The transitive-closure
query, however, is known not to be local [43]. We thus conclude:

Proposition 4.6. The graph query over a single binary relation R that maps I to the transitive-

closure of I (R) is not expressible in MATLANG.

5 MATRIX INVERSION

We now consider the extension of MATLANG with matrix inversion. More precisely, we extend
MATLANG as follows. Let S be a schema and e be an expression that is well-typed over S, with
output type of the form α × α . Then the expression e−1 is also well-typed over S, with the same
output type α × α . The semantics is defined as follows. For an instance I , if e (I) is an invertible
matrix, then e−1 (I) is defined to be the inverse of e (I); otherwise, it is defined to be the zero square
matrix of the same dimensions as e (I). The extension of MATLANG with inversion is denoted by
MATLANG + inv.

Example 5.1 (PageRank). Recall Example 1.1 where we computed the Google matrix of A. In the
process, we already showed how to compute the n × n matrix B defined by Bi, j = Ai, j/ki , and the
scalar n. We use eB and en to denote the corresponding MATLANG expressions. Let I be the n × n
identity matrix, and let 1 denote the n × 1 column vector consisting of all ones. The PageRank
vector v of A can be computed as follows [21]:

v =
1 − d
n

(I − dB)−1
1.

This calculation is readily expressed in MATLANG + inv as

(1 − d) � (apply[1/x](en)) � (apply[−](diag(1(M)),d � eB))−1 · 1(M).

Example 5.2 (Transitive Closure). We next show that the reflexive-transitive closure of a binary
relation is expressible in MATLANG + inv. Let A be the adjacency matrix of a binary relation r on
{1, . . . ,n}. Let I be the n × n identity matrix, expressible as diag(1(A)). Let en be the expression
computing the scalar n. The matrix B = 1

n+1A has 1-norm strictly less than 1, so S =
∑∞

k=0 B
k con-

verges, and is equal to (I − B)−1 [25, Lemma 2.3.3]. Now (i, j) belongs to the reflexive-transitive
closure of r if and only if Si, j is nonzero. Thus, we can compute the reflexive-transitive closure of
r by evaluating

apply[� 0]

((
apply[−]

(
diag(1(M)), apply[1/(x + 1)](en) � M

))−1
)
,

by assigning matrix variableM toA. Here,� 0 is the function which returns 1 if the value is nonzero
and 0 otherwise. We can express the transitive closure by multiplying the above expression by M .

Given our earlier observation that the transitive-closure query cannot be expressed in
MATLANG (Proposition 4.6) and the MATLANG + inv expression given in the previous example
which does express this query, we may conclude:

Theorem 5.3. MATLANG + inv is strictly more powerful than MATLANG in expressing graph

queries.

Once we have the transitive closure, we can do many other things such as checking bipartite-
ness of undirected graphs, checking connectivity, and checking cyclicity. MATLANG is expressive

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 15. Publication date: October 2019.

15:18 R. Brijder et al.

enough to reduce these queries to the transitive-closure query, as shown in the following example
for bipartiteness. The same approach via FO3 can be used for connectedness or cyclicity.

Example 5.4 (Bipartiteness). To check bipartiteness of an undirected graph, given as a symmetric
binary relation R without self-loops, we first compute the transitive closure T of the composition
of R with itself. Then, the FO3 condition ¬∃x∃y (R (x ,y) ∧T (y,x)) expresses that R is bipartite (no
odd cycles). The result now follows from Theorem 4.3.

Example 5.5 (Number of Connected Components). Using transitive closure, we can also easily
compute the number of connected components of a binary relation R on {1, . . . ,n}, given as an
adjacency matrix. We start from the union of R and its converse. This union, denoted by S , is
expressible by Theorem 4.3. We then compute the reflexive-transitive closure C of S . Now the
number of connected components of R equals

∑n
i=1 1/ki , where ki is the degree of node i inC . This

sum is simply expressible as 1(C)∗ · apply[1/x](C · 1(C)).

Example 5.6 (Regular Path Queries). MATLANG + inv can express regular path queries on graph
databases [68]. For different edge labels, say a andb, we use different matrices, sayA and B, respec-
tively, to store the adjacency matrices of the a-edges and b-edges. Regular path queries are, syn-
tactically, regular expressions over the edge labels. Now, concatenation and union are expressed in
MATLANG as already described in the proof of Theorem 4.3. Kleene star is expressed as described
in Example 5.2.

We do not know whether the four-clique graph query can be expressed in MATLANG + inv.

6 EIGENVECTORS

Another workhorse in data analysis is diagonalizing a matrix, i.e., finding a basis of eigenvectors.
We next consider the extension of MATLANG with an operation eigen.

Formally, we define the operation eigen as follows: Let A be an n × n matrix. Recall that A is
called diagonalizable if there exists a basis of C

n consisting of eigenvectors ofA. In that case, there
also exists such a basis where eigenvectors corresponding to the same eigenvalue are orthogonal.
Accordingly, we define eigen(A) to return an n × n matrix, the columns of which form a basis of
C

n consisting of eigenvectors of A, where eigenvectors corresponding to a same eigenvalue are
orthogonal. If A is not diagonalizable, we define eigen(A) to be the n × n zero matrix.

Note that eigen is nondeterministic; in principle, there are infinitely many possible results. This
models the situation in practice where numerical packages such as R or MATLAB return approx-
imations to the eigenvalues and a set of corresponding eigenvectors. Eigenvectors, however, are
not unique. In fact, there are infinitely many eigenvectors.

Hence, some care must be taken in extending MATLANG with the eigen operation. Syntacti-
cally, as for inversion, whenever e is a well-typed expression with a square output type, we now
also allow the expression eigen(e), with the same output type. Semantically, however, the rules
of Figure 2 must be adapted so that they do not infer statements of the form e (I) = B, but rather
of the form B ∈ e (I), i.e., B is a possible result of e (I). The let-construct now becomes crucial; it
allows us to assign a possible result of eigen to a new variable, and work with that intermediate
result consistently.

In this and the next section, we assume notions from linear algebra. An excellent introduction
to the subject has been given by Axler [4].

Remark (Eigenvalues). We can easily recover the eigenvalues from the eigenvectors, using in-
version. Indeed, if A is diagonalizable and B ∈ eigen(A), then Λ = B−1AB is a diagonal matrix with
all eigenvalues of A on the diagonal, so that the ith eigenvector in B corresponds to the eigen-
value in the ith column of Λ. This is the well-known eigendecomposition. However, the same can

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 15. Publication date: October 2019.

