ECAI 2014
T. Schaub et al. (Eds.)
© 2014 The Authors and 1OS Press.

111

This article is published online with Open Access by 10S Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-419-0-111

Inference in the FO(C) Modelling Language

Bogaerts Bart! and Vennekens Joost! and Denecker Marc! and Van den Bussche Jan?

Abstract. Recently, FO(C), the integration of C-LOG with clas-
sical logic, was introduced as a knowledge representation language.
Up to this point, no systems exist that perform inference on FO(C),
and very little is known about properties of inference in FO(C). In
this paper, we study both of the above problems. We define normal
forms for FO(C), one of which corresponds to FO(I D). We define
transformations between these normal forms, and show that, using
these transformations, several inference tasks for FO(C) can be re-
duced to inference tasks for FO(/D), for which solvers exist. We
implemented this transformation and hence, created the first system
that performs inference in FO(C). We also provide results about the
complexity of reasoning in FO(C).

1 Introduction

Knowledge Representation and Reasoning is a subfield of Artificial
Intelligence concerned with two tasks: defining modelling languages
that allow intuitive, clear, representation of knowledge and develop-
ing inference tools to reason with this knowledge. Recently, C-LOG
was introduced with a strong focus on the first of these two goals
[3]. C-LOG has an expressive recursive syntax suitable for express-
ing various forms of non-monotonic reasoning: disjunctive informa-
tion in the context of closed world assumptions, non-deterministic
inductive constructions, causal processes, and ramifications. C-LOG
allows for example nested occurrences of causal rules.

It is straightforward to integrate first-order logic (FO) with
C-Lo0gG, offering an expressive modelling language in which causal
processes as well as assertional knowledge in the form of axioms
and constraints can be naturally expressed. We call this integration
FO(C).> FO(C) fits in the FO(-) research project [5], which aims
at integrating expressive language constructs with a Tarskian model
semantics in a unified language.

An example of a C-LOG expression is the following

Allp[Apply(p) A PassedTest(p)] : PermRes(p).
(Select p[Participate(p)] : PermRes(p)) < Lott.

This describes that all persons who pass a naturalisation test obtain
permanent residence in the U.S., and that one person who partic-
ipates in the green card lottery also obtains residence. The person
that is selected for the lottery can either be one of the persons that
also passed the naturalisation test, or someone else. There are local
closed world assumptions: in the example, the endogenous predicate
PermRes only holds for the people passing the test and at most one

1 KU Leuven, email: first-

Department of Computer Science,
name.name @cs.kuleuven.be

2 Hasselt University & transnational University of Limburg, email:
jan.vandenbussche@uhasselt.be

3 Previously, this language was called FO(C-LOG)

extra person. We could add an FO constraint to this theory, for ex-
ample Vp : Participate(p) = Apply(p). This results in a FO(C)
theory; a structure is a model of this theory if it is a model of the
C-LoG expression and no-one participates in the lottery without ap-
plying the normal way.

So far, very little is known about inference in FO(C). No systems
exist to reason with FO(C), and complexity of inference in FO(C)
has not been studied. This paper studies both of the above problems.

The rest of this paper is structured as follows: in Section 2, we
repeat some preliminaries, including a very brief overview of the se-
mantics of FO(C). In Section 3 we define normal forms on FO(C)
and transformations between these normal forms. We also argue that
one of these normal forms corresponds to FO(ID) [7] and hence,
that IDP [4] can be seen as the first FO(C)-solver. In Section 4 we
give an example that illustrates both the semantics of FO(C) and the
transformations. Afterwards, in Section 5, we define inference tasks
for FO(C) and study their complexity. We conclude in Section 6.

2 Preliminaries

We assume familiarity with basic concepts of FO. Vocabularies, for-
mulas, and terms are defined as usual. A Y-structure [interprets all
symbols (including variable symbols) in ¥; D’ denotes the domain
of I and o , with o a symbol in X, the interpretation of ¢ in I. We

use I[o : v] for the structure .J that equals I, except on o: 07 = v.

Domain atoms are atoms of the form P(d) where the d; are domain
elements. We use restricted quantifications. In FO, these are formu-
las of the form Vx[¢)] : ¢ or 3z[t)] : ¢, meaning that ¢ holds for
all (resp. for some) x such that i holds. The above expressions are
syntactic sugar for Vz : ¢ = ¢ and 3z : Y A @, but such a reduction
is not possible for other restricted quantifiers in C-LOG. We call ¥
the qualification and ¢ the assertion of the restricted quantifications.
From now on, let 3 be a relational vocabulary, i.e., ¥ consists only
of predicate, constant and variable symbols.

Our logic has a standard, two-valued Tarskian semantics, which
means that models represent possible states of affairs. Three-valued
logic with partial domains is used as a technical device to express
intermediate stages of causal processes. A truth-value is one of the
following: {t,f,u}, where f~' = t,t7' = fand u™' = u. Two
partial orders are defined on truth values: the precision order <,,
given by u <, t and u <, f and the truth order f < u < t. Let D be
a set, a partial set S in D is a function from D to truth values. We
identify a partial set with a tuple (Sct, Spt) of two sets, where the
certainly true set Sc; is {x | S(z) = t} and the possibly true set
Spt is {z | S(x) # f}. The union, intersection, and subset-relation
of partial sets are defined pointwise. For a truth value v, we define
the restriction of a partial set S to this truth-value, denoted 7 (S, v),
as the partial set mapping every € D to min< (S(z), v). Every set
S is also a partial set, namely the tuple (S, S).

112 B. Bogaerts et al. / Inference in the FO(C) Modelling Language

A partial S-structure I consists of 1) a domain D : a partial set of
elements, and 2) a mapping associating a value to each symbol in 3;
for constants and variables, this value is in D’ for predicate symbols
of arity n, this is a partial set P’ in (D],)™. We often abuse notation
and use the domain D as if it were a predicate. A partial structure [is
two-valued if for all predicates P (including D), P, e PF{t. There is
a one-to-one correspondence between two-valued partial structures
and structures. If I and J are two partial structures with the same
interpretation for constants, we call I more precise than J (I >, J)
if for all its predicates P (including D), PL D PJ and P;t - Pf>]t-

Definition 2.1. We define the value of an FO formula ¢ in a partial
structure I inductively based on the Kleene truth tables.

P@! = PI(T),
(=)' = (())7"
) = min< (o', 97)
¢ V) =max< (¢',9")
! = min< {max(D"(d)~",
3z :)" = max< {min(D’(d), ¢

I[Tri] |d€Dt}
)| de DL}

In what follows we briefly repeat the syntax and formal semantics
of C-LOG. For more details, an extensive overview of the informal
semantics of CEEs, and examples of CEEs, we refer to [3].

2.1 Syntax of C-L0OG

Definition 2.2. Causal effect expressions (CEE) are defined induc-
tively as follows:

if P(t) is an atom, then P(t) is a CEE,

if v is an FO formula and C' is a CEE, then C' < ¢ is a CEE,

if C1 and C4 are CEEs, then C1 And Cs is a CEE,

if C1 and C4 are CEEs, then C1 Or Cs is a CEE,

if x is a variable, @ is a first-order formula and C' is a CEE, then

Allz[p] : C'isa CEE,

e ifx is avariable, is a first-order formula and C' is a CEE, then
Select x[p] : C' is a CEE,

e ifz is avariable and C' is a CEE, then New z : C' is a CEE.

We call a CEE an atom- (respectively rule-, And-, Or-, All-,
Select- or New-expression) if it is of the corresponding form. We
call a predicate symbol P endogenous in C'if P occurs as the symbol
of a (possibly nested) atom-expression in C. All other symbols are
called exogenous in C. An occurrence of a variable x is bound in a
CEE if it occurs in the scope of a quantification over that variable
(Vx, dz, All z, Select z, or New x) and free otherwise. A variable
is free in a CEE if it has free occurrences. A causal theory, or C-LOG
theory is a CEE without free variables. By abuse of notation, we often
represent a causal theory as a finite set of CEEs; the intended causal
theory is the And-conjunction of these CEEs. We often use A for a
causal theory and C, C’, C; and C: for its subexpressions. We stress
that the connectives in CEEs differ from their FO counterparts. E.g.,
in the example in the introduction, the CEE expresses that there is a
cause for several persons to become American (those who pass the
test and maybe one extra lucky person). This implicitly also says that
every person without cause for becoming American is not American.
As such C-LoG-expressions are highly non-monotonic.

2.2 Semantics of C-L0OG

Definition 2.3. Let A be a causal theory; we associate a parse-tree
with A. An occurrence of a CEE C in A is a node in the parse tree of

A labelled with C. The variable context of an occurrence of a CEE
C in A is the sequence of quantified variables as they occur on the
path from A to C'in the parse-tree of A. If T is the variable context
of Cin A, we denote C as C(T) and the length of T as nc.

For example, the variable context of P(x) in Select y[Q(y)] :
Allz[Q(x)] : P(x) is [y, x]. Instances of an occurrence C(F) cor-
respond to assignments d of domain elements to T.