On the Expressive Power of Query Languages for Matrices 15:19

also be accomplished without using inversion. Indeed, suppose B = (v1, . . . ,vn), and let λi be the
eigenvalue to whichvi corresponds. Then AB = (λ1v1, . . . , λnvn). Each eigenvector is nonzero, so
we can divide away the entries from B in AB (setting division by zero to zero). We thus obtain a
matrix where the ith column consists of zeros or λi , with at least one occurrence of λi . By counting
multiplicities, dividing them out, and finally summing, we obtain λ1, . . . , λn in a column vector.
We can apply a final diag to get it back into diagonal form. The MATLANG expression for doing
all this uses similar tricks as those shown in Examples 1.1 and 3.6.

The above remark suggests a shorthand in MATLANG + eigen where we return both B (eigen-
vectors) and Λ (eigenvalues) together:

let (B,Λ) = eigen(A) in . . .

This models how the eigen operation works in the languages R and MATLAB. We agree that Λ,
like B, is the zero matrix if A is not diagonalizable.

Example 6.1 (Rank of a Matrix). Since the rank of a diagonalizable matrix equals the number
of nonzero entries in its diagonal form, we can express the rank of a diagonalizable matrix A as
follows:

let (B,Λ) = eigen(A) in 1(A)∗ · apply[� 0](Λ) · 1(A).

Example 6.2 (Graph Partitioning). A popular graph clustering method consists of partitioning
the vertex set V of a graph G = (V ,E) into two parts V1 and V2 = V \V1 such that the number of
edges between vertices in these two parts is minimized, and, in addition, the number of vertices in
V1 and V2 are the same [42]. This optimization problem can be phrased in terms of the Laplacian
L = D −A of the adjacency matrix A of G. Here, D, called the degree matrix of A, is the diago-
nal matrix where each diagonal entry is equal to the degree of the corresponding vertex. More
specifically, it suffices to solve fopt = arg minf f ∗ · L · f such that f ∗ · 1 = 0 and fv ∈ {−1, 1} for
v ∈ V [42]. Due to the intractability of the corresponding decision problem [66], in practice, the
relaxed optimization problem fopt = arg minf f ∗ · L · f such that f ∗ · 1 = 0 and f ∗ · f = n, where
n is the number of vertices inG, is solved instead. Furthermore, a partitioning ofV is obtained from
fopt by definingV1 = {v ∈ V | fv ≥ 0} andV2 = {v ∈ V | fv < 0}. We consider connected graphsG
and assume, for convenience, that the second-smallest eigenvalue λ2 (i.e., the smallest non-zero
eigenvalue) of their laplacian L has multiplicity one so that all the eigenvectors of λ2 are scalar
multiples of each other.2 Such an eigenvector is call a Fiedler vector and is known to be a solu-
tion of the relaxed optimization problem. We now show that Fiedler vectors can be obtained in
MATLANG + eigen. Indeed, the Laplacian L can be derived from the adjacency matrix A as

let D = diag(A · 1(A)) in apply[−](D,A).

Now let (B,Λ) ∈ eigen(L). In an analogous way to Example 3.6, we can compute a matrix E, ob-
tained from Λ by replacing the occurrences of the second-smallest eigenvalue λ2 by 1 and all other
entries by 0. Then an eigenvector f corresponding to this eigenvalue can be isolated from B (and
the other eigenvectors zeroed out) by multiplying B · E. We then normalize f such that f ∗ · f = n.
We remark that f is not unique. Nevertheless we want to return a representation of the induced
partition into V1 and V2 which is independent of the eigenvector f returned. To do so, we first
set non-negative entries in f to 1 and negative entries to −1 by means of a function application

2If λ2 has multiplicity m > 1, we have m independent eigenvectors for this eigenvalue. Since in MATLANG we cannot
select a single one of these eigenvectors, the construction given in this example needs to be modified. More precisely, all
m eigenvectors are extracted and combined into a single eigenvector. This can be done, for example, by summing up all m

eigenvectors.

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 15. Publication date: October 2019.

15:20 R. Brijder et al.

±1(x) = 1 if x ≥ 0 and ±1(x) = −1 otherwise. Next we create a |V | × |V | matrix P such that Pi j = 1
if vertices i and j belong to the same partition and Pi j = 0 otherwise. We can do this by evaluat-
ing apply[> 0](apply[±1](f) · (apply[±1](f))∗), where > 0 maps every positive entry to 1 and all
non-positive entries to 0.

It turns out that MATLANG + inv is subsumed by MATLANG + eigen.

Theorem 6.3. Matrix inversion is expressible in MATLANG + eigen.

Proof. We describe a fixed procedure for determining A−1, for any square matrix A. Let S =
A∗A. Then A is invertible if and only if S is. Let us assume first that S is indeed invertible.

Since S is self-adjoint, C
n has an orthogonal basis consisting of eigenvectors of S . Eigenvectors

of a self-adjoint operator that correspond to distinct eigenvalues are always orthogonal. Hence,
eigen(S) always returns an orthogonal basis of C

n consisting of eigenvectors of S . Let (B,Λ) ∈
eigen(S) (using the shorthand introduced before Example 6.1). We can normalize the columns of
B in MATLANG as

apply[x/
√
y](B, 1(B) · (B∗ · B · 1(B))∗).

(This expression works because the columns in B are mutually orthogonal.) So, we may now as-
sume that B contains an orthonormal basis consisting of eigenvectors of S . In particular, B−1 = B∗,
and S = BΛB∗.

Since we have assumed S to be invertible, none of the eigenvalues is zero. We can invert Λ
simply by replacing each entry on the diagonal by its reciprocal. Thus, Λ−1 can be computed from
Λ by pointwise application of the reciprocal function.

Now A−1 can be computed by the expression C = BΛ−1B∗A∗. To see that C indeed equals
A−1, we calculate CA = BΛ−1B∗A∗A = BΛ−1B∗S = BΛ−1B∗BΛB∗ which simplifies to the identity
matrix.

When S is not invertible, we should return the zero matrix. In MATLANG we can compute the
matrix Z that is zero if one of the eigenvalues is zero, and the identity matrix otherwise. We then
multiply the final expression with Z . A final detail is to make the computation well-defined in
all cases. Note that the functions (x ,y) �→ x/

√
y and x �→ 1/x , used in pointwise applications, are

not total functions. If S is invertible, then, in the pointwise application of x/
√
y, the argument y is

always a positive real number, and, in the pointwise application of 1/x , the argument x is always
nonzero. If S is not invertible, then x/

√
y and 1/x can be extended to total functions in an arbitrary

manner. �

We do not know whether the four-clique graph query can be expressed in MATLANG + eigen.
Another interesting open problem is the following: Are there graph queries expressible deterministi-

cally in MATLANG + eigen, but not in MATLANG + inv? This is an interesting question for further
research. The answer may depend on the functions that can be used in pointwise applications.

Remark (Determinacy). The stipulation deterministically in the above open question is impor-
tant. Ideally, we use the nondeterministic eigen operation only as an intermediate construct. It
is an aid to achieve a powerful computation, but the final expression should have only a single
possible output on every input. The expression of Example 6.1 is deterministic in this sense, as is
the expression for inversion underlying the proof of Theorem 6.3.