Definition 2.4. Let A be a causal theory and D a set. A A-selection
Cin D consists of

e for every occurrence C of a Select-expression in A, a total func-
tion C&F' - D¢ — D,

o for every occurrence C of a Or-expression in A, a total function
¢ D"C — {1,2},

o for every occurrence C' of a New-expression in A\, an injective
partial function (& : D" — D.

new

such that furthermore the images of all functions (& are disjoint
(i.e., such that every domain element can be created only once).

The initial elements of ¢ are those that do not occur as image of
one of the (2™ -functions: '™ = D \ Ucimage(C&°Y), where the
union ranges over all occurrences of New-expressions.

The effect set of a CEE in a partial structure is a partial set: it
contains information on everything that is caused and everything that
might be caused. For defining the semantics a new, unary predicate
U is used.

Definition 2.5. Let A be a CEE and J a partial structure. Suppose
C is a A-selection in a set D D Dgt. Let C be an occurrence of a
CEE in A. The effect set of C with respect to J and C is a partial set
of domain atoms, defined recursively:

IfC is P(T), then eff ;.. (C) = {P(")},
if Cis Cy And Cs, then eff 5 ¢ (C) = eff 5, ¢ (C1) Uefl 5 ¢(Cb),
ifCis C' + @, theneff 1 ¢ (C) = r(eff 5.0 (C"), ©7),
if Cis Allz[p] : C", then
eff1c(C) = U{r(effy,c(C"), ming (D (d), ™)) | d €

D and J' = J[z : d]}

e if C(y) is C1 Or Cy, then
= eff1.¢(C) = eff 1 (C1) if ¢& (57) = 1,
— and eff 5 ¢ (C) = eff 5 (C2) otherwise

e if C(y) is Select x[go] C lete = ¢ (y?), J = Jlx : e] and
v = min< (D’ (e), ¢’) Then eff ;o (C) = r(eff ;.c(C"),v),

e ifC(y)is Newz : C', then
= eff, (C) =0if (e (

- and eff ;,((C) = {UCE™ (Y
Jlz : ¢ (57)] otherwise,

7Y does not denote,

N} Ueffy o(C), where J' =

An instance of an occurrence of a CEE in A is relevant if it is encoun-
tered in the evaluation of eff; ¢(A). We say that C' succeeds* with
¢ in J if for all relevant occurrences C(y) of Select-expressions,
¢ (g7 satisfies the qualification of C and for all relevant instances
C(7) of New-expressions, (2" (5”7) denotes.

4 Previously, we did not say that C' “succeeds”, but that the effect set “is a
possible effect set”. We believe this new terminology is more clear.

B. Bogaerts et al. / Inference in the FO(C) Modelling Language 113

Given a structure [(and a A-selection (), two lattices are defined:
L?C denotes the set of all X-structures J with in ¢ D7 C DY such
that for all exogenous symbols o of arity n: 0/ = o/ N (D7)". This
set is equipped with the truth order. And LF denotes the sublattice of
L? ¢ consisting of all structures in L% ¢ with domain equal to D

A partial structure corresponds to an element of the bilattice
(LT C)Q; the bilattice is equipped with the precision order.

Definition 2.6. Let I be a structure and { a A-selection in D?. The
partial immediate causality operator A¢ is the operator on (L7 ;)?
that sends partial structure J to a partial structure J' such that

e D7 (d) =tifd € ("™ and D’ (d) = eff ;. (A)(U(d)) otherwise

o for endogenous symbols P, P(d) T = eff ;. (A)(P(d)).

Such operators have been studied intensively in the field of Ap-
proximation Fixpoint Theory [6]; and for such operators, the well-
founded fixpoint has been defined in [6]. The semantics of C-LOG is
defined in terms of this well-founded fixpoint in [3]:

Definition 2.7. Let A be a causal theory. We say that structure I is
a model of A (notation I |= A) if there exists a A-selection such
that (I,1) is the well-founded fixpoint of A¢, and A succeeds with ¢
inl.

FO(C) is the integration of FO and C-L0G. An FO(C) theory
consists of a set of causal theories and FO sentences. A structure
I is a model of an FO(C) theory if it is a model of all its causal
theories and FO sentences. In this paper, we assume, without loss of
generality, that an FO(C) theory 7 has exactly one causal theory.

3 A Transformation to DefF

In this section we present normal forms for FO(C) and transforma-
tions between these normal forms. The transformations we propose
preserve equivalence modulo newly introduced predicates:

Definition 3.1. Suppose ¥ C X' are vocabularies, T is an FO(C)
theory over Y and T is an FO(C) theory over X'. We call T and T’
Y-equivalent if each model of T, can be extended to a model of T’
and the restriction of each model of T' to ¥ is a model of T .

From now on, we use Al1Z[p] : C’, where T is a tuple of variables
as syntactic sugar for Allz[t] : Allzoft] @ ... Allz,[y] @ C,
and similar for Select-expressions. If T is a tuple of length O,
AllZ[p] : C' is an abbreviation for C’ < . It follows directly
from the definitions that And and Or are associative, hence we use
C1 And C; And Cj as an abbreviation for (C; And C2) And Cs
and for C1 And (C> And C3), and similar for Or-expressions.

3.1 Normal Forms

Definition 3.2. Let C be an occurrence of a CEE in C'. The nesting
depth of C in C" is the depth of C in the parse-tree of C'. In particu-
lar, the nesting depth of C' in C' is always 0. The height of C" is the
maximal nesting depth of occurrences of CEEs in C'. In particular
the height of atom-expressions is always 0.

Example 3.3. Let Abe A And ((Allz[P(z)] : Q(x)) Or B). The
nesting depth of B in A is 2 and the height of A is 3.

Definition 3.4. A C-LOG theory is creation-free if it does not con-
tain any New-expressions, it is deterministic if it is creation-free
and it does not contain any Select or Or-expressions. An FO(C) is
creation-free (resp. deterministic) if its (unique) C-LOG theory is.

Definition 3.5. A C-LOG theory is in Nesting Normal Form
(NestNF) if it is of the form C1 And Co And C3 And ... where
each of the C; is of the form ANl T[p;] : C; and each of the C; has
height at most one. A C-LOG theory A is in Definition Form (DefF)
if it is in NestNF and each of the C} have height zero, i.e., they are
atom-expressions. An FO(C) theory is NestNF (respectively DefF) if
its corresponding C-LOG theory is.

Theorem 3.6. Every FO(C) theory over ¥ is X-equivalent with an
FO(C) theory in DefF.

We will prove this result in 3 parts: in Section 3.4, we show that
every FO(C) theory can be transformed to NestNF, in Section 3.3,
we show that every theory in NestNF can be transformed into a deter-
ministic theory and in Section 3.2, we show that every deterministic
theory can be transformed to DefF. The FO sentences in an FO(C)
theory do not matter for the normal forms, hence most results focus
on the C-LOG part of FO(C) theories.

3.2 From Deterministic FO(C) to DefF

Lemma 3.7. Let A be a C-LOG theory. Suppose C is an oc-
currence of an expression ANlT[p] : C1 And Cs. Let A’ be the
causal theory obtained from A by replacing C with (A1T[p] :
C1) And (ALl Z[p] : C2). Then A and A’ are equivalent.

Proof. 1t is clear that A and A’ have the same selection functions.
Furthermore, it follows directly from the definitions that given such
a selection, the defined operators are equal. O

Repeated applications of the above lemma yield:

Lemma 3.8. Every deterministic FO(C) theory is equivalent with
an FO(C) theory in DefF.

3.3 From NestNF to Deterministic FO(C)

Lemma 3.9. If T is an FO(C) theory in NestNF over ¥, then T is
Y-equivalent with a deterministic FO(C) theory.

We will prove Lemma 3.9 using a strategy that replaces a A-
selection by an interpretation of new predicates (one per occurrence
of a non-deterministic CEE). The most important obstacle for this
transformation are New-expressions. In deterministic C-LOG, no
constructs influence the domain. This has as a consequence that the
immediate causality operator for a deterministic C-LOG theory is
defined in a lattice of structures with fixed domain, while in general,
the operator is defined in a lattice with variable domains. In order to
bridge this gap, we use two predicates to describe the domain, S are
the initial elements and I/ are the created, the union of the two is the
domain. Suppose a C-LOG theory A over vocabulary X is given.

Definition 3.10. We define the A-selection vocabulary XA as the
vocabulary consisting of:

e a unary predicate S,

o for every occurrence C of a Or-expression in A\, a new nc-ary
predicate Choosel ¢,

e forevery occurrence C of a Select-expression in A, a new (nc+
1)-ary predicate Selc,

e for every occurrence C of a New-expression in A, a new (nc +
1)-ary predicate Createc,

Intuitively, a X7 -structure corresponds to a A-selection: S corre-
spond to ¢*™, Chooselc to (&, Selc to (& and Createc to (2.