7 THE EVALUATION PROBLEM

We next consider the evaluation problem of expressions in our most expressive language
MATLANG + eigen. Naively, the evaluation problem asks, given an input instance I and an ex-
pression e , to compute the result e (I). There are some issues with this naive formulation, however.

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 15. Publication date: October 2019.

On the Expressive Power of Query Languages for Matrices 15:21

Indeed, in our theory we have been working with arbitrary complex numbers. How do we even
represent the input? Notably, the eigen operation on a matrix with only rational entries may pro-
duce irrational entries. In fact, the eigenvalues of an adjacency matrix (even of a tree) need not
even be definable in radicals [24]. Practical systems, of course, apply numerical methods to com-
pute rational approximations. But it is still theoretically interesting to consider the exact evaluation
problem. For a treatise on computations of eigenvectors, inverses, and other matrix notions, we
refer to [25].

Our approach is to represent the output symbolically, following the idea of constraint query
languages [35, 40]. Specifically, we can define the input-output relation of an expression, for given
dimensions of the input matrices, by an existential first-order logic formula over the reals. Such for-
mulas are built from real variables, integer constants, addition, multiplication, equality, inequality
(<), disjunction, conjunction, and existential quantification.

Anym × n matrix A can be represented by a tuple of 2mn real numbers. Indeed, let ai, j = �Ai, j

(the real part of a complex number), and let bi, j = �Ai, j (the imaginary part). Then A can be rep-
resented by the tuple (a1,1,b1,1,a1,2,b1,2, . . . ,am,n ,bm,n). The next result introduces the variables
xM,i, j,�, xM,i, j,�, yi, j,�, and yi, j,�, where the x-variables describe an arbitrary input matrix I (M)
and the y-variables describe an arbitrary possible output matrix e (I).

In the following, an input-sized expression consists of a schema S, an expression e in
MATLANG + eigen that is well typed over S with output type t1 × t2, and a size assignment σ
defined on the size symbols occurring in S. For complexity considerations, we assume the sizes
given in σ are coded in unary. Whether this assumption can be avoided remains open.

Theorem 7.1. There exists a polynomial-time computable translation that maps any input-sized

expression e to an existential first-order formula ψe over the vocabulary of the reals, expanded with

symbols for the functions used in pointwise applications in e , such that

(1) Formulaψe has the following free variables:

• For every M ∈ var(S), let S (M) = s1 × s2. Then ψe has the free variables xM,i, j,� and

xM,i, j,�, for i = 1, . . . ,σ (s1) and j = 1, . . . ,σ (s2).
• In addition, ψe has the free variables ye,i, j,� and ye,i, j,�, for i = 1, . . . ,σ (t1) and j =

1, . . . ,σ (t2).
The set of these free variables is denoted by FV(S, e,σ).

(2) Any assignment ρ of real numbers to these variables specifies, through the x-variables, an

instance I conforming to S by σ , and through the y-variables, a σ (t1) × σ (t2) matrix B.

(3) Formulaψe is true over the reals under such an assignment ρ, if and only if B ∈ e (I).

Proof. We prove this result by induction on the structure of e . Let I be an instance conforming
toS by σ . For notational transparency we work in this proof exclusively with complex numbers. It
is then understood that formulas like “ye,i, j = xM,i, j ” are short for (ye,i, j,� = xM,i, j,�) ∧ (ye,i, j,� =
xM,i, j,�).

• Let e = M for some matrix variable M ∈ var(S). We have e (I) = I (M) and so the formula
ψe :=

∧
i, j (ye,i, j = xM,i, j) satisfies the required property. Here, i ranges over {1, . . . ,σ (t1)}

and j ranges over {1, . . . ,σ (t2)}.
• Let e = let M = e1 in e2. Then the formula ψe := ∃i, j ye1,i, j ,ye2,i, j (ψe1 ∧ψe2 ∧

∧
i, j (ye1,i, j =

xM,i, j) ∧
∧

i, j (ye,i, j = ye2,i, j)) satisfies the required property.
• Let e = (e1)∗. Then the formula ψe := ∃i, j ye1,i, j (ψe1 ∧

∧
i, j (ye,i, j = y

∗
e1, j,i

)) satisfies the re-
quired property. Here, ye,i, j = y

∗
e1, j,i

is short for (ye,i, j,� = ye1, j,i,�) ∧ (ye,i, j,� = −ye1, j,i,�).
• Let e = 1(e1). Then the formula ψe :=

∧
i (ye,i,1 = 1) ∧∧

i, j xM,i, j satisfies the required
property.

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 15. Publication date: October 2019.

15:22 R. Brijder et al.

• Let e = diag(e1). Then

ψe :=
(∧

i, j
i�j

(ye,i, j = 0)
)
∧ ∃i ye1,i,1

(
ψe1 ∧

∧
i

(ye,i,i = ye1,i,1)
)

satisfies the required property.
• Let e = e1 · e2. Then the formula ψe := ∃i,k ye1,i,k∃k, j ye2,k, j (ψe1 ∧ψe2 ∧

∧
i, j (ye,i, j =∑

k ye1,i,k · ye2,k, j)) satisfies the required property.
• Let e = apply[f](e1, . . . , en). Then the formula ψe := ∃i, j,k yek ,i, j ((

∧
k ψek

) ∧ (
∧

i, j (ye,i, j =

f (ye1,i, j , . . . ,yen,i, j)))) satisfies the required property (here, f is merely a symbol).
• Let e = eigen(e1). Denote by [ȳe1] the symbolic matrix corresponding to e1 and denote by

[ȳe] the symbolic matrix corresponding to e .
—To express that [ȳe] is a basis, we write that there exists a matrix [z̄] such that [ȳe] · [z̄]

is the identity matrix. This condition is expressed by the following formula

ψbasis,e := ∃j,k zj,k

((∧
i,k
i�k

(∑
j

ye,i, j · zj,k = 0
))
∧

(∧
i

(∑
j

ye,i, j · zj,i = 1
)))
.

—To express, for each column vector v of [ȳe], that v is an eigenvector of [ȳe1], we write
that there exists λ such that [ȳe1] · v = λ[ȳe1]. Explicitly, this condition is expressed by
the formulaψeigenv,e :=

∧
j (∃λ(

∧
i (
∑

k ye1,i,k · ye,k, j = λ · ye1,i, j))).
—More challenging is to express is that distinct eigenvectors v and w that correspond

to the same eigenvalue are orthogonal. We cannot write ∃λ([ȳe1] · v = λv ∧ [ȳe1] ·w =
λw) → v∗ ·w = 0, as this is not an existential formula due to the use of logical implica-
tion. Instead, we avoid an explicit quantifier over the eigenvalue λ by recovering it from
the eigenvectors. This is done in a similar way as in how we retrieved the eigenvalues
from the eigenvectors in the previous section. More precisely, given that v and w are
eigenvectors we have that ([ȳe1] · v)i = λ · vi and ([ȳe1] ·w)i = μ ·wi for eigenvalues λ
and μ, respectively. The vectors v and w will be eigenvectors of the same eigenvalue
if whenever vi � 0 � wi , ([ȳe1] · v)i/vi = ([ȳe1] ·w)i/wi . Furthermore, we remark that
whenvi � 0 � wi never holds, thenv andw are necessarily orthogonal. We thus use this
condition in the premise of the implication and write

ψortho,e :=
∧

v, w columns in [ye],
v�w

((∧
i

(
vi � 0 � wi → ([ȳe1] · v)i/vi = ([ȳe1] ·w)i/wi

))
→ v∗ ·w = 0

)
.