114 B. Bogaerts et al. / Inference in the FO(C) Modelling Language

Lemma 3.11. There exists an FO theory Sa over XA such that there
is a one-to-one correspondence between A-selections in D and mod-
els of Sa with domain D.

Proof. This theory contains sentences that express that Selc is func-
tional, and that Createc is a partial function. It is straightforward
to do this in FO (with among others, constraints such as Vz : Jy :
Selc (T, y)). Furthermore, it is also easy to express that the Createc
functions are injective, and that different New-expressions create
different elements. Finally, this theory relates S to the Createc ex-
pressions: Yy : S(y) & =V (3T : Createc(%,y)) where the
disjunction ranges over all occurrences C' of New-expressions. [

The condition that a causal theory succeeds can also be expressed
as an FO theory. For that, we need one more definition.

Definition 3.12. Ler A be a causal theory in NestNF and let C' be
one of the C|, in definition 3.5, then we call @, (again, from definition
3.5) the relevance condition of C' and denote it Relc.

In what follows, we define one more extended vocabulary. First,
we use it to express the constraints that A succeeds and afterwards,
for the actual transformation.

Definition 3.13. The A-transformed vocabulary Y% is the disjoint
union of ¥ and Y5 extended with the unary predicate symbol U.

Lemma 3.14. Suppose A is a causal theory in NestNF, and (is
a A-selection with corresponding YA -structure M. There exists an
FO theory Succa such that for every (two-valued) structure I with
I|EZ = M, A succeeds with respect to I and ¢ iff I |= Succa.

Proof. A is in NestNF; for every of the C; (as in Definition 3.5),
Reler is true in I if and only if C/ is relevant. ~ Hence, for Succa
we can take the FO theory consisting of the following sentences:

e VT : Rele = Ty :
C(z)in A,

e VZ : Relg = Jy :
C(z) of the form Select y[¢] :

Createc (T, y), for all New-expressions

(Sele(m,y) A o), for all Select-expressions
C’ in A. O

Now we describe the actual transformation: we translate every
quantification into a relativised version, make explicit that a New-
expression causes an atom U (d), and eliminate all non-determinism
using the predicates in %% .

Definition 3.15. Ler A be a C-LOG theory over X in NestNF. The
transformed theory A’ is the theory obtained from A by applying the
following transformation:

e first replacing all quantifications az[] : X, where a €
{V¥, 3, Select, All} by ax[(U(x) V S(x)) A] : x

o subsequently replacing each occurrence C(T) of an expression
New y : C' by Ally[Createc(T, y)] : U(y) And C’,

e replacing every occurrence C(T) of an expression Cy Or Cy by
(Cy + Chooselc(T))And(C2 + —Chooselc(T)),

e and replacing every occurrence C(T) of an expression
Select y[p] : C" by Ally[p A Selc (T, y)] : C'.

Given a structure / and a A-selection (, there is an obvious lattice
morphism my¢ : LIE,C — L?tA mapping a structure J to the structure
J' with domain D?" = D' interpreting all symbols in 3% according
to ¢ (as in Lemma 3.11), all symbols in ¥ (except for the domain) the

same as I and interpreting I/ as D7 \ S 7 m can straightforwardly
be extended to a bilattice morphism.

Lemma 3.16. Let ¢ be a A-selection for A and A¢ and A be the par-
tial immediate causality operators of A and A respectively. Let J
be any partial structure in (LT ;). Then m¢(Ac(J)) = A(me(J)).

Idea of the proof. New-expressions New y : C’ in A have been
replaced by All expressions causing two subexpressions: U(y) and
the C’ for exactly the 7’s that are created according to (. Further-
more, the relativisation of all other quantifications guarantees that
we correctly evaluate all quantifications with respect to the domain
of J, encodedin S U U.

Furthermore, all non-deterministic expressions have been changed
into All-expressions that are conditionalised by the A-selection; this
does not change the effect set; thus, the operators correspond. O

Lemma 3.17. Let (, A¢ and A be as in lemma 3.16. If I is the well-
Sfounded model of A¢, m¢(I) is the well-founded model of A.

Proof. Follows directly from lemma 3.16: the mapping J = me(J)

is an isomorphism between L¥ ¢ and the sublattice of La I consist-
ing of those structures such that the interpretations of S and U have
an empty intersection. As this isomorphism maps A¢ to A, their well-
founded models must agree. O

Lemma 3.18. Ler A be a causal theory in NestNF, ¢ a A-selection
for A and I a S-structure. Then I = A if and only if m¢(I) = A*
and m¢(I) = Sa and m¢(I) | Sucea.

Proof. Follows directly from Lemmas 3.17, 3.11 and 3.14. O

Proof of Lemma 3.9. Let A be the C-LOG theory in 7. We can now
take as deterministic theory the theory consisting of Af, all FO sen-
tences in 7, and the sentence Sa A Succa AVz : S(z) < —U(x),
where the last formula excludes all structures not of the form m (1)
for some I (the created elements I/ and the initial elements S should
form a partition of the domain). O

3.4 From General FO(C) to NestNF

In the following definition we use A[C’/C] for the causal theory
obtained from A by replacing the occurrence of a CEE C by C".

Definition 3.19. Suppose C(Z) is an occurrence of a CEE
in A. With Unnest(A,C) we denote the causal theory
A[P(z)/C] And AllT[P ()] C where P is a new predi-
cate symbol.

Lemma 3.20. Every FO(C) theory is Y-equivalent with an FO(C)
theory in NestNF.

Proof. First, we claim that for every C-LOG theory over X, A
and Unnest(A, C') are X-equivalent. It is easy to see that the two
theories have the same A-selections. Furthermore, the operator for
Unnest(A, C) is a part-to-whole monotone fixpoint extension’ (as
defined in [8]) of the operator for A. In [8] it is shown that in this
case, their well-founded models agree, which proves our claim. The
lemma now follows by repeated applications of the claim. O

Proof of Theorem 3.6. Follows directly by combining lemmas 3.20,
3.9 and 3.8. For transformations only defined on C-LOG theories, the
extra FO part remains unchanged. O

5 Intuitively, a part-to-whole fixpoint extension means that all predicates only
depend positively on the newly introduced predicates

B. Bogaerts et al. / Inference in the FO(C) Modelling Language 115

3.5 FO(C)and FO(ID)

An inductive definition (ID) [7] is a set of rules of the form Vz :
P(t) + ¢, an FO(ID) theory is a set of FO sentences and IDs, and
an 3SO(I D) theory is a theory of the form 3P : T, where T is an
FO(ID) theory. A causal theory in DefF corresponds exactly to an
ID: the CEE AllZ[p] : P(¢) corresponds to the above rule and the
And-conjunction of such CEEs to the set of corresponding rules.
The partial immediate consequence operator for IDs defined in [7] is
exactly the partial immediate causality operator for the correspond-
ing C-LOG theory. Combining this with Theorem 3.6, we find (with
P the introduced symbols):

Theorem 3.21. Every FO(C) theory is equivalent with an 3SO(I D)
Sformula of the form 3P : {A, T}, where Ais an ID and T is an FO
sentence.

Theorem 3.21 implies that we can use reasoning engines for
FO(ID) in order to reason with FO(C), as long as we are careful
with the newly introduced predicates. We implemented a prototype
of this transformation in the IDP system [4], it can be found at [2].

4 Example: Natural Numbers

Example 4.1. Let ¥ be a vocabulary consisting of predicates
Nat/1, Succ/2 and Zero/1 and suppose 7 is the following theory:

New z : Nat(z) And Zero(z)
Allz|Nat(z)] : New y : Nat(y) And Succ(z, y)

This theory defines a process creating the natural numbers. Trans-
forming it to NestNF yields:

New z : T1(x)
Allz[Ty(z)] : Nat(x)
All [T ()] : Zero(x)

All z[Nat(z)] : Newy : Ta(z,y)

Allz, y[T>(z,y)] : Nat(y)
Allz,y[T>(z,y)] : Succ(z, y),

where T and 7% are auxiliary symbols. Transforming the resulting
theory into deterministic C-LOG requires the addition of more aux-
iliary symbols S/1,U /1, Create1 /1 and Createz/2 and results in
the following C-LOG theory (together with a set of FO-constraints):

All z[Create; (x)] : U(xz) And T1(x)
Allz[(U(z) V S(x)) A Ti(x)] : Nat(z)

This example shows that the proposed transformation is in fact too
complex. E.g., here, almost all occurrences of U (z) V S(x) are not
needed. This kind of redundancies can be eliminated by executing
the three transformations (from Sections 3.2, 3.3 and 3.4) simultane-
ously. In that case, we would get the simpler deterministic theory:

All z[Create; (z)] : Nat(z) And Zero(z) And U(z)
Allz, y[(U(x) vV S(x)) A Nat(z) A Createz(z, y)] :
Nat(y) And Succ(z,y) And U(y)
Vo : U(z) < -S(x)
Vy : S(y) & —(Createi (y) V 3z : Createa(z,y)).
3z : Create; ().