—A final detail is that we should also be able to express that [ȳe1] is not diagonalizable,
for in that case we need to define [ȳe] to be the zero matrix. Nondiagonalizability is
equivalent to the existence of a Jordan form with at least one 1 on the superdiagonal. We
can express this as follows. We postulate the existence of an invertible matrix [z̄] such
that the product [z̄] · [ȳe1] · [z̄]−1 has all entries zero, except those on the diagonal and the
superdiagonal. The entries on the superdiagonal can only be 0 or 1, with at least one 1.
Moreover, if an entry i, j on the superdiagonal is nonzero, the entries i, i and j, j must be
equal. Denote byψnotdiagable,e1 the formula that expresses that [ȳe1] is not diagonalizable.

Putting all of the above pieces together, we obtain the following formula

ψe := ∃i, j ye1,i, j

(
ψe1 ∧

(
(ψbasis,e ∧ψeigenv,e ∧ψortho,e) ∨ (ψnondiagable,e1 ∧ψnull,e)

))
,

whereψnull,e :=
∧

i, j ye,i, j = 0 to create the zero matrix in case of non-diagonalizability.

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 15. Publication date: October 2019.

On the Expressive Power of Query Languages for Matrices 15:23

It should be clear from the translation that ψe can be computed in polynomial time and indeed
satisfies the conditions (1), (2), and (3) as stated in the theorem. �

The existential theory of the reals is decidable; actually, the full first-order theory of the reals
is decidable [3, 5]. But, specifically, the class of problems that can be reduced in polynomial time
to the existential theory of the reals forms a complexity class on its own, known as ∃R [58, 59].
This class lies between NP and PSPACE. The above theorem implies that the intensional evaluation

problem for MATLANG + eigen belongs to this complexity class. We define this problem as follows.
The idea is that an arbitrary specification, expressed as an existential formula χ over the reals, can
be imposed on the input-output relation of an input-sized expression.

Definition 7.2. The intensional evaluation problem is a decision problem that takes as input:

• an input-sized expression (S, e,σ), where all functions used in pointwise applications are
explicitly defined using existential formulas over the reals;3

• an existential formula χ with free variables in FV(S, e,σ) (see Theorem 7.1 for the definition
of FV(S, e,σ)).

The problem asks if there exists an instance I conforming to S by σ and a matrix B ∈ e (I) such
that (I ,B) satisfies χ .

For example, χ may completely specify the matrices in I by giving the values of the entries as
rational numbers, and may express that the output matrix has at least one nonzero entry.

An input (S, e,σ , χ) is a yes-instance to the intensional evaluation problem precisely when the
existential sentence ∃FV(S, e,σ) (ψe ∧ χ) is true in the reals, whereψe is the formula obtained by
Theorem 7.1. Hence, we can conclude:

Corollary 7.3. The intensional evaluation problem for MATLANG + eigen belongs to ∃R.

Since the full first-order theory of the reals is decidable, our theorem implies many other decid-
ability results. We give just two examples.

Corollary 7.4. The equivalence problem for input-sized expressions is decidable. This problem

takes as input two input-sized expressions (S, e1,σ) and (S, e2,σ) (with the same S and σ) and asks

if for all instances I conforming to S by σ , we have B ∈ e1 (I) ⇔ B ∈ e2 (I).

Note that the equivalence problem for MATLANG expressions on arbitrary instances (size not
fixed) is undecidable by Theorem 4.3, since equivalence of FO3 formulas over binary relational
vocabularies is undecidable [27].

Corollary 7.5. The determinacy problem for input-sized expressions is decidable. This problem

takes as input an input-sized expression (S, e,σ) and asks if, for every instance I conforming to S by

σ , there exists at most one B ∈ e (I).

Corollary 7.3 gives an ∃R upper bound on the combined complexity of query evaluation [65].
Our final result is a matching lower bound, already for data complexity alone.

Theorem 7.6. There exists a fixed schema S and a fixed expression e in MATLANG + eigen, well-

typed over S, such that the following problem is hard for ∃R: Given an integer instance I over S,

decide whether the zero matrix is a possible result of e (I). The pointwise applications in e use only

simple functions definable by quantifier-free formulas over the reals (representing complex numbers

as pairs of reals).

3These are the functions whose graph is a semi-algebraic set [6].

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 15. Publication date: October 2019.

15:24 R. Brijder et al.

Proof. The feasibility problem [59] takes as input an equation p = 0, with p a multivariate
polynomial with integer coefficients, and asks whether the equation has a solution over the reals.
We may assume that p is given in “standard form”, as a sum of terms of the form a · μ where a is
an integer and μ is a monomial [47]. The feasibility problem is known to be complete for ∃R. We
will design a schema S and an expression e so that the feasibility problem reduces in polynomial
time to our problem.

We use a construction by Valiant [63] in which a polynomialp is converted into a directed, edge-
weighted graph G. The fundamental property of Valiant’s construction is that the determinant of
the adjacency matrix A of G equals p. Let p be a polynomial in normal form

∑
μ ∈M aμ · μ for some

set M of monomials. The length |μ | of a monomial μ is the number of multiplications used in the
monomial. Similarly, |aμ · μ | = 1 + |μ | and the length |p | of p is given by

∑
μ ∈M (1 + |μ |) + |M | − 1,

where we also account for the number of additions. The size ‖p‖ of p is |p | · log2 (m) where m
is an upper bound on the maximum number of variables and the largest integer coefficient in p.
In general, Valliant’s construction results in a graph of at most |p | + 2 vertices. Furthermore, the
edge weights inG are coefficients or variables from p, or the value 1. Similarly, the entries in A are
zero or edge weights from G. The computation of the graph G and its adjacency matrix A require
polynomial time in ‖p‖.

The construction has a specific property: when p is given in standard form, with an explicit
coefficient before each monomial (even if it is merely the value 1), each row of A contains at most
one variable. This property is important for the expression e , specified below, to work.

Example 7.7 (Valiant’s Construction). Consider the polynomial p (x ,y, z) = 3 + 1xy + 5y2z given
in standard form in which each monomial has an associated coefficient. Following the construction
by Valiant [63], the symbolic matrix A shown in Figure 4 is such that det(A) = p (x ,y, z).

Assume G has nodes 1, . . . , n, and let the variables in p be x1, . . . ,xk . We represent A by three
integer matrices Coef , Vars, and Enc. Matrix Coef is the n × n matrix obtained from A by omitting
the variable entries (these are set to zero). On the other hand, Vars, also n × n, is obtained from
A by keeping only the variable entries, but setting them to 1. All other entries are set to zero.
Finally, Enc encodes which variables are represented by the one-entries in Vars. Specifically, Enc

is the n × k matrix where Enci, j = 1 if the ith row of A contains variable x j , and zero otherwise. In
Figure 4, we depict these matrices for our example polynomial p (x ,y, z) = 3 + 1xy + 5y2z.

We thus reduce an input p = 0 of the feasibility problem to the instance I consisting of the
matrices Coef , Vars, Enc. Additionally, for technical reasons, I also has the k × 1 column vector
F , which has value 1 in its first entry and is zero everywhere else. Formally, this instance is over
the fixed schema S consisting of the matrix variables MCoef , MVars , MEnc , and MF , where the first
two variables have type α × α ; the third variable has type α × β ; and MF has type β × 1. To reduce
clutter, however, in what follows we will write these variables simply as Coef , Vars, Enc, and F .

We must now give an expression e that has the zero matrix as possible result of e (I) if and
only if p = 0 has a solution over the reals. For any k × 1 vector v of real numbers, let A(v) denote
the matrix A where we have substituted the entries of v for the variables x1, . . . ,xk . By Valiant’s
construction, the expression e should return the zero matrix as a possible result, if and only if there
exists a v such that A(v) has determinant zero, i.e., is not invertible.

The desired expression e works as follows. We apply eigen to the k × k zero matrix, which we
compute as O in the expression given below. By selecting the first column of the result, we can
nondeterministically obtain all possible nonzero k × 1 column vectors. Taking only the real part
(�) of the entries, we obtain all possible real column vectors v . Then the matrix A(v) is assembled
(in matrix variable AA) using the matrices Coef , Vars, and Enc. Finally, we apply inv to AA so that
the zero matrix is returned if and only if AA has determinant zero.

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 15. Publication date: October 2019.

On the Expressive Power of Query Languages for Matrices 15:25

Fig. 4. Construction of matrix A(v) using matrices Coef , Vars, Enc. The pointwise function д : C
2 → C is

defined as д(x ,y) is y if x = 1, and zero otherwise. The matrix A(v) is such that det(A(v)) = 0 if and only if

p (v1,v2,v3) = 0 for polynomial p (x ,y, z) = 3 + 1xy + 5y2z. This follows from the fact that for the symbolic

matrix A, det(A) = p (x ,y, z).

In conclusion, expression e reads as follows:

let O = apply[0](F · F ∗) in

let B = eigen(O) in

let v = apply[�](B · F) in

let V = Enc · v · 1(Coef)∗ in

let AA = apply[+](Coef , apply[д](Vars,V)) in

inv(AA)

Here, in the last expression, д(x ,y) is y if x = 1, and zero otherwise. In Figure 4, we illustrate the
resulting matrices for V and AA (i.e., A(v)) for our example polynomial. �

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 15. Publication date: October 2019.

15:26 R. Brijder et al.

Table 1. Running Times (Best of Three Runs) of Transitive Closure Algorithms on Random Dense

Graphs Implemented in R or SageMath

Algorithm Progr. lang. 28 nodes 29 nodes 210 nodes 211 nodes

Tarjan SageMath 30.2ms 122ms 516ms 2.16s

Matrix inversion (Ex. 5.2)
R 17ms 132ms 691ms 4.91s

SageMath 280ms 1.66s 3.24s 15.7s

Furman
R 91ms 346ms 2.58s 20.9s

SageMath 370ms 2.15s 12.0s 70.6s

Floyd-Warshall
R 4.14s 38.6s 383s >1h

SageMath 30.4s 476s >1h >1h

Hardware setup: Lenovo ThinkCentre E71 with Intel Pentium CPU G630 at 2.70GHz.

Remark (Complexity of Deterministic Expressions). Our proof of Theorem 7.6 relies on the nonde-
terminism of the eigen operation. In particular, we use the eigen operation to non-deterministically
select ann × 1-vector from all possible complexn × 1 vectors. The hardness therefore holds for any

extension of MATLANG with an operation choice(·) which non-deterministically chooses a com-
plex vector, whose dimensions could, for example, be determined by the dimension of the input
column vector of this operation. For example, in the expression e at the end of the proof of Theo-
rem 7.6, we could eliminate the use of the eigen operation by simply replacing the first two lines
by B = choice(A).

Remark. Coming back to our remark on determinacy at the end of the previous section, it is an
interesting question for further research to understand not only the expressive power but also the
complexity of the evaluation problem for deterministic MATLANG + eigen expressions.

8 EXPERIMENTS ON COMPUTING THE TRANSITIVE CLOSURE

We have seen that various natural matrix manipulations are expressible in our matrix query lan-
guages. Each such expression in turn directly corresponds to a possible implementation in terms
of the primitives of MATLANG, MATLANG + inv or MATLANG + eigen. However, this implemen-
tation may not be optimal for practical purposes. In this section we report on a preliminary exper-
imental investigation assessing the efficiency of the MATLANG + inv expression given in Exam-
ple 5.2 which computes the transitive closure of a graph given its adjacency matrix A.

We have implemented the algorithm corresponding to this expression in a straightforward way
in both R and SageMath (which is an open source competitor of MATLAB), and we have com-
pared this algorithm to three other algorithms: (1) Furman’s algorithm [22] which first computes
A := A +A2 a number of times logarithmic in the number of vertices and then sets all nonzero
entries to 1; (2) Floyd-Warshall’s algorithm; and (3) an algorithm [67] based on Tarjan’s algorithm
that computes the strongly connected components of a graph. It is known that algorithms based
on Tarjan’s algorithm perform best (especially for sparse graphs) [50, 51], and, indeed, our modest
computer experiments on random dense graphs with up to 211 nodes show that our tested imple-
mentation based on Tarjan’s algorithm is significantly faster than the other algorithms, cf. Table 1.
Our implementation corresponding to the MATLANG + inv expression turns out to be faster than
the algorithms based on Furman’s algorithm and Floyd-Warshall’s algorithm. The inversion-based
algorithm performs especially well in R, since R invokes the LAPACK library for fast computation
of matrix inversion, which is the dominating step of the algorithm. Moreover, the expression from
Example 5.2 corresponds to a matrix level (as opposed to matrix-entry level) program that is very
easy to write in R and SageMath.

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 15. Publication date: October 2019.