These sentences express the well-known constraints on N: there is at
least one natural number (identified by Create1), and every number
has a successor. Furthermore the initial element and the successor el-
ements are unique, and all are different. Natural numbers are defined
as zero and all elements reachable from zero by the successor rela-
tion. The theory we started from is much more compact and much
more readable than any FO(/D) theory defining natural numbers.
This shows the Knowledge Representation power of C-LOG.

S Complexity Results

In this section, we provide complexity results. We focus on the
C-LoG fragment of FO(C) here, since complexity for FO is well-
studied. First, we formally define the inference methods of interest.

5.1 Inference Tasks

Definition 5.1. The model checking inference takes as input a
C-LOG theory A and a finite (two-valued) structure 1. It returns true
if I = A and false otherwise.

Definition 5.2. The model expansion inference takes as input a
C-LOG theory A and a partial structure I with finite two-valued
domain. It returns a model of A more precise than I if one exists and
“unsat” otherwise.

Definition 5.3. The endogenous model expansion inference is a spe-
cial case of model expansion where I is two-valued on exogenous
symbols of A and completely unknown on endogenous symbols.

The next inference is related to database applications. In the
database world, languages with object creation have also been de-
fined [1]. A query in such a language can create extra objects, but the
interpretation of exogenous symbols (tables in the database) is fixed,
i.e., exogenous symbols are always false on newly created elements.

Definition 5.4. The unbounded query inference takes as input a
C-LOG theory A, a partial structure I with finite two-valued do-
main such that I is two-valued on exogenous symbols of A and com-
pletely unknown on endogenous symbols of A, and a propositional
atom P. This inference returns true if there exist i) a structure J, with
D’ D D!, 67 = o7 for exogenous symbols o, and P’ = t and ii)
a A-selection ¢ in D7 with ¢™™ = D, such that J is a model of A
with A-selection (. It returns false otherwise.

5.2 Complexity of Inference Tasks

In this section, we study the datacomplexity of the above inference
tasks, i.e., the complexity for fixed A.

Lemma 5.5. For a finite structure I, computing A¢ (1) is polynomial
in the size of I and C.

Proof. In order to compute A¢(I), we need to evaluate a fixed num-
ber of FO-formulas a polynomial number of times (with exponent
in the nesting depth of A). As evaluating a fixed FO formula in the
context of a partial structure is polynomial, the result follows. O

Theorem 5.6. For a finite structure I, the task of computing the Ac¢-
well-founded model of A in the lattice LIZ,C is polynomial in the size
of I and (.

116 B. Bogaerts et al. / Inference in the FO(C) Modelling Language

Proof. Calculating the well-founded model of an approximator can
be done with a polynomial number of applications of the approxima-
tor. Furthermore, Lemma 5.5 guarantees that each of these applica-
tions is polynomial as well. O

Theorem 5.7. Model expansion for C-LOG is NP-complete.

Proof. After guessing a model and a A-selection, Theorem 5.6 guar-
antees that checking that this is the well-founded model is polyno-
mial. Lemma 3.14 shows that checking whether A succeeds is poly-
nomial as well. Thus, model expansion is in NP.

NP-hardness follows from the fact that model expansion for in-
ductive definitions is NP-hard and inductive definitions are shown to
be a subclass of C-LOG theories, as argued in Section 3.5. O

Example 5.8. We show how the SAT-problem can be encoded as
model checking for C-L0G. Consider a vocabulary 274 ¢ with unary
predicates Cl and PS and with binary predicates Pos and Neg. Ev-
ery SAT-problem can be encoded as a ©74 * -structure: Cl and PS are
interpreted as the sets of clauses and propositional symbols respec-
tively, Pos(c, p) (respectively Neg(c, p)) holds if clause ¢ contains
the literal p (respectively —p).

We now extend 2747T to a vocabulary ©54% with unary predi-
cates Tr and Fa and a propositional symbol Sol. Tr and Fa encode
an assignment of values (true or false) to propositional symbols, Sol
means that the encoded assignment is a solution to the SAT problem.

Let Asar be the following causal theory:

Allp[PS(p)] : Tr(p) Or Fa(p)
Sol < Vc[Cl(¢)] : Tp : (Pos(c, p) A Tr(p) V (Neg(c, p) A Fa(p))

The first rules guesses an assignment. The second rule says that Sol
holds if every clause has at least one true literal. Model expansion of
that theory with a structure interpreting 374 according to a SAT
problem and interpreting Sol as true, is equivalent with solving that
SAT problem, hence model expansion is NP-hard (which we already
knew). In order to show that model checking is NP-hard, we add the
following CEE to the theory Agar.