On the Expressive Power of Query Languages for Matrices 15:27

9 CONCLUSION

There is a commendable trend in contemporary database research to leverage, and considerably
extend, techniques from database query processing and optimization, to support large-scale linear
algebra computations. In principle, data scientists could then work directly in SQL or related lan-
guages. Still, some users will prefer to continue using the matrix languages they are more familiar
with. Supporting these languages is also important so that existing code need not be rewritten. As
already discussed in Section 2, the optimization and efficient processing of matrix query expres-
sions is a rich area for further research.

In this article, we have proposed a framework for viewing matrix manipulation from the point of
view of expressive power of database query languages. Moreover, our results formally confirm that
the basic set of matrix operations offered by systems in practice, formalized here in the language
MATLANG + inv + eigen, really is adequate for expressing a range of linear algebra techniques
and procedures.

In this article, we have already mentioned some intriguing questions for further research. Deep
inexpressibility results have been developed for logics with rank operators [54]. Although these
results are mainly concerned with finite fields, they might still provide valuable insight in our open
questions. Also, we have not covered all standard constructs from linear algebra. For instance, it
may be worthwhile to extend our framework with the operation of putting matrices in upper trian-
gular form, with the Gram-Schmidt procedure (which is now partly hidden in the eigen operation),
and with the singular value decomposition.

Furthermore, as suggested by an anonymous referee, it may be fruitful to make connections to
circuit complexity classes. Thus, MATLANG may be compared to the complexity class TC0, and
MATLANG + inv to the complexity class DET. Note, however, that these complexity classes assume
the bit model of computation, whereas our presentation of MATLANG has been over arbitrary
complex numbers.

Finally, we note that various authors have proposed to go beyond matrices, introducing data
models and algebra for tensors or multidimensional arrays [36, 55, 56]. When moving to more and
more powerful and complicated languages, however, it becomes less clear at what point we should
simply move all the way to full SQL, or extensions of SQL with recursion.

APPENDIX

A PROOF OF PROPOSITION 4.2

Let us assign, to each MATLANG expression e that is welltyped over S, an expression φe in the
relational calculus with summation as follows. As before, since the let operation is syntactic sugar
for MATLANG expressions, we do not consider this operation in this proof.

• If e = M is a matrix variable of S, then φe (i, j,x) := Rel2 (M) (i, j,x) if M is of general type,
φe (i,x) := Rel1 (M) (i,x) ifM is of vector type, andφe (x) := Rel0 (M) (x) ifM is of scalar type.

Let e ′ be a MATLANG and let τ = s1 × s2 be the output type of e ′.

• If e = (e ′)∗, then φe (i, j,x) := ∃x ′ (φe ′ (j, i,x
′) ∧ x = x ′) if τ is a general type, φe (i,x) :=

∃x ′ (φe ′ (i,x
′) ∧ x = x ′) if τ is a vector type, and φe (x) := ∃x ′ (φe ′ (x

′) ∧ x = x ′) if τ is the
scalar type. Here, x denotes the complex conjugate operation.

• If e = 1(e ′), then φe (i,x) := ∃j,x ′ (φe ′ (i, j,x
′) ∧ x = 1(x ′)) if τ is a general type, φe (i,x) :=

∃x ′ (φe ′ (i,x
′) ∧ x = 1(x ′)) is a vector type and s1 � 1 = s2, φe (x) := ∃i,x ′ (φe ′ (i,x

′) ∧ x =
1(x ′)) is a vector type and s1 = 1 � s2, andφe (x) := ∃x ′ (φe ′ (x

′) ∧ x = 1(x ′)) if τ is the scalar
type. As before, 1 in the expression φe is the constant 1 function.

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 15. Publication date: October 2019.

15:28 R. Brijder et al.

• If e = diag(e ′), thenφe (i, j,x) := (φe ′ (i,x) ∧ j = i) ∨ (∃x ′,x ′′φe ′ (i,x
′) ∧ φe ′ (j,x

′′) ∧ i � j ∧
x = 0(x ′)) if s1 � 1 = s2 and φe (x) := φe ′ (x) if τ is the scalar type.

• If e = e1 · e2 where e1 is of type s1 × s3 and e2 is of type s3 × s2, then

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φe (i, j, z) := z = sumk,x ,y.(φe1 (i,k,x) ∧ φe2 (k, j,y),x × y) if s1 � 1 � s2 and s3 � 1;
φe (i, z) := z = sumk,x ,y.(φe1 (i,k,x) ∧ φe2 (k,y),x × y) if s1 � 1 = s2 and s3 � 1;
φe (i, z) := z = sumk,x ,y.(φe1 (k,x) ∧ φe2 (k, i,y),x × y) if s1 = 1 � s2 and s3 � 1;
φe (z) := z = sumk,x ,y.(φe1 (k,x) ∧ φe2 (k,y),x × y) if s1 = 1 = s2 and s3 � 1;
φe (i, j, z) := φe1 (i,x) ∧ φe2 (j,y) ∧ z = x × y if s1 � 1 � s2 and s3 = 1;
φe (i, z) := φe1 (i,x) ∧ φe2 (y) ∧ z = x × y if s1 � 1 = s2 and s3 = 1;
φe (i, z) := φe1 (x) ∧ φe2 (i,y) ∧ z = x × y if s1 = 1 � s2 and s3 = 1;
φe (z) := φe1 (x) ∧ φe2 (y) ∧ z = x × y if s1 = 1 = s2 and s3 = 1.

• If e = apply[f](e1, . . . , en), then

φe (i, j,x) := ∃x1, . . . ,xn (φe1 (i, j,x1) ∧ · · · ∧ φen
(i, j,xn) ∧ x = f (x1, . . . ,xn)),

φe (i,x) := ∃x1, . . . ,xn (φe1 (i,x1) ∧ · · · ∧ φen
(i,xn) ∧ x = f (x1, . . . ,xn)), and

φe (x) := ∃x1, . . . ,xn (φe1 (x1) ∧ · · · ∧ φen
(xn) ∧ x = f (x1, . . . ,xn))

depending on whether τ is of general, vector or scalar type, respectively.

Notice that the only functions in φe aside from those used in apply in e are complex conjugation
(z̄), multiplication of two numbers (×), and the constant functions 0 and 1. Also notice that φe

uses neither negation, nor equality conditions on numerical variables, nor equality conditions on
variables involving a constant.

By induction on the structure of e one straightforwardly observes thatφe satisfies the conditions
(1) and (2) in the statement of the theorem. Furthermore, it is clear for all operations except for
matrix multiplication that when φe ′ (or the φei

’s in the case of apply) uses at most three base
variables than so does φe . When it comes to matrix multiplication, assume that φe1 (i,k,x) uses
base variables i, j ′,k and φe2 (k, j,y) uses base variables i ′, j,k . Since j ′ is not free in φe1 (i,k,x),
we can rename j ′ to j. Similarly, we can rename i ′ to i in φe2 (k, j,y). In this way, φe (i, j, z) :=
z = sumk,x ,y.(φe1 (i,k,x) ∧ φe2 (k, j,y),x × y) uses at most three base variables as well (the cases
where not all types are general is similar). �

ACKNOWLEDGMENTS

We thank Bart Kuijpers for telling us about the complexity class ∃R. We also thank Lauri Hella
and Wied Pakusa for helpful discussions, and Christoph Berkholz and Anuj Dawar for their help
with the proof of Proposition 4.4. Finally, we thank the anonymous referees for their insightful
comments, which we have used to improve the article. R.B. is a postdoctoral fellow of the Research
Foundation – Flanders (FWO).

REFERENCES

[1] S. Abiteboul, R. Hull, and V. Vianu. 1995. Foundations of Databases. Addison-Wesley.
[2] M. Abo Khamis, H.Q. Ngo, and A. Rudra. 2016. FAQ: Questions asked frequently. In Proceedings 35th ACM Symposium

on Principles of Database Systems, T. Milo and W.-C. Tan (Eds.). ACM, 13–28.
[3] D. S. Arnon. 1988. Geometric reasoning with logic and algebra. Artificial Intelligence 37 (1988), 37–60.
[4] S. Axler. 2015. Linear Algebra Done Right (third ed.). Springer.
[5] S. Basu, R. Pollack, and M.-F. Roy. 2008. Algorithms in Real Algebraic Geometry (second ed.). Springer.
[6] J. Bochnak, M. Coste, and M.-F. Roy. 1998. Real Algebraic Geometry. Springer-Verlag.

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 15. Publication date: October 2019.

On the Expressive Power of Query Languages for Matrices 15:29

[7] M. Boehm, M. W. Dusenberry, D. Eriksson, A. V. Evfimievski, F. M. Manshadi, N. Pansare, B. Reinwald, F. R. Reiss, P.
Sen, A. C. Surve, and S. Tatikonda. 2016. SystemML: Declarative machine learning on Spark. Proceedings of the VLDB

Endowment 9, 13 (2016), 1425–1436.
[8] A. Bonato. 2008. A Course on the Web Graph. Graduate Studies in Mathematics, Vol. 89. American Mathematical

Society.
[9] R. Brijder, F. Geerts, J. Van den Bussche, and T. Weerwag. 2018. On the expressive power of query languages for

matrices. In Proceedings of the 21st International Conference on Database Theory (LIPIcs), Vol. 98. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 10:1–10:17.

[10] R. Brijder, M. Gyssens, and J. Van den Bussche. 2019. On matrices and K -relations. arXiv:1904.03934.
[11] S. Brin and L. Page. 1998. The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN

Systems 30 (1998), 107–117.
[12] P. G. Brown. 2010. Overview of sciDB: Large scale array storage, processing and analysis. In Proceedings of the 2010

ACM SIGMOD International Conference on Management of Data (SIGMOD’10). ACM, 963–968.
[13] J.-Y. Cai, M. Fürer, and N. Immerman. 1992. An optimal lower bound on the number of variables for graph identifi-

cation. Combinatorica 12, 4 (1992), 389–410.
[14] J. Canny. 1988. Some algebraic and geometric computations in PSPACE. In Proceedings of the 20th Annual ACM

Symposium on Theory of Computing (STOC’88). ACM, 460–467.
[15] L. Chen, A. Kumar, J. Naughton, and J. M. Patel. 2017. Towards linear algebra over normalized data. Proceedings of

the VLDB Endowment 10, 11 (2017), 1214–1225.
[16] S. Datta, R. Kulkarni, A. Mukherjee, T. Schwentick, and T. Zeume. 2015. Reachability is in DynFO. In Proceedings 42nd

International Colloquium on Automata, Languages and Programming, Part II (Lecture Notes in Computer Science), M.
M. Halldórsson, K. Iwama, N. Kobayashi, and B. Speckmann (Eds.), Vol. 9135. Springer, 159–170.

[17] S. Datta, R. Kulkarni, A. Mukherjee, T. Schwentick, and T. Zeume. 2018. Reachability Is in DynFO. J. ACM 65, 5 (2018),
33:1–33:24.

[18] A. Dawar. 2008. On the descriptive complexity of linear algebra. In Logic, Language, Information and Computation,

Proceedings 15th WoLLIC (Lecture Notes in Computer Science), W. Hodges and R. de Queiroz (Eds.), Vol. 5110. Springer,
17–25.

[19] A. Dawar, M. Grohe, B. Holm, and B. Laubner. 2009. Logics with rank operators. In Proceedings of the 24th Annual

IEEE Symposium on Logic in Computer Science. 113–122.
[20] A. Dawar and B. Holm. 2017. Pebble games with algebraic rules. Fundamenta Informaticae 150, 3–4 (2017), 281–316.
[21] G. M. Del Corso, A. Gulli, and F. Romani. 2005. Fast PageRank computation via a sparse linear system. Internet

Mathematics 2, 3 (2005), 251–273.
[22] M. E. Furman. 1970. Application of a method of fast multiplication of matrices in the problem of finding the transitive

closure of a graph. Soviet Mathematics Doklady 11, 5 (1970), 1252.
[23] F. Geerts. 2019. On the expressive power of linear algebra on graphs. In Proceedings of the 22nd International Conference

on Database Theory (LIPIcs), Vol. 127. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 7:1–7:19.
[24] C. D. Godsil. 1982. Some graphs with characteristic polynomials which are not solvable by radicals. Journal of Graph

Theory 6 (1982), 211–214.
[25] G. H. Golub and C. F. Van Loan. 2013. Matrix Computations (fourth ed.). The Johns Hopkins University Press.
[26] E. Grädel and W. Pakusa. 2015. Rank logic is dead, long live rank logic!. In Proceedings of the 24th EACSL Annual

Conference on Computer Science Logic (CSL). 390–404.
[27] E. Grädel, E. Rosen, and M. Otto. 1999. Undecidability results on two-variable logics. Archive of Mathematical Logic

38 (1999), 313–354.
[28] T. J. Green, G. Karvounarakis, and V. Tannen. 2007. Provenance semirings. In Proceedings of the 26th ACM Symposium

on Principles of Database Systems. 31–40.
[29] M. Grohe and W. Pakusa. 2017. Descriptive complexity of linear equation systems and applications to propositional

proof complexity. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). 1–12.
[30] L. Hella, L. Libkin, J. Nurmonen, and L. Wong. 2001. Logics with aggregate operators. J. ACM 48, 4 (2001), 880–907.
[31] J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang, E. Fratkin, A. Gorajek, K. S. Ng, C. Welton, X. Feng, K. Li, and A.

Kumar. 2012. The MADlib analytics library: Or MAD skills, the SQL. Proceedings of the VLDB Endowment 5, 12 (2012),
1700–1711.