(Allp[PS(p)] : Tr(p) And Fa(p)) < Sol

Basically, this rules tells us to forget the assignment once we have
derived that it is a model (i.e., we hide the witness of the NP prob-
lem). Now, the original SAT problem has a solution if and only if the
structure interpreting symbols in 274 according to a SAT problem
and interpreting all other symbols as constant true is a model of the
extended theory. Hence:

Theorem 5.9. Model checking for C-LOG is NP-complete.

Model checking might be a hard task but in certain cases (includ-
ing for Agar) endogenous model expansion is not. The results in
Theorem 5.6 can sometimes be used to generate models, if we have
guarantees to end in a state where A succeeds.

Theorem 5.10. If A is a total® causal theory without New and
Select-expressions, endogenous model expansion is in P.

Note that Theorem 5.10 does not contradict Example 5.8 since in
that example, Sol is interpreted as true in the input structure, i.e.,
the performed inference is not endogenous model expansion. It is

6 A causal theory is total if for every A-selection ¢, w(A¢) is two-valued,
i.e., roughly, if it does not contain relevant loops over negation.

future work to generalise Theorem 5.10, i.e., to research which are
sufficient restrictions on A such that model expansion is in P.

It is a well-known result in database theory that query languages
combining recursion and object-creation are computationally com-
plete [1]; C-LOG can be seen as such a language.

Theorem 5.11. Unbounded querying can simulate the language
whilenew from [1].

Proof. We already showed that we can create the natural numbers in
C-Lo0G. Once we have natural numbers and the successor function
Succ, we add one extra argument to every symbol (this argument rep-
resents time). Now, we encode the looping construct from whilepew
as follows. An expression of the form while P do s corresponds to
the CEE: All¢[P(t)] : C, where C is the translation of the expres-
sion s. An expression P = new Q corresponds to a CEE (where the
variable ¢ should be bound by a surrounding while).

A7, t'[Succ(t,t')] : Newy : P(Z,y,t') + Q(T,t). O
Now, it follows immediately from [1] that

Corollary 5.12. For every decidable class S of finite structures
closed under isomorphism, there exists a A such that unbounded ex-
ogenous model generation returns true with input I iff I € S.

6 Conclusion

In this paper we presented several normal forms for FO(C). We
showed that every FO(C) theory can be transformed to a -
equivalent deterministic FO(C) theory and to a ¥-equivalent FO(C)
theory in NestNF or in DefF. Furthermore, as FO(C) theories in
DefF correspond exactly to FO(I D), these transformations reduce
inference for FO(C) to FO(/D). We implemented a prototype of
this above transformation, resulting in the first FO(C) solver. We
also gave several complexity results for inference in C-L0OG. All of
these results are valuable from a theoretical point of view, as they
help to characterise FO(C), but also from a practical point of view,
as they provide more insight in FO(C).

References

[1] Serge Abiteboul, Richard Hull, and Victor Vianu, Foundations of
Databases, Addison-Wesley, 1995.

[2] Bart Bogaerts. IDP-CLog. http://dtai.cs.kuleuven.be/krr/files/
software/various/idp-clog.tar.gz, 2014.

[3] Bart Bogaerts, Joost Vennekens, Marc Denecker, and Jan Van den Buss-
che, ‘FO(C): A knowledge representation language of causality’, TPLP,
(Online-Supplement, Technical Communication ICLP14), ((in press)
2014).

[4] Broes De Cat, Bart Bogaerts, Maurice Bruynooghe, and Marc Denecker,
‘Predicate logic as a modelling language: The IDP system’, CoRR,
abs/1401.6312, (2014).

[5] Marc Denecker, “The FO(-) knowledge base system project: An integra-
tion project (invited talk)’, in ASPOCP, (2012).

[6] Marc Denecker, Maurice Bruynooghe, and Joost Vennekens, ‘Approxi-
mation fixpoint theory and the semantics of logic and answers set pro-
grams’, in Correct Reasoning, eds., Esra Erdem, Joohyung Lee, Yuliya
Lierler, and David Pearce, volume 7265 of LNCS, Springer, (2012).

[7] Marc Denecker and Eugenia Ternovska, ‘A logic of nonmonotone in-
ductive definitions’, ACM Trans. Comput. Log., 9(2), 14:1-14:52, (April
2008).

[8] Joost Vennekens, Maarten Marién, Johan Wittocx, and Marc Denecker,
‘Predicate introduction for logics with a fixpoint semantics. Part I: Logic
programming’, Fundamenta Informaticae, 79(1-2), 187-208, (Septem-
ber 2007).