[32] B. Holm. 2010. Descriptive Complexity of Linear Algebra. Ph.D. Dissertation. University of Cambridge.
[33] D. Hutchison, B. Howe, and D. Suciu. 2017. LaraDB: A minimalist kernel for linear and relational algebra computation.

In Proceedings of the 4th ACM SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond, F. N. Afrati
and J. Sroka (Eds.). 2:1–2:10.

[34] K. E. Iverson. 1962. A Programming Language. John Wiley & Sons, Inc.

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 15. Publication date: October 2019.

arXiv:1904.03934

15:30 R. Brijder et al.

[35] P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. 1995. Constraint query languages. J. Comput. System Sci. 51, 1 (Aug.
1995), 26–52.

[36] M. Kim. 2014. TensorDB and Tensor-Relational Model for Efficient Tensor-Relational Operations. Ph.D. Dissertation.
Arizona State University.

[37] A. Klug. 1982. Equivalence of relational algebra and relational calculus query languages having aggregate functions.
J. ACM 29, 3 (1982), 699–717.

[38] Ph. G. Kolaitis. 2007. On the expressive power of logics on finite models. In Finite Model Theory and Its Applications.
Springer, Chapter 2, 27–123.

[39] A. Kunft, A. Alexandrov, A. Katsifodimos, and V. Markl. 2016. Bridging the gap: Towards optimization across linear
and relational algebra. In Proceedings of the 3rd ACM SIGMOD Workshop on Algorithms and Systems for MapReduce

and Beyond. 1:1–1:4.
[40] G. Kuper, L. Libkin, and J. Paredaens (Eds.). 2000. Constraint Databases. Springer.
[41] B. Laubner. 2010. The Structure of Graphs and New Logics for the Characterization of Polynomial Time. Ph.D. Disserta-

tion. Humboldt-Universität zu Berlin.
[42] J. Leskovec, A. Rajaraman, and J. D. Ullman. 2014. Mining of Massive Datasets (second ed.). Cambridge University

Press.
[43] L. Libkin. 2003. Expressive power of SQL. Theoretical Computer Science 296 (2003), 379–404.
[44] S. Luo, Z. J. Gao, M. Gubanov, L. L. Perez, and C. Jermaine. 2018. Scalable linear algebra on a relational database

system. SIGMOD Record 47, 1 (2018), 24–31.
[45] S. Luo, Z. J. Gao, M. N. Gubanov, L. Leopoldo Perez, and C. M. Jermaine. 2017. Scalable linear algebra on a relational

database system. In Proceedings of the 33rd International Conference on Data Engineering. IEEE Computer Society,
523–534.

[46] M. Marx and Y. Venema. 1997. Multi-Dimensional Modal Logic. Springer.
[47] J. Matoušek. 2014. Intersection graphs of segments and ∃R. arXiv:1406.2636.
[48] Microsoft SQL Server R Services. 2019.
[49] H. Q. Ngo, X. Nguyen, D. Olteanu, and M. Schleich. 2017. In-database factorized learning. In Proceedings of the 11th

Alberto Mendelzon International Workshop on Foundations of Data Management (CEUR Workshop Proceedings), J. L.
Reutter and D. Srivastava (Eds.), Vol. 1912.

[50] E. Nuutila. 1994. An efficient transitive closure algorithm for cyclic digraphs. Inform. Process. Lett. 52, 4 (1994), 207–
213.

[51] E. Nuutila. 1995. Efficient Transitive Closure Computation in Large Digraphs. Ph.D. Dissertation. Helsinki University
of Technology.

[52] Oracle R. Enterprise. 2019.
[53] M. Otto. 1997. Bounded Variable Logics and Counting: A Study in Finite Models. Lecture Notes in Logic, Vol. 9. Springer.
[54] W. Pakusa. 2015. Linear Equation Systems and the Search for a Logical Characterisation of Polynomial Time. Ph.D.

Dissertation. RWTH Aachen.
[55] F. Rusu and Y. Cheng. 2013. A survey on array storage, query languages, and systems. arXiv:1302.0103.
[56] T. Sato. 2017. Embedding Tarskian semantics in vector spaces. arXiv:1703.03193.
[57] T. Sato. 2017. A linear algebra approach to datalog evaluation. Theory and Practice of Logic Programming 17, 3 (2017),

244–265.
[58] M. Schaefer. 2009. Complexity of some geometric and topological problems. In Graph Drawing (Lecture Notes in

Computer Science), D. Eppstein and E. R. Gansner (Eds.), Vol. 5849. Springer, 334–344.
[59] M. Schaefer and D. Štefankovič. 2017. Fixed points, Nash equilibria, and the existential theory of the reals. Theory of

Computing Systems 60, 2 (2017), 172–193.
[60] M. Schleich, D. Olteanu, and R. Ciucanu. 2016. Learning linear regression models over factorized joins. In Proceedings

of the 2016 International Conference on Management of Data. ACM, 3–18.
[61] A. Tarski and S. Givant. 1987. A Formalization of Set Theory without Variables. AMS Colloquium Publications, Vol. 41.

American Mathematical Society.
[62] A. Thomas and A. Kumar. 2018. A comparative evaluation of systems for scalable linear algebra-based analytics.

Proceedings of the VLDB Endowment 11, 13 (2018), 2168–2182.
[63] L. G. Valiant. 1979. Completeness classes in algebra. In Proceedings of the 11th ACM Symposium on Theory of Com-

puting. 249–261.
[64] J. Van den Bussche, D. Van Gucht, and S. Vansummeren. 2007. A crash course in database queries. In Proceedings of

the 26th ACM Symposium on Principles of Database Systems. ACM Press, 143–154.
[65] M. Vardi. 1982. The complexity of relational query languages. In Proceedings of the 14th ACM Symposium on the Theory

of Computing. 137–146.

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 15. Publication date: October 2019.

arXiv:1406.2636
arXiv:1302.0103
arXiv:1703.03193

On the Expressive Power of Query Languages for Matrices 15:31

[66] D. Wagner and F. Wagner. 1993. Between min cut and graph bisection. In Proceedings of the 18th International Sym-

posium on Mathematical Foundations of Computer Science, A. M. Borzyszkowski and S. Sokołowski (Eds.). Springer,
Berlin, 744–750.

[67] B. Westerbaan. 2016. Python implementation of Tarjan’s algorithm. https://pypi.org/project/tarjan/.
[68] P. Wood. 2012. Query languages for graph databases. SIGMOD Record 41, 1 (March 2012), 50–60.
[69] Y. Zhang, W. Zhang, and J. Yang. 2010. I/O-efficient statistical computing with RIOT. In Proceedings of the 2010 IEEE

26th International Conference on Data Engineering (ICDE’10). 1157–1160.

Received August 2018; revised March 2019; accepted May 2019

ACM Transactions on Database Systems, Vol. 44, No. 4, Article 15. Publication date: October 2019.

https://pypi.org/project/tarjan/

